

# Convolutional Neural Networks II

Milan Straka

**■** March 30, 2020

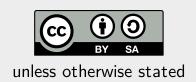








Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



### **Designing and Training Neural Networks**



Designing and training a neural network is not a one-shot action, but instead an iterative procedure.

- When choosing hyperparameters, it is important to verify that the model does not underfit and does not overfit.
- Underfitting can be checked by increasing model capacity or training longer.
- Overfitting can be tested by observing train/dev difference and by trying stronger regularization.

Specifically, this implies that:

- We need to set number of training epochs so that training loss/performance no longer increases at the end of training.
- Generally, we want to use a large batchsize that does not slow us down too much (GPUs sometimes allow larger batches without slowing down training). However, with increasing batch size we need to increase learning rate, which is possible only to some extent. Also, small batch size sometimes work as regularization (especially for vanilla SGD algorithm).

### Main Takeaways From Previous Lecture



- Convolutions can provide
  - local interactions in spacial/temporal dimensions
  - shift invariance
  - much less parameters than a fully connected layer
- ullet Usually repeated 3 imes 3 convolutions are enough, no need for larger filter sizes.
- When pooling is performed, double number of channels.
- Final fully connected layers are not needed, global average pooling is usually enough.
- Batch normalization is a great regularization method for CNNs, allowing removal of dropout.
- Small weight decay (i.e., L2 regularization) of usually 1e-4 is still useful for regularizing convolutional kernels.



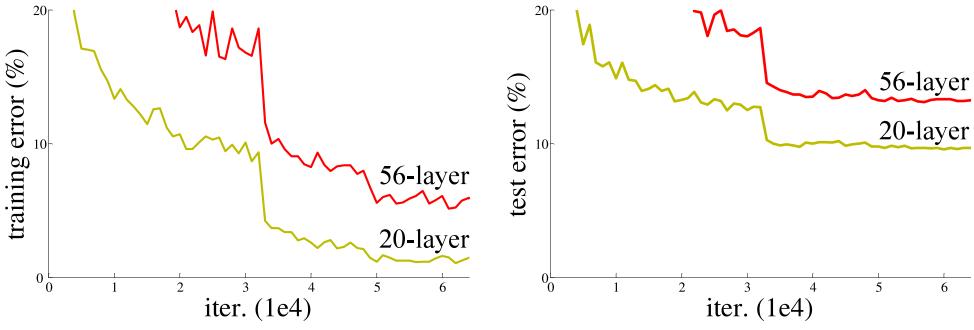


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Figure 1 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.



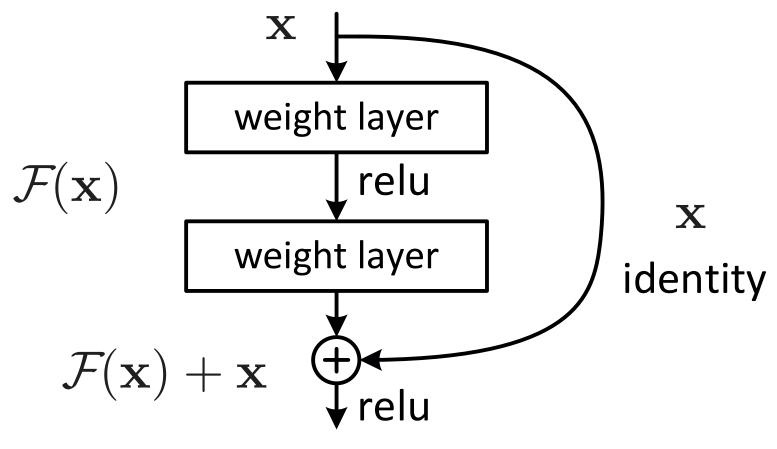


Figure 2. Residual learning: a building block.

Figure 2 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.



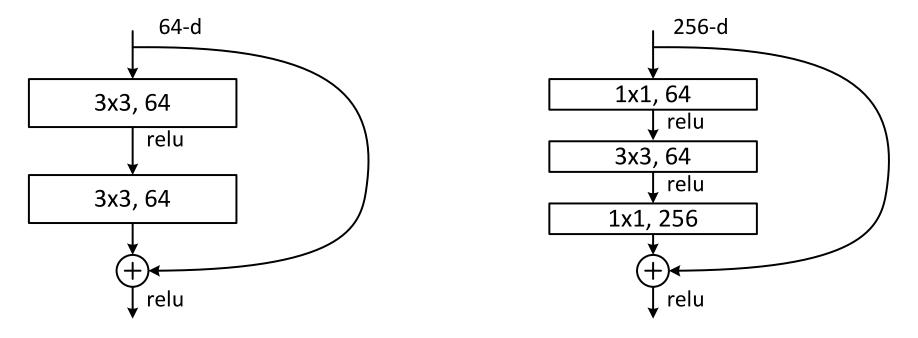


Figure 5. A deeper residual function  $\mathcal{F}$  for ImageNet. Left: a building block (on  $56 \times 56$  feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

