
NPFL114, Lecture 8

Word Embeddings, CRF, CTC

Milan Straka

April 20, 2020

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Recurrent Neural Networks

Single RNN cell







Unrolled RNN cells
 

 



 

 



 

 



 

 



2/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Long Short-Term Memory














 





 



 




Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from memory
cell was added.c t

i t

f t

o t

c t

h t

← σ(W x + V h + b)i
t

i
t−1

i

← σ(W x + V h + b)f
t

f
t−1

f

← σ(W x + V h + b)o
t

o
t−1

o

← f ⋅ c + i ⋅ tanh(W x + V h + b)t t−1 t
y

t
y

t−1
y

← o ⋅ tanh(c)t t

3/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Gated Recurrent Unit



 












 









Gated recurrent unit (GRU) was proposed by Cho et al. (2014) as a simplification of LSTM.
The main differences are

no memory cell
forgetting and updating tied together

r t

u t

 ĥt

h t

← σ(W x + V h + b)r
t

r
t−1

r

← σ(W x + V h + b)u
t

u
t−1

u

← tanh(W x + V (r ⋅ h) + b)h
t

h
t t−1

h

← u ⋅ h + (1 − u) ⋅ t t−1 t ĥt

4/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Basic RNN Applications

Sequence Element Representation
Create output for individual elements, for example for classification of the individual elements.

 

 



 

 



 

 



 

 



Sequence Representation
Generate a single output for the whole sequence (either the last output of the last state).

5/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Basic RNN Applications

Sequence Prediction
During training, predict next sequence element.

































During inference, use predicted elements as further inputs.





















6/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Multilayer RNNs

We might stack several layers of recurrent neural networks. Usually using two or three layers
gives better results than just one.

In case of multiple layers, residual connections usually improve results. Because dimensionality
has to be the same, they are usually applied from the second layer.

7/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Bidirectional RNN

To consider both the left and right contexts, a bidirectional RNN can be used, which consists of
parallel application of a forward RNN and a backward RNN.

The outputs of both directions can be either added or concatenated. Even if adding them does
not seem very intuitive, it does not increase dimensionality and therefore allows residual
connections to be used in case of multilayer bidirectional RNN.

8/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Word Embeddings

We might represent words using one-hot encoding, considering all words to be independent of
each other.

However, words are not independent – some are more similar than others.

Ideally, we would like some kind of similarity in the space of the word representations.

Distributed Representation
The idea behind distributed representation is that objects can be represented using a set of
common underlying factors.

We therefore represent words as fixed-size embeddings into space, with the vector elements

playing role of the common underlying factors.

These embeddings are initialized randomly and trained together with the rest of the network.

Rd

9/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Word Embeddings

The word embedding layer is in fact just a fully connected layer on top of one-hot encoding.
However, it is not implemented in that way.

Instead, a so-called embedding layer is used, which is much more efficient. When a matrix is
multiplied by an one-hot encoded vector (all but one zeros and exactly one 1), the row
corresponding to that 1 is selected, so the embedding layer can be implemented only as a simple
lookup.

In TensorFlow, the embedding layer is available as

tf.keras.layers.Embedding(input_dim, output_dim)

10/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Word Embeddings

Even if the embedding layer is just a fully connected layer on top of one-hot encoding, it is
important that this layer is shared across the whole network.

 

















 





















11/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Word Embeddings for Unknown Words

Figure 1 of paper "Finding Function in Form: Compositional Character
Models for Open Vocabulary Word Representation",

h // i / b /1508 02096

Recurrent Character-level WEs
In order to handle words not seen during training, we
could find a way to generate a representation from the
word characters.

A possible way to compose the representation from
individual characters is to use RNNs – we embed
characters to get character representation, and then use a
RNN to produce the representation of a whole sequence
of characters.

Usually, both forward and backward directions are used,
and the resulting representations are concatenated/added.

12/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Word Embeddings for Unknown Words

Figure 1 of paper "Character-Aware Neural Language
Models", https://arxiv.org/abs/1508.06615.

Convolutional Character-level WEs
Alternatively, 1D convolutions might be used.

Assume we use a 1D convolution with kernel size 3. It produces
a representation for every input word trigram, but we need a
representation of the whole word. To that end, we use global
max-pooling – using it has an interpretable meaning, where the
kernel is a pattern and the activation after the maximum is a
level of a highest match of the pattern anywhere in the word.

