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Recurrent Neural Networks

Single RNN celi

Unrolled RNN cells

output 1 output 2
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Basic RNN Caell

mput

output = new Sstate

previous state

t—1)

Given an input z®) and previous state sl , the new state is computed as

One of the simplest possibilities (called SimpleRNN in TensorFlow) is

s = tanh(Us" V) + Ve +b).
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Basic RNN cells suffer a lot from vanishing/exploding gradients (the challenge of long-term
dependencies).

If we simplify the recurrence of states to
st) = Uslt-1),
we get
s — ts(0)
If U has eigenvalue decomposition of U = QAQ_l, we get
st — QAtQ_ls(O).

The main problem is that the same function is iteratively applied many times.

Several more complex RNN cell variants have been proposed, which alleviate this issue to some

degree, namely LSTM and GRU.
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Long Short-Term Memory

Hochreiter & Schmidhuber (1997) suggested that to enforce constant error flow, we would like

f =1

They propose to achieve that by a constant error carrousel.
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Long Short-Term Memory Uz

They also propose an input and output gates which control the flow of information into and out
of the carrousel (memory cell ¢;).

i — o(W'e, + V'hy_q + b))

o, < oc(Wx; + V°hy_1 + b°)

ct < ¢ 1+t - tanh(WVx, + VVhy 1 + bY)
h; < o; - tanh(c¢;)
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Long Short-Term Memory UL

Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from memory
cell ¢; was added.

i «— o(W'e, + V'hy_q + b))

fo—o(Wla,+ VI h_, +b)

o; +— o(W°x +V°h;_ 1 +b°)

c; < f,-¢c_1+1-tanh(WVx, + VVh,_| +bY)
h; < o; - tanh(c;)
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Long Short-Term Memory
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png
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Long Short-Term Memory
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png
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Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-C-line.png
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Long Short-Term Memory
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14 =0 (Wi'[ht—lawt} + b'i)
Ct — tanh(WC°[ht_1, $t] -+ bc)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-i.png

HighwayNetworks RNNRegularization RNNA pplications WordEmbeddings 12/35



Long Short-Term Memory

fi ft — J(Wf‘[ht_ljxt] + bf)

http://colah.github.io/posts/2015-08-Understanding-LSTMs /img/LSTM3-focus-f.png
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Long Short-Term Memory

Ji itr‘% Cy = fr % Crq + iy % Cy

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-C.png
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Long Short-Term Memory
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Ot — O'(WO [ht_l,ZCt] -+ bo)
= oy * tanh (C})
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|
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-o.png
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Gated recurrent unit (GRU) was proposed by Cho et al. (2014) as a simplification of LSTM.
The main differences are

® no memory cell
® forgetting and updating tied together

ri < oc(W'e;+V'hi1+0b")

u; «— o(W'x, + V'hy_1 + b")

h; < tanh(W'x, + V" (ry - hy_1) + ")
h, %ut-ht_l%—(l—ut)-ﬁt
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Gated Recurrent Unit
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ht — tanh (W . [’)"t X ht—l: I’t])

ht:(l—zt)*ht_l—l—zt*?zt

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png
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Highway Networks
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For input @, fully connected layer computes
y «— H(x,Wy).
Highway networks add residual connection with gating:
y+ Hx,Wpg) - T(xe,Wr)+x-(1—T(x,Wr)).
Usually, the gating is defined as

T(il), WT) — O'(WTiB + bT)

Note that the resulting update is very similar to a GRU cell with h; removed; for a fully
connected layer H(x, W) = tanh(W g + by ) it is exactly it.
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Highway Networks Upzt
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Figure 1: Comparison of optimization of plain networks and highway networks of various depths.
Left: The training curves for the best hyperparameter settings obtained for each network depth.
Right: Mean performance of top 10 (out of 100) hyperparameter settings. Plain networks become
much harder to optimize with increasing depth, while highway networks with up to 100 layers can
still be optimized well. Best viewed on screen (larger version included in Supplementary Material).

Figure 1 of paper "Training Very Deep Networks", https://arxiv.org/abs/1507.06228.
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Highway Networks

Transform Gate Biases
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Figure 2 of paper "Training Very Deep Networks",
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Highway Networks Pl
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Figure 4: Lesioned training set performance (y-axis) of the best 50-layer highway networks on
MNIST (left) and CIFAR-100 (right), as a function of the lesioned layer (x-axis). Evaluated on
the full training set while forcefully closing all the transform gates of a single layer at a time. The
non-lesioned performance is indicated as a dashed line at the bottom.