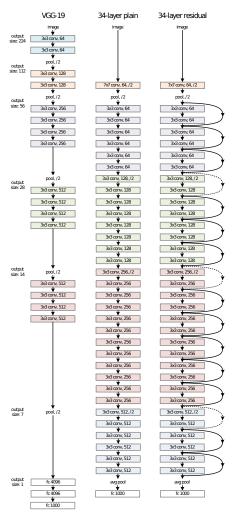
Figure 5 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.



| layer name | output size  | 18-layer                                                                              | 34-layer                                                                                | 50-layer                                                                                                          | 101-layer                                                                                                        | 152-layer                                                                                                            |  |
|------------|--------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| conv1      | 112×112      | 7×7, 64, stride 2                                                                     |                                                                                         |                                                                                                                   |                                                                                                                  |                                                                                                                      |  |
|            |              |                                                                                       |                                                                                         | 3×3 max pool, stric                                                                                               | le 2                                                                                                             |                                                                                                                      |  |
| conv2_x    | 56×56        | $ \left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right] \times 2 $    | $\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$   | $ \left[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array}\right] \times 3 $        | $ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $                   | $ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $                       |  |
| conv3_x    | 28×28        | $ \left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2 $  | $\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$ | $   \begin{bmatrix}     1 \times 1, 128 \\     3 \times 3, 128 \\     1 \times 1, 512   \end{bmatrix} \times 4 $  | $   \begin{bmatrix}     1 \times 1, 128 \\     3 \times 3, 128 \\     1 \times 1, 512   \end{bmatrix} \times 4 $ | $   \begin{bmatrix}     1 \times 1, 128 \\     3 \times 3, 128 \\     1 \times 1, 512   \end{bmatrix} \times 8 $     |  |
| conv4_x    | 14×14        | $ \left[\begin{array}{c} 3\times3,256\\3\times3,256 \end{array}\right]\times2 $       | $\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$ | $   \begin{bmatrix}     1 \times 1, 256 \\     3 \times 3, 256 \\     1 \times 1, 1024   \end{bmatrix} \times 6 $ | $ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $   | $   \begin{bmatrix}     1 \times 1, 256 \\     3 \times 3, 256 \\     1 \times 1, 1024   \end{bmatrix}   \times 36 $ |  |
| conv5_x    | 7×7          | $\left[\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array}\right] \times 3$   | $   \begin{bmatrix}     1 \times 1, 512 \\     3 \times 3, 512 \\     1 \times 1, 2048   \end{bmatrix} \times 3 $ | $ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $    | $   \begin{bmatrix}     1 \times 1, 512 \\     3 \times 3, 512 \\     1 \times 1, 2048   \end{bmatrix} \times 3 $    |  |
|            | $1 \times 1$ | average pool, 1000-d fc, softmax                                                      |                                                                                         |                                                                                                                   |                                                                                                                  |                                                                                                                      |  |
| FLO        | OPs          | $1.8 \times 10^9$                                                                     | $3.6 \times 10^9$                                                                       | $3.8 \times 10^9$                                                                                                 | $7.6 \times 10^9$                                                                                                | $11.3 \times 10^9$                                                                                                   |  |

Table 1 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.





The residual connections cannot be applied directly when number of channels increase.

The authors considered several alternatives, and chose the one where in case of channels increase a  $1\times 1$  convolution is used on the projections to match the required number of channels.

Figure 3 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.



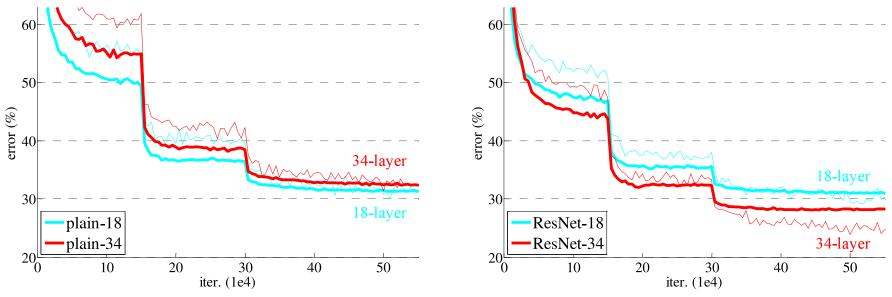


Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Figure 4 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.



