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Beyond Image Classification

® Object detection
(including location)

Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks",
https: //arxiv.org/abs/1506.01497

® |mage segmentation

® Human pose estimation
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Start with a network pre-trained on ImageNet (VGG-16 is used in the original paper).

Several rectangular Regions of Interest (Rol) are passed on the input. For every of them,
the network decides whether:

O they contain an object;

O |ocation of the object relative to the Rol.
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Rol representation is fixed size, independent on its size. It is
computed using Rol pooling, which replaces the last max-pool
layer (14 x 14 — 7 X 7 in VGG). For each channel, the
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VGG) of the convolutional image features.

For every Rol, two sibling heads are added:
O classification head predicts one of K + 1 categories;

O bounding box regression head predicts 4 bounding box
parameters. s
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Fast R-CNN
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Figure 1 of paper "Fast R-CNN", https://arxiv.org/abs/1504.08083.
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The bounding box is parametrized as follows. Let z,, y,, w., h, be center coordinates and
width and height of the Rol, and let x, y, w, h be parameters of the bounding box. We
represent the bounding box relative to the Rol as follows:

te = (& — @) /wr, ty=(y—y)/h
tw = log(w/w,), t, =log(h/h;)

Usually a smoothj, loss, or Huber loss, is employed for bounding box parameters

—— L2 loss 1a?

th ( ) O.5w2 if ‘x‘ < 1 %] — :EE:::Z: derivative
101100 7) — °]
b |z| — 0.5 otherwise N

The complete loss is then

L(é,i:, C,t) — Lcls(é, C) —+ - [C Z 1] . Z

ie{x,y,w,h}
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Intersection over union

For two bounding boxes (or two masks) the intersection over union (loU) is a ration of the
intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing Rols for training

During training, we use 2 images with 64 Rols each. The Rols are selected so that 25% have

intersection over union (loU) overlap with ground-truth boxes at least 0.5; the others are
chosen to have the loU in range [0.1,0.5), the so-called hard examples.

Choosing Rols during inference

Single object can be found in multiple Rols. To choose the most salient one, we perform non-

maximum suppression — we ignore Rols which have an overlap with a higher scoring Rol of the
same type, where the loU is larger than a given threshold (usually, 0.3 is used). Higher scoring
Rol is the one with higher probability from the classification head.
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Object Detection Evaluation UL

Average Precision
Evaluation is performed using Average Precision (AP or APs).

We assume all bounding boxes (or masks) produced by a system have confidence values which
can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order
of the ranks and generate precision/recall curve, considering a bounding box correct if it has
loU at least 0.5 with any ground-truth box.
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Figure 6 of paper "The PASCAL Visual Object Classes (VOC) Challenge", Figure 6 of paper "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript /ijcv_ voc09. pdf. http: //homepages.inf.ed.ac.uk/ckiw/postscript /ijcv_voc09. pdf.
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Object Detection Evaluation — Average Precision ezt

The general ideal of AP is to compute the area under the precision/recall curve.
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We start by interpolating the precision/recall curve, so that it is always non-increasing.

Finally, the average precision for a single class is
an average of precision at recall L
000, Oo]-, 002, LB 1.0- : 08 Py ° °
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The final AP is a mean of average precision of Toow e e W e e e w W
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For the COCO dataset, the AP is computed slightly differently. First, it is an average over 101
recall points 0.00,0.01,0.02,...,1.00.

In the original metric, loU of 50% is enough to consider the prediction valid. We can generalize
the definition to AP,, where an object prediction is considered valid if loU is at least x.

The main COCO metric, denoted just AP, is the mean of AP5y, APs55, APgg, ..., APos.

Metric Description

AP Mean of AP50,AP55,AP60,AP65,...,AP95

APs AP at loU 50%

A Py AP at loU 75%

APg AP for small objects: area < 322

APy AP for medium objects: 322 < area < 962
APy, AP for large objects: 962 < area
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For Fast R-CNN, the most time consuming part is generating the Rols.

Therefore, Faster R-CNN jointly generates regions of interest using a region proposal network
and performs object detection.
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Faster R-CNN

The region proposals are generated using a 3 X 3 sliding window, with 3 different scales

boundary regressor.

