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Beyond Image Classification

 

Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks",
https://arxiv.org/abs/1506.01497

 

Figure 2 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

 

Figure 7 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

Object detection
(including location)  

Image segmentation  

Human pose estimation
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Fast R-CNN Architecture

 

Start with a network pre-trained on ImageNet (VGG-16 is used in the original paper).

Several rectangular Regions of Interest (RoI) are passed on the input. For every of them,
the network decides whether:

they contain an object;
location of the object relative to the RoI.

RoI representation is fixed size, independent on its size. It is
computed using RoI pooling, which replaces the last max-pool
layer (  in VGG). For each channel, the

representation of each RoI bin (one of the ) is computed

as max-pool of the corresponding bins (of the  grid in

VGG) of the convolutional image features.

For every RoI, two sibling heads are added:
classification head predicts one of  categories;

bounding box regression head predicts 4 bounding box
parameters.

14 × 14 → 7 × 7
7 × 7

14 × 14

K + 1
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Fast R-CNN

 

Figure 1 of paper "Fast R-CNN", https://arxiv.org/abs/1504.08083.
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Fast R-CNN

The bounding box is parametrized as follows. Let  be center coordinates and

width and height of the RoI, and let  be parameters of the bounding box. We

represent the bounding box relative to the RoI as follows:

Usually a  loss, or Huber loss, is employed for bounding box parameters

The complete loss is then

x  , y  ,w  ,h  r r r r

x, y,w,h
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Fast R-CNN

Intersection over union
For two bounding boxes (or two masks) the intersection over union (IoU) is a ration of the
intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing RoIs for training
During training, we use  images with  RoIs each. The RoIs are selected so that  have

intersection over union (IoU) overlap with ground-truth boxes at least 0.5; the others are
chosen to have the IoU in range , the so-called hard examples.

Choosing RoIs during inference
Single object can be found in multiple RoIs. To choose the most salient one, we perform non-
maximum suppression – we ignore RoIs which have an overlap with a higher scoring RoI of the
same type, where the IoU is larger than a given threshold (usually, 0.3 is used). Higher scoring
RoI is the one with higher probability from the classification head.

2 64 25%

[0.1, 0.5)
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Object Detection Evaluation

Average Precision
Evaluation is performed using Average Precision (  or ).

We assume all bounding boxes (or masks) produced by a system have confidence values which
can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order
of the ranks and generate precision/recall curve, considering a bounding box correct if it has
IoU at least 0.5 with any ground-truth box.

 

Figure 6 of paper "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf.

 

Figure 6 of paper "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf.

AP AP  50
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Object Detection Evaluation – Average Precision

 

https://miro.medium.com/max/1400/1*naz02wO-XMywlwAdFzF-GA.jpeg

The general ideal of AP is to compute the area under the precision/recall curve.

 

https://miro.medium.com/max/1400/1*VenTq4IgxjmIpOXWdFb-jg.png

 

 

https://miro.medium.com/max/1400/1*pmSxeb4EfdGnzT6Xa68GEQ.jpeg

We start by interpolating the precision/recall curve, so that it is always non-increasing.

Finally, the average precision for a single class is
an average of precision at recall 

.

The final AP is a mean of average precision of
all classes.

0.0, 0.1, 0.2, … , 1.0
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Object Detection Evaluation – Average Precision

For the COCO dataset, the AP is computed slightly differently. First, it is an average over 101
recall points .

In the original metric, IoU of 50% is enough to consider the prediction valid. We can generalize
the definition to , where an object prediction is considered valid if IoU is at least .

The main COCO metric, denoted just , is the mean of .

Metric Description

Mean of 

AP at IoU 50%

AP at IoU 75%

AP for small objects: 

AP for medium objects: 

AP for large objects: 

0.00, 0.01, 0.02, … , 1.00

AP  x x

AP AP  ,AP  ,AP  , … ,AP  50 55 60 95

AP AP  ,AP  ,AP  ,AP  , … ,AP  50 55 60 65 95

AP  50

AP  75

AP  S area < 322

AP  M 32 <2 area < 962

AP  L 96 <2 area
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Faster R-CNN

For Fast R-CNN, the most time consuming part is generating the RoIs.

Therefore, Faster R-CNN jointly generates regions of interest using a region proposal network
and performs object detection.

 

Figure 2 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497
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Faster R-CNN

The region proposals are generated using a  sliding window, with 3 different scales 

 and 3 aspect ratios . For every anchor, there is a Fast-

R-CNN-like object detection head – a classification into two classes (background, object) and a
boundary regressor.

 

Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

3 × 3
(128 , 256 , 512 )2 2 2 (1 : 1, 1 : 2, 2 : 1)
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Faster R-CNN

During training, we generate

positive training examples for every anchor that has highest IoU with a ground-truth box;
furthermore, a positive example is also any anchor with IoU at least 0.7 for any ground-
truth box;
negative training examples for every anchor that has IoU at most 0.3 with all ground-truth
boxes.