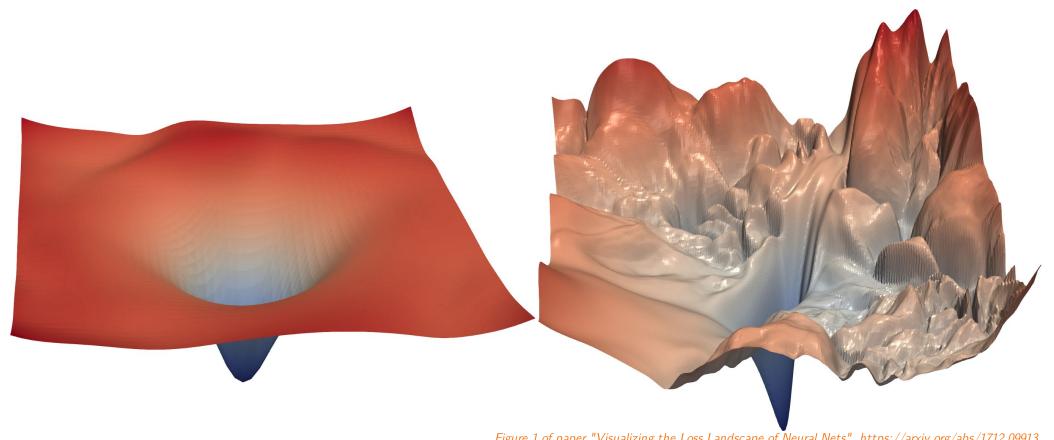


Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.



#### Training details:

- batch normalizations after each convolution and before activation
- SGD with batch size 256 and momentum of 0.9
- learning rate starts with 0.1 and is divided by 10 when error plateaus
- no dropout, weight decay 0.0001
- during testing, 10-crop evaluation strategy is used, averaging scores across multiple scales the images are resized so that their smaller size is in  $\{224, 256, 384, 480, 640\}$



| method                     | top-1 err. | top-5 err.        |
|----------------------------|------------|-------------------|
| VGG [41] (ILSVRC'14)       | _          | 8.43 <sup>†</sup> |
| GoogLeNet [44] (ILSVRC'14) | -          | 7.89              |
| VGG [41] (v5)              | 24.4       | 7.1               |
| PReLU-net [13]             | 21.59      | 5.71              |
| BN-inception [16]          | 21.99      | 5.81              |
| ResNet-34 B                | 21.84      | 5.71              |
| ResNet-34 C                | 21.53      | 5.60              |
| ResNet-50                  | 20.74      | 5.25              |
| ResNet-101                 | 19.87      | 4.60              |
| ResNet-152                 | 19.38      | 4.49              |

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

Table 4 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.

| method                     | top-5 err. (test) |
|----------------------------|-------------------|
| VGG [41] (ILSVRC'14)       | 7.32              |
| GoogLeNet [44] (ILSVRC'14) | 6.66              |
| VGG [41] (v5)              | 6.8               |
| PReLU-net [13]             | 4.94              |
| BN-inception [16]          | 4.82              |
| ResNet (ILSVRC'15)         | 3.57              |

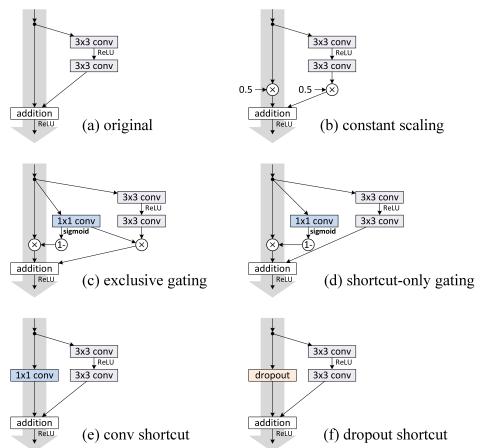
Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

Table 5 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.