2k scores

cls layer ‘

256-d

sliding window

A
(1282, 2562,5122) and 3 aspect ratios (1 :1,1:2,2: 1). For every anchor, there is a Fast-
R-CNN-like object detection head — a classification into two classes (background, object) and a
4k coordinates <mm  kanchor boxes
t reg layer .
t intermediate layer
[
.
conv feature map °
Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497
MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm 12/44
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During training, we generate

® positive training examples for every anchor that has highest loU with a ground-truth box;
® furthermore, a positive example is also any anchor with loU at least 0.7 for any ground-

truth box;
® negative training examples for every anchor that has loU at most 0.3 with all ground-truth

boxes.

During inference, we consider all predicted non-background regions, run non-maximum
suppression on them using a 0.7 loU threshold, and then take IN top-scored regions (i.e., the

ones with highest probability from the classification head) — the paper uses 300 proposals,
compared to 2000 in the Fast R-CNN.
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Table 3: Detection results on PASCAL VOC 2007 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07+12”: union set of VOC 2007 trainval and VOC 2012 trainval. For RPN,
the train-time proposals for Fast R-CNN are 2000. : this number was reported in [2]; using the repository
provided by this paper, this result is higher (68.1).

method # proposals | data | mAP (%)
SS 2000 07 66.9"
SS 2000 07+12 70.0
RPN+VGG, unshared 300 07 68.5
RPN+VGG, shared 300 07 69.9
RPN+VGG, shared 300 07+12 73.2
RPN+VGG, shared 300 COCO+07+12 78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07++12”: union set of VOC 2007 trainval+test and VOC 2012 trainval. For
RPN, the train-time proposals for Fast R-CNN are 2000. f: http:/ /host.robots.ox.ac.uk:8080/anonymous/HZJTQA html. *:
http:/ /host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. §: http:/ /host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method # proposals | data | mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4
RPN+VGG, shared' 300 12 67.0
RPN+VGG, shared? 300 07++12 70.4
RPN+VGG, shared® 300 COCO+07++12 75.9
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The Faster R-CNN is a so-called two-stage detector, where the regions are refined twice — once
in the region proposal network, and then in the final bounding box regressor.

Several single-stage detector architectures have been proposed, mainly because they are faster
and smaller, but until circa 2017 the two-stage detectors achieved better results.
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Mask R-CNN UL

Straightforward extension of Faster R-CNN able to produce image segmentation (i.e., masks for
every object).

Figure 2 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN - Architecture Uz

—
box
A
z’/’
A j/
A
. L |
RolAlign| fglyly? g
7> %
/// \4 o
/ av4 ]
/ “
/ 199 %
g
|/ /// 1
.‘I‘..E’l_
v

Figure 1 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN — RolAlign

More precise alignment is required for the Rol in order to predict the masks. Instead of
quantization and max-pooling in Rol pooling, RolAlign uses bilinear interpolation of features at
four regularly samples locations in each Rol bin and averages them.
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Figure 3 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

TensorFlow provides tf.image.crop_and_resize capable of implementing RolAlign.
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Mask R-CNN

Masks are predicted in a third branch of the object detector.

® Usually higher resolution is needed (14 X 14 instead of 7 X 7).

® The masks are predicted for each class separately.
® The masks are predicted using convolutions instead of fully connected layers.
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net-depth-features | AP APsg APr7s AP APs50 APr75 align? | bilinear? | agg. | AP  APsg APrs

ResNet-50-C4 30.3 51.2 31.5 softmax 24.8 44.1 25.1 RolPool [12] max| 269 488 264

ResNet-101-C4 32.7 54.2 34.3 sigmoid 30.3 51.2 31.5 v max| 27.2 492 27.1
RolWarp [10]

ResNet-50-FPN 33.6 55.2 35.3 +5.5 +7.1 +6.4 v ave | 27.1 489  27.1

ResNet-101-FPN | 354 57.3 37.5 RolAli v v max| 30.2 51.0 31.8

ResNeXt-101-FPN | 367  59.5  38.9 s sl v lave| 303 512 315

(a) Backbone Architecture: Better back-
bones bring expected gains: deeper networks
do better, FPN outperforms C4 features, and

ResNeXt improves on ResNet.

