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Recurrent Neural Networks
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Long Short-Term Memory
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Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from memory
cell  was added.c  t
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Gated Recurrent Unit
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Gated recurrent unit (GRU) was proposed by Cho et al. (2014) as a simplification of LSTM.
The main differences are

no memory cell
forgetting and updating tied together

  

r  t

u  t

 ĥt
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Basic RNN Applications

Sequence Element Representation
Create output for individual elements, for example for classification of the individual elements.
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Sequence Representation
Generate a single output for the whole sequence (either the last output of the last state).
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Basic RNN Applications

Sequence Prediction
During training, predict next sequence element.
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During inference, use predicted elements as further inputs.
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Multilayer RNNs

We might stack several layers of recurrent neural networks. Usually using two or three layers
gives better results than just one.

In case of multiple layers, residual connections usually improve results. Because dimensionality
has to be the same, they are usually applied from the second layer.
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Bidirectional RNN

To consider both the left and right contexts, a bidirectional RNN can be used, which consists of
parallel application of a forward RNN and a backward RNN.

The outputs of both directions can be either added or concatenated. Even if adding them does
not seem very intuitive, it does not increase dimensionality and therefore allows residual
connections to be used in case of multilayer bidirectional RNN.
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Word Embeddings

We might represent words using one-hot encoding, considering all words to be independent of
each other.

However, words are not independent – some are more similar than others.

Ideally, we would like some kind of similarity in the space of the word representations.

Distributed Representation
The idea behind distributed representation is that objects can be represented using a set of
common underlying factors.

We therefore represent words as fixed-size embeddings into  space, with the vector elements

playing role of the common underlying factors.

These embeddings are initialized randomly and trained together with the rest of the network.

Rd

9/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC



Word Embeddings

The word embedding layer is in fact just a fully connected layer on top of one-hot encoding.
However, it is not implemented in that way.

Instead, a so-called embedding layer is used, which is much more efficient. When a matrix is
multiplied by an one-hot encoded vector (all but one zeros and exactly one 1), the row
corresponding to that 1 is selected, so the embedding layer can be implemented only as a simple
lookup.

In TensorFlow, the embedding layer is available as

tf.keras.layers.Embedding(input_dim, output_dim) 
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Word Embeddings

Even if the embedding layer is just a fully connected layer on top of one-hot encoding, it is
important that this layer is shared across the whole network.
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Word Embeddings for Unknown Words

 

Figure 1 of paper "Finding Function in Form: Compositional Character
Models for Open Vocabulary Word Representation",

h // i / b /1508 02096

Recurrent Character-level WEs
In order to handle words not seen during training, we
could find a way to generate a representation from the
word characters.

A possible way to compose the representation from
individual characters is to use RNNs – we embed
characters to get character representation, and then use a
RNN to produce the representation of a whole sequence
of characters.

Usually, both forward and backward directions are used,
and the resulting representations are concatenated/added.
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Word Embeddings for Unknown Words

 

Figure 1 of paper "Character-Aware Neural Language
Models", https://arxiv.org/abs/1508.06615.

Convolutional Character-level WEs
Alternatively, 1D convolutions might be used.

Assume we use a 1D convolution with kernel size 3. It produces
a representation for every input word trigram, but we need a
representation of the whole word. To that end, we use global
max-pooling – using it has an interpretable meaning, where the
kernel is a pattern and the activation after the maximum is a
level of a highest match of the pattern anywhere in the word.

Kernels of varying sizes are usually used (because it makes sense
to have patterns for unigrams, bigrams, trigrams, …) – for
example, 25 filters for every kernel size  might be

used.

Lastly, authors employed a highway layer after the convolutions,
improving the results (compared to not using any layer or using a
fully connected one).

(1, 2, 3, 4, 5)
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Character-level WE Implementation

Training
Generate unique words per batch.

Process the unique words in the batch.

Copy the resulting embeddings suitably in the batch.

Inference
We can cache character-level word embeddings during inference.
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NLP Processing with CLEs

 

Figure 1 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.
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NLP Multitask Learning

 

Figure 2 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.
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NLP Multitask Learning

 

Figure 1 of paper "Stack-propagation: Improved Representation Learning for Syntax", https://arxiv.org/abs/1603.06598.
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NLP Multitask Learning

 

Figure 1 of paper "A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks", https://arxiv.org/abs/1611.01587.
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Structured Prediction

Structured Prediction
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Structured Prediction

Consider generating a sequence of  given input .

Predicting each sequence element independently models the distribution .
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However, there may be dependencies among the  themselves, which is difficult to capture by

independent element classification.
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Maximum Entropy Markov Models

We might model the dependencies by assuming that the output sequence is a Markov chain,
and model it as

Each label would be predicted by a softmax from the hidden state and the previous label.
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The decoding can be then performed by a dynamic programming algorithm.

P (y  ∣X, y  ).i i−1
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Maximum Entropy Markov Models

However, MEMMs suffer from a so-called label bias problem. Because the probability is
factorized, each  is a distribution and must sum to one.

Imagine there was a label error during prediction. In the next step, the model might “realize”
that the previous label has very low probability of being followed by any label – however, it
cannot express this by setting the probability of all following labels low, it has to “conserve the
mass”.