#### ResNet Ablations – Shortcuts



The authors of ResNet published an ablation study several months after the original paper.



| shortcut-only                                                                    | Fig. 2(d)  | $1 - g(\mathbf{x})$       | 1 | 12.86                                       | init $b_g = 0$ |
|----------------------------------------------------------------------------------|------------|---------------------------|---|---------------------------------------------|----------------|
| gating                                                                           | 1 1g. 2(u) | $1-g(\mathbf{x})$         | 1 | 6.91                                        | init $b_g$ =-6 |
| 1×1 conv shortcut                                                                | Fig. 2(e)  | $1 \times 1 \text{ conv}$ | 1 | 12.22                                       |                |
| dropout shortcut                                                                 | Fig. 2(f)  | dropout 0.5               | 1 | fail                                        |                |
| Table 1 of paper "Identity Mappings in Deep Residual I<br>https://arxiv.org/abs/ |            |                           |   | Residual Networks",<br>v.org/abs/1603.05027 |                |

on shortcut

0

0.5

0.5

 $1 - g(\mathbf{x})$ 

 $1 - g(\mathbf{x})$ 

 $1 - g(\mathbf{x})$ 

on  $\mathcal{F}$ 

0.5

 $g(\mathbf{x})$ 

 $g(\mathbf{x})$ 

 $g(\mathbf{x})$ 

error (%)

6.61

fail

fail

12.35

fail

8.70

9.81

remark

This is a plain net

frozen gating

init  $b_q = -6$ 

init  $b_q = -7$ 

init  $b_q = 0$  to -5

Figure 2 of paper "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

Fig.

Fig. 2(a)

Fig. 2(b)

Fig. 2(c)

case

original [1]

constant

scaling

exclusive

gating

#### **ResNet Ablations – Activations**



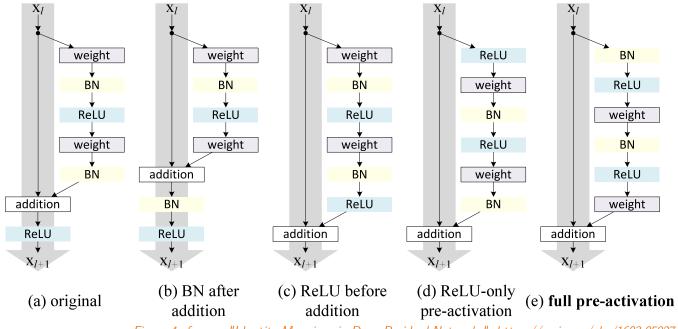


Figure 4 of paper "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

| case                       | Fig.      | ResNet-110 | ResNet-164 |
|----------------------------|-----------|------------|------------|
| original Residual Unit [1] | Fig. 4(a) | 6.61       | 5.93       |
| BN after addition          | Fig. 4(b) | 8.17       | 6.50       |
| ReLU before addition       | Fig. 4(c) | 7.84       | 6.14       |
| ReLU-only pre-activation   | Fig. 4(d) | 6.71       | 5.91       |
| full pre-activation        | Fig. 4(e) | 6.37       | 5.46       |

Table 2 of paper "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

#### ResNet Ablations – Pre-Activation Results



The pre-activation architecture was evaluated also on ImageNet, in a single-crop regime.

| method                                   | augmentation    | train crop       | test crop        | top-1                  | top-5           |
|------------------------------------------|-----------------|------------------|------------------|------------------------|-----------------|
| ResNet-152, original Residual Unit [1]   | scale           | $224 \times 224$ | $224 \times 224$ | 23.0                   | 6.7             |
| ResNet-152, original Residual Unit [1]   | scale           | $224 \times 224$ | 320×320          | 21.3                   | 5.5             |
| ResNet-152, <b>pre-act</b> Residual Unit | scale           | $224 \times 224$ | $320 \times 320$ | 21.1                   | 5.5             |
| ResNet-200, original Residual Unit [1]   | scale           | $224 \times 224$ | 320×320          | 21.8                   | 6.0             |
| ResNet-200, <b>pre-act</b> Residual Unit | scale           | $224 \times 224$ | $320 \times 320$ | 20.7                   | 5.3             |
| ResNet-200, <b>pre-act</b> Residual Unit | scale+asp ratio | $224 \times 224$ | $320 \times 320$ | $oxed{20.1}^{\dagger}$ | $4.8^{\dagger}$ |
| Inception v3 [19]                        | scale+asp ratio | 299×299          | 299×299          | 21.2                   | 5.6             |

Table 5 of paper "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027



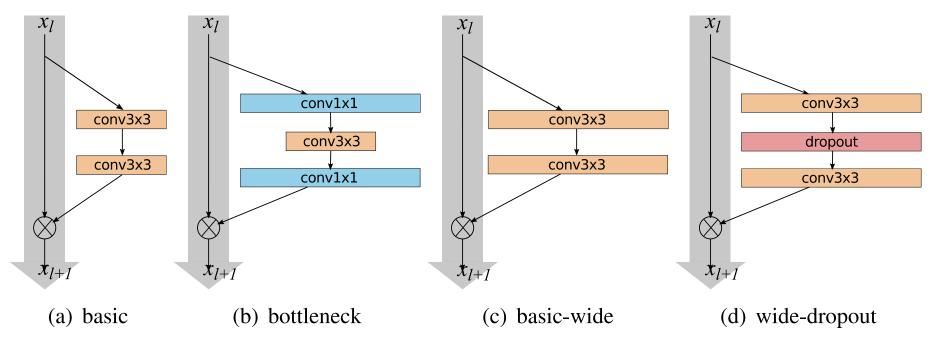


Figure 1: Various residual blocks used in the paper. Batch normalization and ReLU precede each convolution (omitted for clarity)