During inference, we consider all predicted non-background regions, run non-maximum
suppression on them using a 0.7 IoU threshold, and then take  top-scored regions (i.e., the

ones with highest probability from the classification head) – the paper uses 300 proposals,
compared to 2000 in the Fast R-CNN.

N
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Faster R-CNN

 

Tables 3 and 4 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497
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Two-stage Detectors

The Faster R-CNN is a so-called two-stage detector, where the regions are refined twice – once
in the region proposal network, and then in the final bounding box regressor.

Several single-stage detector architectures have been proposed, mainly because they are faster
and smaller, but until circa 2017 the two-stage detectors achieved better results.
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Mask R-CNN

Straightforward extension of Faster R-CNN able to produce image segmentation (i.e., masks for
every object).

 

Figure 2 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN – Architecture

 

Figure 1 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN – RoIAlign

More precise alignment is required for the RoI in order to predict the masks. Instead of
quantization and max-pooling in RoI pooling, RoIAlign uses bilinear interpolation of features at
four regularly samples locations in each RoI bin and averages them.

  

Figure 3 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

TensorFlow provides tf.image.crop_and_resize capable of implementing RoIAlign.
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Mask R-CNN

Masks are predicted in a third branch of the object detector.

Usually higher resolution is needed (  instead of ).

The masks are predicted for each class separately.
The masks are predicted using convolutions instead of fully connected layers.

 

Figure 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

14 × 14 7 × 7
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Mask R-CNN

 

Table 2 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN – Human Pose Estimation

 

Figure 7 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

Testing applicability of Mask R-CNN architecture.

Keypoints (e.g., left shoulder, right elbow, …) are detected as independent one-hot masks of
size  with  output function.

 

Table 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

56 × 56 softmax
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Feature Pyramid Networks

   









   



   







   







 

Figure 1 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks









 

Figure 2 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks

 

 

 

  

    

    

    

 

Figure 3 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks

We employ FPN as a backbone in Faster R-CNN.

Assuming ResNet-like network with  input, we denote  the image

features of the last convolutional layer of size  (i.e.,  indicates a

downscaling of ). The FPN representations incorporating the smaller resolution features are

denoted as , each consisting of 256 channels.

In both the RPN and the Fast R-CNN, authors utilize the  representations,

considering single-size anchors for every  (of size , respectively).

However, three aspect ratios  are still used.

  

             

                

   

            

                 

                

               

             

 

Table 4 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.

224 × 224 C ,C  , … ,C  2 3 5

56 × 56, 28 × 28, … , 7 × 7 C  i

2i

P  , … ,P  2 5

P  , … ,P  2 5

P  i 32 , 64 , 128 , 2562 2 2 2

(1 : 1, 1 : 2, 2 : 1)
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Focal Loss

     



























       
    

       
    

   

   
 

 

Figure 1 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.

For single-stage object detection
architectures, class imbalance has been
identified as the main issue preventing to
obtain performance comparable to two-
stage detectors. In a single-stage detector,
there can be tens of thousands of anchors,
with only dozens of useful training
examples.

Cross-entropy loss is computed as

Focal-loss (loss focused on hard examples)
is proposed as

L  =cross-entropy − log p  (y∣x).model

L  =focal-loss −(1 − p  (y∣x)) ⋅model
γ log p  (y∣x).model
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Focal Loss

For , focal loss is equal to cross-entropy loss.

Authors reported that  worked best for them for training a single-stage detector.

     












































     












































                     

                      

             

 

Figure 4 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.

γ = 0

γ = 2
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Focal Loss and Class Imbalance

Focal loss is connected to another solution to class imbalance – we might introduce weighting
factor  for one class and  for the other class, arriving at

The weight  might be set to the inverse class frequency or treated as a hyperparameter.

Even if weighting focus more on low-frequent class, it does not distinguish between easy and
hard examples, contrary to focal loss.

In practice, the focal loss is usually used together with class weighting:

For example, authors report that  works best with .

α ∈ (0, 1) 1 − α

−α  ⋅y log p  (y∣x).model

α

−α  ⋅y (1 − p  (y∣x)) ⋅model
γ log p  (y∣x).model

α = 0.25 γ = 2
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RetinaNet

RetinaNet is a single-stage detector, using feature pyramid network architecture. Built on top of
ResNet architecture, the feature pyramid contains levels  through , with each  having

256 channels and resolution  lower than the input. On each pyramid level , we consider 9

anchors for every position, with 3 different aspect ratios ( , , ) and with 3 different

sizes ( ).

Note that ResNet provides only  to  features.  is computed using a  convolution

with stride 2 on , and  is obtained by applying ReLU followed by another  stride-2

convolution. The  and  are included to improve large object detection.

P  3 P  7 P  l

2l P  l

1 1 : 2 2 : 1
{2, 2 , 2 } ⋅1/3 2/3 4 ⋅ 2l

C  3 C  5 C  6 3 × 3
C  5 C  7 3 × 3
C  6 C  7
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RetinaNet – Architecture

The classification and boundary regression heads do not share parameters and are fully
convolutional, generating  sigmoids and  bounding boxes per

position.