Kernels of varying sizes are usually used (because it makes sense
to have patterns for unigrams, bigrams, trigrams, …) – for
example, 25 filters for every kernel size might be

used.

Lastly, authors employed a highway layer after the convolutions,
improving the results (compared to not using any layer or using a
fully connected one).

(1, 2, 3, 4, 5)

13/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Character-level WE Implementation

Training
Generate unique words per batch.

Process the unique words in the batch.

Copy the resulting embeddings suitably in the batch.

Inference
We can cache character-level word embeddings during inference.

14/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

NLP Processing with CLEs

Figure 1 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.

15/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

NLP Multitask Learning

Figure 2 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.

16/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

NLP Multitask Learning

Figure 1 of paper "Stack-propagation: Improved Representation Learning for Syntax", https://arxiv.org/abs/1603.06598.

17/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

NLP Multitask Learning

Figure 1 of paper "A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks", https://arxiv.org/abs/1611.01587.

18/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Structured Prediction

Structured Prediction

19/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Structured Prediction

Consider generating a sequence of given input .

Predicting each sequence element independently models the distribution .











   

  

  





However, there may be dependencies among the themselves, which is difficult to capture by

independent element classification.

y , … , y ∈1 N Y N x , … ,x 1 N

P (y ∣X)i

y i

20/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Maximum Entropy Markov Models

We might model the dependencies by assuming that the output sequence is a Markov chain,
and model it as

Each label would be predicted by a softmax from the hidden state and the previous label.











   

  

  





The decoding can be then performed by a dynamic programming algorithm.

P (y ∣X, y).i i−1

21/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Maximum Entropy Markov Models

However, MEMMs suffer from a so-called label bias problem. Because the probability is
factorized, each is a distribution and must sum to one.

Imagine there was a label error during prediction. In the next step, the model might “realize”
that the previous label has very low probability of being followed by any label – however, it
cannot express this by setting the probability of all following labels low, it has to “conserve the
mass”.

P (y ∣X, y)i i−1

22/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Conditional Random Fields

Let be a graph such that is indexed by vertices of . Then is a

conditional random field, if the random variables conditioned on obey the Markov

property with respect to the graph, i.e.,

By a fundamental theorem of random fields, the density of a conditional random field can be
factorized over the cliques of the graph :

G = (V ,E) y G (X,y)
y X

P (y ∣X, y , i =i j  j) = P (y ∣X, y ∀j :i j (i, j) ∈ E).

G

P (y∣X) = P (y ∣X).
clique C of G

∏ C

23/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Linear-Chain Conditional Random Fields (CRF)

Usually often assume that dependencies of , conditioned on , form a chain.











   

  

  





Then, the cliques are nodes and edges, and we usually factorize the probability as:

y X

P (y∣X) ∝ exp(log P (y ∣x) +
i=1

∑
N

i i log P (y , y)).
i=2

∑
N

i i−1

24/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Linear-Chain Conditional Random Fields (CRF)

Linear-chain Conditional Random Field, usually abbreviated only to CRF, acts as an output
layer. It can be considered an extension of a softmax – instead of a sequence of independent
softmaxes, CRF is a sentence-level softmax, with additional weights for neighboring sequence
elements.

s(X,y; θ,A) = (A +
i=1

∑
N

y ,y i−1 i
f (y ∣X))θ i

p(y∣X) = softmax (s(X, z)) z∈Y N
y

log p(y∣X) = s(X,y) − logadd (s(X, z))z∈Y N

25/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Linear-Chain Conditional Random Fields (CRF)

Computation
We can compute efficiently using dynamic programming. We denote the

logarithmic probability of all -element sequences with the last label being .

The core idea is the following:

 

 

For efficient implementation, we use the fact that

p(y∣X) α (k)t

t y k

α (k) =t f (y =θ t k∣X) + logadd (α (j) +j∈Y t−1 A).j,k

ln(a + b) = ln a + ln(1 + e).ln b−ln a

26/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Conditional Random Fields (CRF)

Inputs: Network computing , an unnormalized probability of output sequence

element probability being at time .

Inputs: Transition matrix .

Inputs: Input sequence of length , gold labeling .

Outputs: Value of .

Time Complexity: .