Figure 1 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146



• Authors do not consider bottleneck blocks. Instead, they experiment with different *block types*, e.g., B(1,3,1) or B(3,3)

| block type | depth | # params | time,s | CIFAR-10 |
|------------|-------|----------|--------|----------|
| B(1,3,1)   | 40    | 1.4M     | 85.8   | 6.06     |
| B(3,1)     | 40    | 1.2M     | 67.5   | 5.78     |
| B(1,3)     | 40    | 1.3M     | 72.2   | 6.42     |
| B(3,1,1)   | 40    | 1.3M     | 82.2   | 5.86     |
| B(3,3)     | 28    | 1.5M     | 67.5   | 5.73     |
| B(3,1,3)   | 22    | 1.1M     | 59.9   | 5.78     |

Table 2 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146

| group name | output size    | block type = $B(3,3)$                                                                             |
|------------|----------------|---------------------------------------------------------------------------------------------------|
| conv1      | $32 \times 32$ | $[3 \times 3, 16]$                                                                                |
| conv2      | 32×32          | $\left[\begin{array}{c} 3\times3, 16\times k \\ 3\times3, 16\times k \end{array}\right] \times N$ |
| conv3      | 16×16          | $\left[\begin{array}{c} 3\times3, 32\times k \\ 3\times3, 32\times k \end{array}\right] \times N$ |
| conv4      | 8×8            | $\left[\begin{array}{c} 3\times3, 64\times k \\ 3\times3, 64\times k \end{array}\right] \times N$ |
| avg-pool   | $1 \times 1$   | $[8 \times 8]$                                                                                    |

Table 1 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146



#### ullet Authors evaluate various *widening factors* k

| depth | k  | # params      | CIFAR-10 | CIFAR-100 |
|-------|----|---------------|----------|-----------|
| 40    | 1  | 0.6M          | 6.85     | 30.89     |
| 40    | 2  | 2.2M          | 5.33     | 26.04     |
| 40    | 4  | 8.9M          | 4.97     | 22.89     |
| 40    | 8  | 35.7M         | 4.66     | -         |
| 28    | 10 | 36.5M         | 4.17     | 20.50     |
| 28    | 12 | 52.5M         | 4.33     | 20.43     |
| 22    | 8  | 17.2M         | 4.38     | 21.22     |
| 22    | 10 | 26.8M         | 4.44     | 20.75     |
| 16    | 8  | 11.0 <b>M</b> | 4.81     | 22.07     |
| 16    | 10 | 17.1M         | 4.56     | 21.59     |

Table 4 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146

| group name | output size    | block type = $B(3,3)$                                                                                   |
|------------|----------------|---------------------------------------------------------------------------------------------------------|
| conv1      | $32 \times 32$ | $[3 \times 3, 16]$                                                                                      |
| conv2      | 32×32          | $\left[\begin{array}{c} 3\times3, 16\times k \\ 3\times3, 16\times k \end{array}\right] \times N$       |
| conv3      | 16×16          | $\left[\begin{array}{c} 3 \times 3, 32 \times k \\ 3 \times 3, 32 \times k \end{array}\right] \times N$ |
| conv4      | 8×8            | $\begin{bmatrix} 3 \times 3, 64 \times k \\ 3 \times 3, 64 \times k \end{bmatrix} \times N$             |
| avg-pool   | $1 \times 1$   | [8 × 8]                                                                                                 |

Table 1 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146



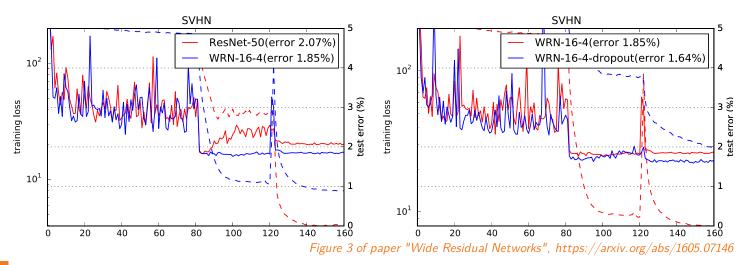
 Authors measure the effect of dropping out inside the residual block (but not the residual connection itself)