(ResNet-50-C4):

(b) Multinomial vs. Independent Masks
Decoupling via per-
class binary masks (sigmoid) gives large
gains over multinomial masks (softmax).

(c) RolAlign (ResNet-50-C4): Mask results with various Rol
layers. Our RolAlign layer improves AP by ~3 points and
AP75 by ~5 points. Using proper alignment is the only fac-
tor that contributes to the large gap between Rol layers.

AP AP59 AP;5 | AP®  APYY AP mask branch AP AP5y APy
RolPool | 23.6 465 216 | 282 527 269 MLP fc: 1024—1024—80-282 3.5 537 328
RolAlign | 309  51.8 321 | 340 553 364 MLP fc: 1024—1024—1024—80-282 3.5 540 326
+7.3  +53 4105 | +58 426  +9.5 FCN | conv: 256—256—256—256—256—80 | 33.6 552  35.3

(d) RoIAlign (ResNet-50-CS, stride 32): Mask-level and box-level
AP using large-stride features. Misalignments are more severe than
with stride-16 features (Table 2c¢), resulting in big accuracy gaps.

(e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs.
multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs im-

prove results as they take advantage of explicitly encoding spatial layout.

Table 2. Ablations. We train on t rainval35k, test on minival, and report mask AP unless otherwise noted.
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Mask R-CNN — Human Pose Estimation et

® Testing applicability of Mask R-CNN architecture.

® Keypoints (e.g., left shoulder, right elbow, ..) are detected as independent one-hot masks of
size 56 X 56 with softmax output function.

k k k k
APX  APSN AP | AP AP
CMU-Pose+++ [6] 61.8 849 675 | 57.1 682
G-RMI [32]1 624 840 685 | 59.1 68.1

Mask R-CNN, keypoint-only 627 87.0 684 | 574 T1.1
Mask R-CNN, keypoint & mask| 63.1 87.3 68.7 | 57.8 714

Table 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

NPFL114, Lecture 6 FastR-CNN FasterR-CNN MaskR-CNN FPN FocallLoss RetinaNet EfficientDet GroupNorm 21/44



Feature Pyramid Networks

i

> predict

‘”:ﬁ-:“ g ‘“ -
(b) Single feature map

(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

Figure 1 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks

4
predict

predict

predict

predict

Figure 2 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks
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Figure 3 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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We employ FPN as a backbone in Faster R-CNN.

Assuming ResNet-like network with 224 x 224 input, we denote Cy, (s, ..., Cs the image

features of the last convolutional layer of size 56 x 56,28 x 28,...,7 x 7 (i.e., C; indicates a

downscaling of 2i). The FPN representations incorporating the smaller resolution features are
denoted as P, ..., Ps, each consisting of 256 channels.

In both the RPN and the Fast R-CNN, authors utilize the P5, ..., Ps representations,
considering single-size anchors for every P; (of size 32%,64%, 1282, 256, respectively).
However, three aspect ratios (1 :1,1:2,2: 1) are still used.

image test-dev test-std

method backbone competition | pyramid | APq 5 | AP | APs AP,, AP; | APa s | AP | APs AP,, AP

ours, Faster R-CNN on FPN ResNet-101 - 591 (362|182 39.0 482 | 585 |358|17.5 38.7 4738
Competition-winning single-model results follow:

G-RMIT Inception-ResNet 2016 - 347 - - - - - - - -
AttractioNet¥ [10] VGG16 + Wide ResNet? 2016 v 534 |357|156 38.0 527 | 529 |353|14.7 37.6 519
Faster R-CNN +++ [16] ResNet-101 2015 v 55.7 349|156 38.7 509 - - - - -
Multipath [40] (onminival) VGG-16 2015 49.6 |31.5| - - - - - - - -

ION* [2] VGG-16 2015 534 |31.2|12.8 329 452 | 529 |30.7|11.8 32.8 44.8
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Focal Loss UL