Figure 4 of paper "Training Very Deep Networks", https://arxiv.org/abs/1507.06228.
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Dropout
® Using dropout on hidden states interferes with long-term dependencies.

® However, using dropout on the inputs and outputs works well and is used frequently.
O |n case residual connections are present, the output dropout needs to be applied before

adding the residual connection.

® Several techniques were designed to allow using dropout on hidden states.
O Variational Dropout

O Recurrent Dropout
O Zoneout
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Regularizing RNNs Urzt

Variational Dropout
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(a) Naive dropout RNN (b) Variational RNN

Figure 1 of paper "A Theoretically Grounded Application of Dropout in Recurrent Neural Networks", https: //arxiv.org/abs/1512.05287. pdf

To implement variational dropout on inputs in TensorFlow, use noise_shape of
tf.keras.layers.Dropout to force the same mask across time-steps. The variational
dropout on the hidden states can be implemented using recurrent_dropout argument of
tf.keras.layers.{LSTM,GRU,SimpleRNN}{,Cell}.
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Recurrent Dropout

Dropout only candidate states (i.e., values added to the memory cell in LSTM and previous
state in GRU).

Zoneout

Randomly preserve hidden activations instead of dropping them.

Batch Normalization

Very fragile and sensitive to proper initialization — there =

10

were papers with negative results (Dario Amodei et al, -.:.
2015: Deep Speech 2 or Cesar Laurent et al, 2016: o
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Regularizing RN Ns

Layer Normalization

Much more stable than batch normalization.
Attentivg reader
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Figure 2: Validation curves for the attentive reader model. BN results are taken from [Cooijmans
et al., 2016].

Figure 2 of paper "Layer Normalization", https://arxiv.org/abs/1607.06450.
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In an important recent architecture (namely Transformer), many fully connected layers are used,
with a residual connection and a layer normalization.

!

Layer normalization

Fully connected layer

!

ReLU

!

Fully connected layer

This could be considered an alternative to highway networks, i.e., a suitable residual connection
for fully connected layers. Note the architecture can be considered as a variant of a mobile
inverted bottleneck 1 X 1 convolution block.
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Sequence Element Representation

Create output for individual elements, for example for classification of the individual elements.

output 1 output 2 output 3

Sequence Representation

Generate a single output for the whole sequence (either the last output of the last state).
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Sequence Prediction

During training, predict next sequence element.

sequence
representation

EOS

sequence
representation
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Multilayer RNNs e

We might stack several layers of recurrent neural networks. Usually using two or three layers
gives better results than just one.
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Multilayer RN Ns

In case of multiple layers, residual connections usually improve results. Because dimensionality
has to be the same, they are usually applied from the second layer.

OO O—O—~0O—~C
WRORORORORY
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To consider both the left and right contexts, a bidirectional RNN can be used, which consists of
parallel application of a forward RNN and a backward RNN.

The outputs of both directions can be either added or concatenated. Even if adding them does
not seem very intuitive, it does not increase dimensionality and therefore allows residual
connections to be used in case of multilayer bidirectional RNN.
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We might represent words using one-hot encoding, considering all words to be independent of
each other.

However, words are not independent — some are more similar than others.

|deally, we would like some kind of similarity in the space of the word representations.

Distributed Representation

The idea behind distributed representation is that objects can be represented using a set of
common underlying factors.

We therefore represent words as fixed-size embeddings into R? space, with the vector elements
playing role of the common underlying factors.

These embeddings are initialized randomly and trained together with the rest of the network.
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The word embedding layer is in fact just a fully connected layer on top of one-hot encoding.
However, it is not implemented in that way.

Instead, a so-called embedding layer is used, which is much more efficient. When a matrix is
multiplied by an one-hot encoded vector (all but one zeros and exactly one 1), the row

corresponding to that 1 is selected, so the embedding layer can be implemented only as a simple
lookup.

In TensorFlow, the embedding layer is available as

tf.keras.layers.Embedding (input_dim, output_dim)
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Word Embeddings U=t

Even if the embedding layer is just a fully connected layer on top of one-hot encoding, it is
important that this layer is shared across the whole network.

D1 Dl
Vv D
D, D Do
Word in % Word in Vv D
one-hot = one-hot > =
encoding encoding
Dy Dy
Vv D
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