P (y  ∣X, y  )i i−1
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Conditional Random Fields

Let  be a graph such that  is indexed by vertices of . Then  is a

conditional random field, if the random variables  conditioned on  obey the Markov

property with respect to the graph, i.e.,

By a fundamental theorem of random fields, the density of a conditional random field can be
factorized over the cliques of the graph :

G = (V ,E) y G (X,y)
y X

P (y  ∣X, y  , i  =i j  j) = P (y  ∣X, y   ∀j :i j (i, j) ∈ E).

G

P (y∣X) =  P (y  ∣X).
clique C of G

∏ C
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Linear-Chain Conditional Random Fields (CRF)

Usually often assume that dependencies of , conditioned on , form a chain.
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Then, the cliques are nodes and edges, and we usually factorize the probability as:
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Linear-Chain Conditional Random Fields (CRF)

Linear-chain Conditional Random Field, usually abbreviated only to CRF, acts as an output
layer. It can be considered an extension of a softmax – instead of a sequence of independent
softmaxes, CRF is a sentence-level softmax, with additional weights for neighboring sequence
elements.

s(X,y; θ,A) =  (A  +
i=1

∑
N

y  ,y  i−1 i
f  (y  ∣X))θ i

p(y∣X) = softmax  (s(X, z))  z∈Y N
y

log p(y∣X) = s(X,y) − logadd  (s(X, z))z∈Y N
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Linear-Chain Conditional Random Fields (CRF)

Computation
We can compute  efficiently using dynamic programming. We denote  the

logarithmic probability of all -element sequences with the last label  being .

The core idea is the following:

 

 

For efficient implementation, we use the fact that

p(y∣X) α  (k)t

t y k

α  (k) =t f  (y  =θ t k∣X) + logadd  (α  (j) +j∈Y t−1 A  ).j,k

ln(a + b) = ln a + ln(1 + e ).ln b−ln a
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Conditional Random Fields (CRF)

Inputs: Network computing , an unnormalized probability of output sequence

element probability being  at time . 

Inputs: Transition matrix . 

Inputs: Input sequence  of length , gold labeling . 

Outputs: Value of . 

Time Complexity: .
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Conditional Random Fields (CRF)

 

Figure 1 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.

Decoding
We can perform optimal decoding, by using the same algorithm, only replacing  with 

 and tracking where the maximum was attained.

Applications
CRF output layers are useful for
span labeling tasks, like

named entity recognition
dialog slot filling

logadd
max
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Connectionist Temporal Classification

Let us again consider generating a sequence of  given input , but this

time  and there is no explicit alignment of  and  in the gold data.

 

Figure 7.1 of the dissertation "Supervised Sequence Labelling with Recurrent Neural Networks" by Alex Graves.

y  , … , y  1 M x  , … ,x  1 N

M ≤ N x y
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Connectionist Temporal Classification

We enlarge the set of output labels by a – (blank) and perform a classification for every input
element to produce an extended labeling. We then post-process it by the following rules
(denoted ):

1. We remove neighboring symbols.
2. We remove the –.

Because the explicit alignment of inputs and labels is not known, we consider all possible
alignments.

Denoting the probability of label  at time  as , we define

B

l t p  l
t

α (s)t =def
  p  .

labeling π:B(π  )=y  1:t 1:s

∑
t =1′

∏
t

π  t′
t′

30/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC



CRF and CTC Comparison

In CRF, we normalize the whole sentences, therefore we need to compute unnormalized
probabilities for all the (exponentially many) sentences. Decoding can be performed optimally.

In CTC, we normalize per each label. However, because we do not have explicit alignment, we
compute probability of a labeling by summing probabilities of (generally exponentially many)
extended labelings.
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Connectionist Temporal Classification

Computation
When aligning an extended labeling to a regular one, we need to consider whether the extended
labeling ends by a blank or not. We therefore define

and compute  as .
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Connectionist Temporal Classification

 

Figure 7.3 of the dissertation "Supervised Sequence Labelling with
Recurrent Neural Networks" by Alex Graves.

Computation – Initialization
We initialize s as follows:

Computation – Induction Step
We then proceed recurrently according to:
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CTC Decoding

Unlike CRF, we cannot perform the decoding optimally.

The key observation is that while an optimal extended labeling can be extended into an optimal
labeling of a larger length, the same does not apply to regular (non-extended) labeling. The
problem is that regular labeling corresponds to many extended labelings, which are modified
each in a different way during an extension of the regular labeling.

 

Figure 7.5 of the dissertation "Supervised Sequence Labelling with Recurrent Neural Networks" by Alex Graves.
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CTC Decoding

Beam Search
To perform beam search, we keep  best regular (non-extended) labelings for each prefix of

the extended labelings. For each regular labeling we keep both  and  and by best we mean

such regular labelings with maximum .

To compute best regular labelings for longer prefix of extended labelings, for each regular
labeling in the beam we consider the following cases:

adding a blank symbol, i.e., updating both  and ;

adding a non-blank symbol, i.e., updating .

Finally, we merge the resulting candidates according to their regular labeling and keep only the 

 best.

k

α  − a  ∗

α  +− α  ∗

α  − α  ∗

α  ∗

k
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