For single-stage object detection
architectures, class imbalance has been
identified as the main issue preventing to
obtain performance comparable to two-
stage detectors. In a single-stage detector,
there can be tens of thousands of anchors,
with only dozens of useful training
examples. i

CE(p) = —log(p)
FL(p) = —(1 — p)" log(pr)

1 T TR TR
SN V)
o

SRS RS P

0
%)
o

well-classified
examples

Cross-entropy loss is computed as

0 l ‘
r — _1lo ( |33) 0 0.2 0.4 0.6 0.8 1
cross-entropy — & Pmodel \Y|T)- probability of ground truth class

Figure 1 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
Focal-loss (loss focused on hard examples)
is proposed as

Local-loss = _(]- — Pmodel (y|$))7 : 1ngmodel (y|w)
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Focal Loss =

For v = 0, focal loss is equal to cross-entropy loss.

Authors reported that v = 2 worked best for them for training a single-stage detector.

w 1 w 1

(2] (%2}

ke —=0 ke —7=0

808 —7=05 B808F—7=05

N v=1 N v=1

20_6,_’y=2 20_6,_')/:2

: :

o041 o 0-4

2 =

T ol ©

= 0.2 = 0.2

£ £

8 0 : 3 0 . b et
0 2 4 .6 .8 1 0 2 4 .6 .8 1

fraction of foreground examples fraction of background examples

Figure 4. Cumulative distribution functions of the normalized loss for positive and negative samples for different values of -y for a converged

model. The effect of changing v on the distribution of the loss for positive examples is minor. For negatives, however, increasing -y heavily
concentrates the loss on hard examples, focusing nearly all attention away from easy negatives.

Figure 4 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
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Focal loss is connected to another solution to class imbalance — we might introduce weighting
factor a € (0,1) for one class and 1 — « for the other class, arriving at

—ay, - 10g Prmodel (Y| T)-

The weight @ might be set to the inverse class frequency or treated as a hyperparameter.

Even if weighting focus more on low-frequent class, it does not distinguish between easy and
hard examples, contrary to focal loss.

In practice, the focal loss is usually used together with class weighting:

~ay (1= Praoae (412)) * 108 Pioar (y]).

For example, authors report that a = 0.25 works best with v = 2.
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RetinaNet is a single-stage detector, using feature pyramid network architecture. Built on top of
ResNet architecture, the feature pyramid contains levels P53 through P;, with each P, having

256 channels and resolution 2¢ lower than the input. On each pyramid level P}, we consider 9
anchors for every position, with 3 different aspect ratios (1, 1 : 2, 2 : 1) and with 3 different
sizes ({2,21/3,22/3} . 4.2

Note that ResNet provides only C5 to (5 features. Cg is computed using a 3 X 3 convolution
with stride 2 on Cy, and C; is obtained by applying ReLU followed by another 3 x 3 stride-2
convolution. The Cg and C'; are included to improve large object detection.

RetinaNet
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RetinaNet — Architecture e

The classification and boundary regression heads do not share parameters and are fully
convolutional, generating anchors - classes sigmoids and anchors bounding boxes per

position.
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(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)
Figure 3 of paper "Focal Loss for Dense Object Detection”, https://arxiv.org/abs/1708.02002.
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During training, anchors are assigned to ground-truth object boxes if loU is at least 0.5; to
background if loU with any ground-truth region is at most 0.4 (the rest of anchors is ignored
during training). The classification head is trained using focal loss with v = 2 and @ = 0.25

(but according to the paper, all values of 7y in [0.5, 5] range works well); the boundary
regression head is trained using smoothy, loss as in Fast(er) R-CNN.
During inference, at most 1000 objects with at least 0.05 probability from every pyramid level

are considered, and combined from all levels using non-maximum suppression with a threshold
of 0.5.

backbone AP APsg  APrs APs  APpy  APp
Two-stage methods
Faster R-CNN+++ [16] ResNet-101-C4 34.9 55.7 374 15.6 38.7 50.9
Faster R-CNN w FPN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [34] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [32] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 52.1
One-stage methods

YOLOvV2 [27] DarkNet-19 [27] 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [22, 9] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [9] ResNet-101-DSSD 33.2 53.3 35.2 13.0 354 51.1