| depth | k  | dropout      | CIFAR-10 | CIFAR-100 | SVHN |
|-------|----|--------------|----------|-----------|------|
| 16    | 4  |              | 5.02     | 24.03     | 1.85 |
| 16    | 4  | ✓            | 5.24     | 23.91     | 1.64 |
| 28    | 10 |              | 4.00     | 19.25     | -    |
| 28    | 10 | $\checkmark$ | 3.89     | 18.85     | -    |
| 52    | 1  |              | 6.43     | 29.89     | 2.08 |
| 52    | 1  | ✓            | 6.28     | 29.78     | 1.70 |

| Table 6 of paper | "Wide Residual | Networks", | https:/ | /arxiv.org/ | abs/1605.07146 |
|------------------|----------------|------------|---------|-------------|----------------|
|------------------|----------------|------------|---------|-------------|----------------|

| group name | output size    | block type = $B(3,3)$                                                                             |
|------------|----------------|---------------------------------------------------------------------------------------------------|
| conv1      | $32 \times 32$ | $[3 \times 3, 16]$                                                                                |
| conv2      | 32×32          | $\left[\begin{array}{c} 3\times3, 16\times k \\ 3\times3, 16\times k \end{array}\right] \times N$ |
| conv3      | 16×16          | $\left[\begin{array}{c} 3\times3, 32\times k \\ 3\times3, 32\times k \end{array}\right] \times N$ |
| conv4      | 8×8            | $\begin{bmatrix} 3 \times 3, 64 \times k \\ 3 \times 3, 64 \times k \end{bmatrix} \times N$       |
| avg-pool   | $1 \times 1$   | [8 × 8]                                                                                           |

Table 1 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146



# WideNet - Results



| Dataset  |                               | Re           | esults       |                |                    |
|----------|-------------------------------|--------------|--------------|----------------|--------------------|
|          |                               | depth-k      | # params     | CIFAR-10       | CIFAR-100          |
|          | NIN [20]                      |              |              | 8.81           | 35.67              |
|          | DSN [19]                      |              |              | 8.22           | 34.57              |
|          | FitNet [24]                   |              |              | 8.39           | 35.04              |
|          | Highway [ <mark>28</mark> ]   |              |              | 7.72           | 32.39              |
|          | ELU [5]                       |              |              | 6.55           | 24.28              |
|          | original-ResNet[11            | 110          | 1.7 <b>M</b> | 6.43           | 25.16              |
|          |                               | 1202         | 10.2M        | 7.93           | 27.82              |
| CIEAD    | stoc-depth[14]                | 110          | 1.7M         | 5.23           | 24.58              |
| CIFAR    |                               | 1202         | 10.2M        | 4.91           |                    |
|          |                               | 110          | 1.7M         | 6.37           | -                  |
|          | pre-act-ResNet[13]            | 164          | 1.7M         | 5.46           | 24.33              |
|          |                               | 1001         | 10.2M        | 4.92(4.64)     | 22.71              |
|          |                               | 40-4         | 8.9M         | 4.53           | 21.18              |
|          | WRN (ours)                    | 16-8         | 11.0M        | 4.27           | 20.43              |
|          |                               | 28-10        | 36.5M        | 4.00           | 19.25              |
|          | Table 5 of paper "Wide  Model | top-1 err, % |              |                | s time/batch 16    |
|          | ResNet-50                     | 24.01        | 7.02         |                | 49                 |
|          | ResNet-101                    | 22.44        | 6.21         | 44.5M          | 82                 |
|          | ResNet-152                    | 22.16        | 6.16         |                | 115                |
| ImageNet | WRN-50-2-bottleneck           | 21.9         | 6.03         |                | 93                 |
| 3.03.100 | pre-ResNet-200                | 21.66        | 5.79         | 64.7M          | 154                |
|          | Table 8 of paper "W           | ide Residual | Networks",   | https://arxiv. | org/abs/1605.07146 |