For :

For

If :

For :

Return

f (y =θ t k∣X)
k t

A ∈ RY ×Y

X N y ∈g Y N

log p(y ∣X)g

O(N ⋅ Y)2

t = 1, … ,N
k = 1, … ,Y :
α (k) ←t f (y =θ t k∣X)
t > 1

j = 1, … ,Y
α (k) ←t logadd(α (k),α (j) +t t−1 A)j,k

 f (y =∑t=1
N

θ t y ∣X) +t
g

 A −∑t=2
N

y ,y t−1
g

t
g logadd (α (k))k=1

Y
N

27/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Conditional Random Fields (CRF)

Figure 1 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.

Decoding
We can perform optimal decoding, by using the same algorithm, only replacing with

 and tracking where the maximum was attained.

Applications
CRF output layers are useful for
span labeling tasks, like

named entity recognition
dialog slot filling

logadd
max

28/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Connectionist Temporal Classification

Let us again consider generating a sequence of given input , but this

time and there is no explicit alignment of and in the gold data.

Figure 7.1 of the dissertation "Supervised Sequence Labelling with Recurrent Neural Networks" by Alex Graves.

y , … , y 1 M x , … ,x 1 N

M ≤ N x y

29/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Connectionist Temporal Classification

We enlarge the set of output labels by a – (blank) and perform a classification for every input
element to produce an extended labeling. We then post-process it by the following rules
(denoted):

1. We remove neighboring symbols.
2. We remove the –.

Because the explicit alignment of inputs and labels is not known, we consider all possible
alignments.

Denoting the probability of label at time as , we define

B

l t p l
t

α (s)t =def
 p .

labeling π:B(π)=y 1:t 1:s

∑
t =1′

∏
t

π t′
t′

30/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

CRF and CTC Comparison

In CRF, we normalize the whole sentences, therefore we need to compute unnormalized
probabilities for all the (exponentially many) sentences. Decoding can be performed optimally.

In CTC, we normalize per each label. However, because we do not have explicit alignment, we
compute probability of a labeling by summing probabilities of (generally exponentially many)
extended labelings.

31/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Connectionist Temporal Classification

Computation
When aligning an extended labeling to a regular one, we need to consider whether the extended
labeling ends by a blank or not. We therefore define

and compute as .

α (s)−
t

α (s)∗
t

 p =def

labeling π:B(π)=y ,π =−1:t 1:s t

∑
t =1′

∏
t

π t′
t′

 p =def

labeling π:B(π)=y ,π =−1:t 1:s t

∑
t =1′

∏
t

π t′
t′

α (s)t α (s) +−
t α (s)∗

t

32/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

Connectionist Temporal Classification

Figure 7.3 of the dissertation "Supervised Sequence Labelling with
Recurrent Neural Networks" by Alex Graves.

Computation – Initialization
We initialize s as follows:

Computation – Induction Step
We then proceed recurrently according to:

α

α (0) ←−
1 p −

1

α (1) ←∗
1 p y 1

1

α (s) ←−
t p (α (s) +−

t
∗
t−1 α (s))−

t−1

α (s) ←∗
t

 {
p (α (s) + α (s − 1) + α (s − 1)), if y = y y s

t
∗
t−1

−
t−1

∗
t−1

s  s−1

p (α (s) + α (s − 1)), if y = y y s

t
∗
t−1

−
t−1

s s−1

33/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

CTC Decoding

Unlike CRF, we cannot perform the decoding optimally.

The key observation is that while an optimal extended labeling can be extended into an optimal
labeling of a larger length, the same does not apply to regular (non-extended) labeling. The
problem is that regular labeling corresponds to many extended labelings, which are modified
each in a different way during an extension of the regular labeling.

Figure 7.5 of the dissertation "Supervised Sequence Labelling with Recurrent Neural Networks" by Alex Graves.

34/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

CTC Decoding

Beam Search
To perform beam search, we keep best regular (non-extended) labelings for each prefix of

the extended labelings. For each regular labeling we keep both and and by best we mean

such regular labelings with maximum .

To compute best regular labelings for longer prefix of extended labelings, for each regular
labeling in the beam we consider the following cases:

adding a blank symbol, i.e., updating both and ;

adding a non-blank symbol, i.e., updating .

Finally, we merge the resulting candidates according to their regular labeling and keep only the

 best.

k

α − a ∗

α +− α ∗

α − α ∗

α ∗

k

35/35NPFL114, Lecture 8 Refresh CLE MultiTask CRF CTC