RetinaNet (ours) ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet (ours) ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2
RetinaNet
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(87 AP AP50 AP75
.10 0.0 0.0 0.0
25 10.8 16.0 11.7
.50 30.2 46.7 32.8
5 31.1 494 33.0
90 30.8 49.7 32.3
.99 28.7 474 29.9
999 | 25.1 41.7 26.1

(a) Varying « for CE loss (v = 0)

batch nms

Y (87 AP AP50 AP75
0 .75] 31.1 494 33.0
0.1 .75 | 314 49.9 33.1
02 75| 319 50.7 334
0.5 .50 | 329 51.7 35.2
1.0 .25 | 337 52.0 36.2
20 25| 34.0 52.5 36.5
5.0 25| 322 49.6 34.8

(b) Varying ~ for FL (w. optimal o)

#sc #ar AP AP50 AP75
1 1 30.3 49.0 31.8
2 1 319 50.0 34.0
3 1 31.8 49.4 33.7
1 3 324 52.3 33.9
2 3 34.2 53.1 36.5
3 3 34.0 52.5 36.5
4 3 33.8 52.1 36.2

(c) Varying anchor scales and aspects

method size thr AP APsg  APrs depth scale| AP APsg AP75 | APs  APps APp | time
OHEM 128 T 31.1 47.2 332 50 400 | 30.5 47.8 32.7 11.2 33.8 46.1 64
OHEM 256 7 31.8 48.8 33.9 50 500 | 32.5 50.9 34.8 13.9 35.8 46.7 72
OHEM 512 v 30.6 47.0 32.6 50 600 | 343 53.2 36.9 16.2 37.4 47.4 98
OHEM 128 5 32.8 50.3 35.1 50 700 | 35.1 54.2 37.7 18.0 39.3 46.4 | 121
OHEM 256 ) 31.0 47.4 33.0 50 800 | 35.7 55.0 38.5 18.9 38.9 46.3 | 153
OHEM 512 5 27.6 42.0 29.2 101 400 | 31.9 49.5 34.1 11.6 35.8 48.5 81
OHEM 1:3 | 128 5 31.1 47.2 33.2 101 500 | 344 53.1 36.8 14.7 38.5 49.1 90
OHEM 1:3 | 256 5 28.3 42.4 30.3 101 600 | 36.0 55.2 38.7 17.4 39.6 49.7 | 122
OHEM 1:3 | 512 5 24.0 35.5 25.8 101 700 | 37.1 56.6 39.8 19.1 40.6 494 | 154
FL n/a n/a 36.0 54.9 38.7 101 800 | 37.8 57.5 40.8 20.2 41.1 49.2 | 198
(d) FL vs. OHEM baselines (with ResNet-101-FPN) (e) Accuracy/speed trade-off RetinaNet (on test—dev)
FastR-CNN FasterR-CNN MaskR-CNN FPN FocallLoss RetinaNet EfficientDet GroupNorm
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EfficientDet — Architecture

EfficientDet builds up on EfficientNet and delivers state-of-the-art performance with minimum
time and space requirements. It is a single-scale detector similar to RetinaNet, which:

uses EfficientNet as backbone:

® employs compound scaling;
® uses a newly proposed BiFPN, “efficient bidirectional cross-scale connections and weighted

feature fusion”.

P,/ 128 =‘rl

e L]
— A N 1
Pg/ 64 =FI \\\ \\\ *(conv)—»(conv)—'—»
/‘(/\/:(_____________:
Y%
Ps/32 1 1 /A m m e e e mmmmm = a
A // ;(\\:\ 1
. —li(conv )—»(conv
P“lG* /:______________:
Ve
Box prediction net
Ps/8
P, /4 BiFPN Layer
Pi/2
Input

EfficientNet backbone
Figure 3 of paper "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070.
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EfficientDet — BiFPN Uz

In multi-scale fusion in FPN, information flows only from the pyramid levels with smaller
resolution to the levels with higher resolution.

repeated blocks repeated blocks
P, O—> P7
Pe O—» Pe
s O 2 C%»(i)—»
P4 O—P?—» P O ?
Ps O—»‘—» Ps
(a) FPN (b) PANet (c) NAS-FPN (d) BiFPN

Figure 2 of paper "EfficientDet: Scalable and Efficient Object Detection”, https://arxiv.org/abs/1911.09070.