NPFL114, Lecture 5

Refresh

ResNetModifications

CNNRegularization

EfficientNet

TransferLearning

TransposedConvolution

#### **DenseNet**



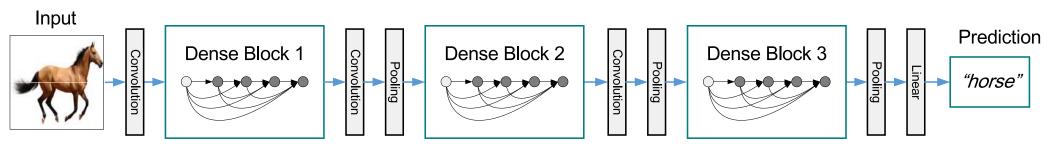


Figure 2 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

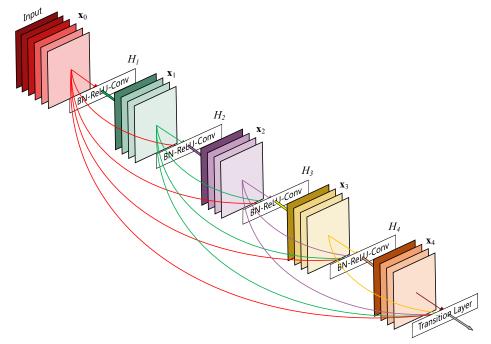


Figure 1 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

#### DenseNet - Architecture



The initial convolution generates 64 channels, each  $1 \times 1$  convolution in dense block 256, each  $3 \times 3$  convolution in dense block 32, and the transition layer reduces the number of channels in the initial convolution by half.

| Layers           | Output Size    | DenseNet-121                                                                | DenseNet-169                                                                    | DenseNet-201                                                                    | DenseNet-264                                                                     |  |  |  |
|------------------|----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
| Convolution      | 112 × 112      |                                                                             | $7 \times 7$ conv, stride 2                                                     |                                                                                 |                                                                                  |  |  |  |
| Pooling          | 56 × 56        |                                                                             | $3 \times 3$ max pool, stride 2                                                 |                                                                                 |                                                                                  |  |  |  |
| Dense Block      | 56 × 56        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$   | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$       | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$       | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$        |  |  |  |
| (1)              | 30 × 30        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$          | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$              | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$              | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$               |  |  |  |
| Transition Layer | 56 × 56        |                                                                             | $1 \times 1$                                                                    | conv                                                                            |                                                                                  |  |  |  |
| (1)              | $28 \times 28$ |                                                                             | $2 \times 2$ average                                                            | e pool, stride 2                                                                |                                                                                  |  |  |  |
| Dense Block      | 28 	imes 28    | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$      | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$      | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix}$           |  |  |  |
| (2)              | 26 × 26        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$               | $\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{\times 12}$ | $\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{\times 12}$ | $\left[\begin{array}{c c} 3 \times 3 \text{ conv} \end{array}\right]^{-12}$      |  |  |  |
| Transition Layer | $28 \times 28$ |                                                                             | $1 \times 1$                                                                    | conv                                                                            |                                                                                  |  |  |  |
| (2)              | $14 \times 14$ |                                                                             | $2 \times 2$ average                                                            | e pool, stride 2                                                                |                                                                                  |  |  |  |
| Dense Block      | $14 \times 14$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 24 \end{bmatrix} \times 24$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$     | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 48$      | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 64 \end{bmatrix}$           |  |  |  |
| (3)              | 14 \ 14        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$                | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$                         | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$                    | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$                          |  |  |  |
| Transition Layer | $14 \times 14$ |                                                                             | $1 \times 1$                                                                    | conv                                                                            |                                                                                  |  |  |  |
| (3)              | 7 × 7          |                                                                             | $2 \times 2$ average                                                            | e pool, stride 2                                                                |                                                                                  |  |  |  |
| Dense Block      | 7 × 7          | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$     | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$               | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix} \times 48$ |  |  |  |
| (4)              |                | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$                     | $\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{32}$        | $\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{32}$        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$                      |  |  |  |
| Classification   | 1 × 1          |                                                                             | $7 \times 7$ global average pool                                                |                                                                                 |                                                                                  |  |  |  |
| Layer            |                |                                                                             | 1000D fully-cor                                                                 | nnected, softmax                                                                |                                                                                  |  |  |  |