    
       

   

 
   


  


  


 


  


  


 







    
   

    
   

                              

 

Figure 3 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.

anchors ⋅ classes anchors
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RetinaNet

During training, anchors are assigned to ground-truth object boxes if IoU is at least 0.5; to
background if IoU with any ground-truth region is at most 0.4 (the rest of anchors is ignored
during training). The classification head is trained using focal loss with  and 

(but according to the paper, all values of  in  range works well); the boundary

regression head is trained using  loss as in Fast(er) R-CNN.

During inference, at most 1000 objects with at least 0.05 probability from every pyramid level
are considered, and combined from all levels using non-maximum suppression with a threshold
of 0.5.

      

 

         

           

            

           

 

         

         

        

        

        

 

Table 2 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.

γ = 2 α = 0.25
γ [0.5, 5]

smooth  L  1
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RetinaNet – Ablations

   

   

   

   

   

   

   

   

        

    

    

    

    

    

    

    

    

       

    

    

    

    

    

    

    

    

     


 

   

     

     

     

     

     

     

      

      

      

     

      

        

        

        

        

        

        

        

        

        

        

        

     

 

Table 1 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
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EfficientDet – Architecture

EfficientDet builds up on EfficientNet and delivers state-of-the-art performance with minimum
time and space requirements. It is a single-scale detector similar to RetinaNet, which:

uses EfficientNet as backbone;
employs compound scaling;
uses a newly proposed BiFPN, “efficient bidirectional cross-scale connections and weighted
feature fusion”.

 

Figure 3 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.
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EfficientDet – BiFPN

In multi-scale fusion in FPN, information flows only from the pyramid levels with smaller
resolution to the levels with higher resolution.

 

Figure 2 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.

BiFPN consists of several rounds of bidirectional flows. Each bidirectional flow employs residual
connections and does not include nodes that have only one input edge with no feature fusion.
All operations are  separable convolutions with batch normalization and ReLU, upsampling

is done by repeating rows and columns and downsampling by max-pooling.

3 × 3

34/44NPFL114, Lecture 6 FastR-CNN FasterR-CNN MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm



EfficientDet – Weighted BiFPN

When combining features with different resolutions, it is common to resize them to the same
resolution and sum them – therefore, both set of features is considered to be of the same
importance. The authors however argue that features from different resolution contribute to the
final result unequally and propose a combination with trainable weighs.

Softmax-based fusion: There is a trainable weight  for every input  and the final

combination is

Fast normalized fusion: Authors propose a simpler alternative of weighting:

It uses  for stability and is up to 30% faster on a GPU.

w  i I  i

  I .
i

∑
 e∑j

w  j

ew  i

i

  I .
i

∑
ε +  ReLU(w  )∑j j

ReLU(w  )i
i

ε = 0.0001
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EfficientDet – Compound Scaling

Similar to EfficientNet, authors propose to scale various dimensions of the network, using a
single compound coefficient .

After performing a grid search:

the width of BiFPN is scaled as 

the depth of BiFPN is scaled as 

the box/class predictor has the same width as BiFPN and depth 

input image resolution increases according to 

   

    

   

        

        

        

        

        

        

        

        

 

Table 1 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.

ϕ

W  =BiFPN 64 ⋅ 1.35 ,ϕ

D  =BiFPN 3 + ϕ,
D  =class 3 + ⌊ϕ/3⌋,

R  =image 512 + 128 ⋅ ϕ.
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EfficientDet – Results

 

Figure 1 of paper "EfficientDet: Scalable and Efficient Object Detection",
https://arxiv.org/abs/1911.09070.

 

Figure 4 of paper "EfficientDet: Scalable and Efficient Object Detection",
https://arxiv.org/abs/1911.09070.
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EfficientDet – Results

  

          

           

           

           

            

           

           

            

            

              

           

              

              

             

           

            

           

           

            

           

        
                  

 

Table 2 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.
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EfficientDet – Latencies

 

Figure 4 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.
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EfficientDet – Ablations

Given that EfficientDet employs both a powerful backbone and new BiFPN, authors quantify
the improvement of the individual components.

  

     

     

     

 

Table 4 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.

Furthermore, they provide comparison with previously used cross-scale fusion architectures.


 

 

     

    

   

    

     

     

 

Table 5 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.
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Normalization

Batch Normalization
Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization
Neuron value is normalized across the layer.





 







 







 







 

  

Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Group Normalization

Group Normalization is analogous to Layer normalization, but the channels are normalized in
groups (by default, ).





 







 







 







 



 

Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.

 

























































 

Figure 1 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.

G = 32
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Group Normalization

          












































          













































                       

          

          







































          







































                       

 

Figures 4 and 5 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.

43/44NPFL114, Lecture 6 FastR-CNN FasterR-CNN MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm



Group Normalization

 

Tables 4 and 5 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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