BiFPN consists of several rounds of bidirectional flows. Each bidirectional flow employs residual
connections and does not include nodes that have only one input edge with no feature fusion.
All operations are 3 X 3 separable convolutions with batch normalization and RelL U, upsampling

is done by repeating rows and columns and downsampling by max-pooling.
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When combining features with different resolutions, it is common to resize them to the same
resolution and sum them — therefore, both set of features is considered to be of the same

importance. The authors however argue that features from different resolution contribute to the
final result unequally and propose a combination with trainable weighs.

e Softmax-based fusion: There is a trainable weight w; for every input |; and the final
combination is

e
2s e
i J

® Fast normalized fusion: Authors propose a simpler alternative of weighting:

ReLU(w;
3 (w;)

l;.
e+ >.; ReLU(wy)

i
It uses € = 0.0001 for stability and is up to 30% faster on a GPU.

EfficientDet 35/44



Similar to EfficientNet, authors propose to scale various dimensions of the network, using a

single compound coefficient ¢.

After performing a grid search:

® the width of BiFPN is scaled as Wg;ppy = 64 - 1.35?,

® the depth of BiFPN is scaled as Dg;ppy = 3 + ¢,

® the box/class predictor has the same width as BiFPN and depth D . = 3 + |¢/3],
® input image resolution increases according to Rjpmaee = 512 + 128 - ¢.

Input  Backbone BiFPN Box/class
size Network  #channels #layers  #layers
Rinput Wbifpn Dbifpn Dclass
DO (¢ = 0) 512 BO 64 3 3
DI (¢ =1) 640 B1 88 4 3
D2 (¢ = 2) 768 B2 112 5 3
D3 (¢ =3) 896 B3 160 6 4
D4 (p=4) | 1024 B4 224 7 4
D5(¢p=5) | 1280 B5 288 7 4
D6 (¢ =6) | 1280 B6 384 8 5
D6 (p=7) | 1536 B6 384 8 5

EfficientDet
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EfficientDet — Results

EfficientDet-D7
501 AmoebaNet + NAS-FPN + AA
- - g -
a” -
451 =W === =TT T RSNet + NAS-FPN
//.— - X
o D2 // - . %
< /’ -
o) #7 __~” RetinaNet O
D1 P s
e 4 @)
O  ® MaskRCNN &)
a5 | | AP FLOPs (ratio)
| EfficientDet-D0 33.8 2.5B
YOLOV3 [31] 33.0 71B (28x)
I yoLovs EfficientDet-D1 389 6.1B
,’ RetinaNet [21] 39.6 97B (16x)
301, MaskRCNN [ 1] 37.9 149B (25x)
J EfficientDet-D6 51.7 229B
AmoebaNet+ NAS-FPN +AA [42]750.7 3045B (13x)
TNot plotted.
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NPFL114, Lecture 6 FastR-CNN
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Figure 1 of paper "EfficientDet: Scalable and Efficient Object Detection”,
https://arxiv.org/abs/1911.09070.
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40.04 X/”hetinaNet |Params Ratio
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MaskRCNN etinaNet [21] 53M  6.6x
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Figure 4 of paper "EfficientDet: Scalable and Efficient Object Detection”,
https://arxiv.org/abs/1911.09070.
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tet-dev val Latency
Model AP APsg AP;; || AP || Params Ratio FLOPs Ratio || GPU,,;, CPU,
EfficientDet-D0 (512) 33.8 522 358 || 335 3I9IM 1x 2.5B 1x 16 0.32
YOLOV3 [31] 330 579 344 - - - 71B  28x 511 -
EfficientDet-D1 (640) 396 58.6 423 | 39.1 6.6M 1x 6.1B 1x 20 0.74
RetinaNet-R50 (640) [21] 37.0 - - - 34M  6.7x 97B  16x 27 2.8
RetinaNet-R101 (640)[21] 37.9 - - - 53M  8.0x 127B  2Ix 34 3.6
EfficientDet-D2 (768) 43.0 623 46.2 || 425 8.1M 1x 11B 1x 24 1.2
RetinaNet-R50 (1024) [21] 40.1 - - - 34dM  4.3x 248B  23x 51 7.5
RetinaNet-R101 (1024) [21] 41.1 - - - 53M  6.6x 326B  30x 65 9.7
ResNet-50 + NAS-FPN (640) [¢] 39.9 - - - 60M  7.5x 141B  13x 41 4.1
EfficientDet-D3 (896) 458 650 493 || 459 12M 1x 25B 1x 42 2.5
ResNet-50 + NAS-FPN (1024) [¢] 44.2 - - - 60M  5.1x 360B  15x 79 11
ResNet-50 + NAS-FPN (1280) [¢] 44.8 - - - 60M  5.1x 563B  23x 119 17
ResNet-50 + NAS-FPN (1280@384)[&] 45.4 - - - 104M  8.7x  1043B  42x 173 27
EfficientDet-D4 (1024) 494 69.0 534 || 49.0 21IM 1x 55B 1x 74 4.8
AmoebaNet+ NAS-FPN +AA(1280)[42] - - - 48.6 185M  8.8x 1317B  24x 259 38
EfficientDet-D5 (1280) | 507 702 547 | 505 | 34M Ix 135B  1x | 141 11
EfficientDet-D6 (1280) 51.7 712 56.0 | 51.3 52M 1x 226B 1x 190 16
AmoebaNet+ NAS-FPN +AA(1536)[42] - - - 50.7 2090M  4.0x 3045B  13x 608 83
EfficientDet-D7 (1536) || 522 714 563 || 51.8 || 52M 1x 325B 1x || 262 24
‘We omit ensemble and test-time multi-scale results [27, 10].
fLatency marked with T are from papers, and others are measured on the same machine with Titan V GPU.
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EfficientDet — Latencies Fxl
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Figure 4 of paper "EfficientDet: Scalable and Efficient Object Detection”, https://arxiv.org/abs/1911.09070.
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Given that EfficientDet employs both a powerful backbone and new BiFPN, authors quantify

the improvement of the individual components.

AP  Parameters FLOPs
ResNet50 + FPN 37.0 34M 97B
EfficientNet-B3 + FPN 40.3 21M 75B
EfficientNet-B3 + BiFPN | 44.4 12M 24B

Furthermore, they provide comparison with previously used cross-scale fusion architectures.

AP #Par?lms #FLQPS

ratio ratio
Repeated top-down FPN | 42.29 1.0x 1.0x
Repeated FPN+PANet 44.08 1.0x 1.0x
NAS-FPN 43.16 0.71x 0.72x
Fully-Connected FPN 43.06 1.24x 1.21x
BiFPN (w/o weighted) | 43.94 0.88x 0.67x
BiFPN (w/ weighted) 44.39 0.88x 0.68x

EfficientDet
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Normalization

Batch Normalization

Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization

Neuron value is normalized across the layer.
Batch Norm Layer Norm Instance Norm Group Norm

H, W
H, W
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Z AN\ N\ N\

Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Group Normalization

Group Normalization is analogous to Layer normalization, but the channels are normalized in

groups (by default, G = 32).

NPFL114, Lecture 6

>

ttps://arxiv.org/abs/1803.08494.

Figure 2 of paper "Group Normalization",
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Figure 1 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Group Normalization
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Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation
error (right) vs. numbers of training epochs. The model is ResNet-50.
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Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.
Figures 4 and 5 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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backbone APbbox APbbox APbbox APmask APmask APmask

*k

BN 377 579 409 32.8 54.3 34.7
GN 388 592 422 | 33.6 559 354

Table 4. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 C4. BN means BN is frozen.

backbone | box head | AP?** APZ0°* APS2oX | APmask Apmask pphiask

*k

BN - 386 595 419 | 342 56.2 36.1

*

BN GN | 395 60.0 432 | 344 564 363
GN GN | 40.0 61.0 433 | 348 573 363

Table 5. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 FPN and a 4conv1fc bounding box
head. BN means BN is frozen.
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