Table 1 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

### DenseNet - Results



| Method                            | Depth | Params | C10    | C10+ | C100   | C100+ | SVHN |
|-----------------------------------|-------|--------|--------|------|--------|-------|------|
| Network in Network [22]           | -     | -      | 10.41  | 8.81 | 35.68  | -     | 2.35 |
| All-CNN [32]                      | -     | -      | 9.08   | 7.25 | -      | 33.71 | -    |
| Deeply Supervised Net [20]        | -     | -      | 9.69   | 7.97 | -      | 34.57 | 1.92 |
| Highway Network [34]              | -     | -      | -      | 7.72 | -      | 32.39 | -    |
| FractalNet [17]                   | 21    | 38.6M  | 10.18  | 5.22 | 35.34  | 23.30 | 2.01 |
| with Dropout/Drop-path            | 21    | 38.6M  | 7.33   | 4.60 | 28.20  | 23.73 | 1.87 |
| ResNet [11]                       | 110   | 1.7M   | -      | 6.61 | -      | -     | -    |
| ResNet (reported by [13])         | 110   | 1.7M   | 13.63  | 6.41 | 44.74  | 27.22 | 2.01 |
| ResNet with Stochastic Depth [13] | 110   | 1.7M   | 11.66  | 5.23 | 37.80  | 24.58 | 1.75 |
|                                   | 1202  | 10.2M  | -      | 4.91 | -      | -     | -    |
| Wide ResNet [42]                  | 16    | 11.0M  | -      | 4.81 | -      | 22.07 | -    |
|                                   | 28    | 36.5M  | -      | 4.17 | -      | 20.50 | _    |
| with Dropout                      | 16    | 2.7M   | -      | -    | -      | -     | 1.64 |
| ResNet (pre-activation) [12]      | 164   | 1.7M   | 11.26* | 5.46 | 35.58* | 24.33 | -    |
|                                   | 1001  | 10.2M  | 10.56* | 4.62 | 33.47* | 22.71 | -    |
| DenseNet $(k = 12)$               | 40    | 1.0M   | 7.00   | 5.24 | 27.55  | 24.42 | 1.79 |
| DenseNet $(k = 12)$               | 100   | 7.0M   | 5.77   | 4.10 | 23.79  | 20.20 | 1.67 |
| DenseNet $(k = 24)$               | 100   | 27.2M  | 5.83   | 3.74 | 23.42  | 19.25 | 1.59 |
| DenseNet-BC $(k = 12)$            | 100   | 0.8M   | 5.92   | 4.51 | 24.15  | 22.27 | 1.76 |
| DenseNet-BC $(k = 24)$            | 250   | 15.3M  | 5.19   | 3.62 | 19.64  | 17.60 | 1.74 |
| DenseNet-BC $(k = 40)$            | 190   | 25.6M  | -      | 3.46 | _      | 17.18 | -    |

Table 2 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

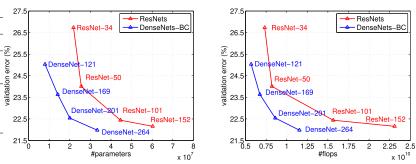


Figure 3 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

# **PyramidNet**



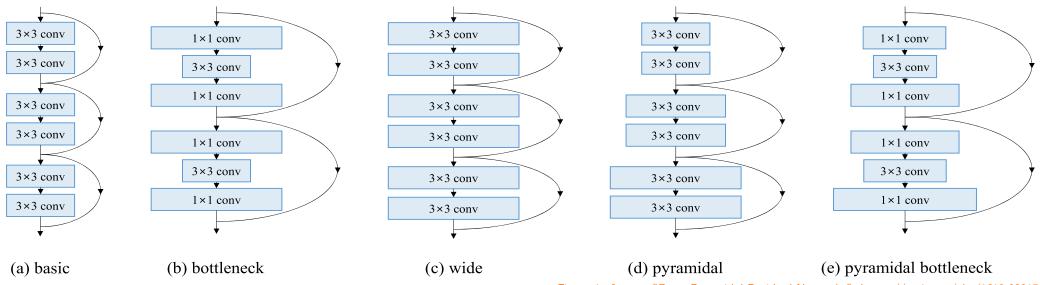


Figure 1 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

### PyramidNet – Growth Rate



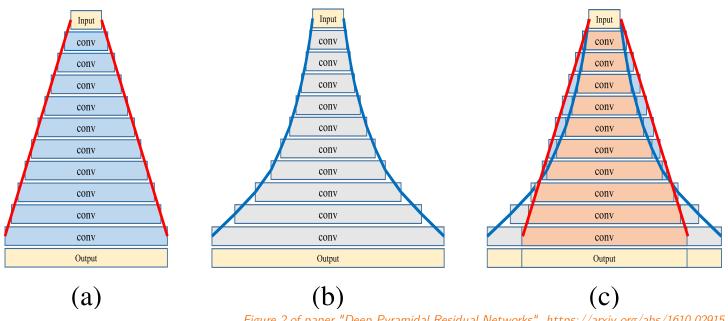


Figure 2 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

In architectures up until now, number of filters doubled when spacial resolution was halved.

Such exponential growth would suggest gradual widening rule  $D_k = |D_{k-1} \cdot lpha^{1/N}|$  .

However, the authors employ a linear widening rule  $D_k = |D_{k-1} + lpha/N|$ , where  $D_k$  is number of filters in the k-th out of N convolutional block and lpha is number of filters to add in total.

### **PyramidNet – Residual Connections**



No residual connection can be a real identity – the authors propose to zero-pad missing channels, where the zero-pad channels correspond to newly computed features.

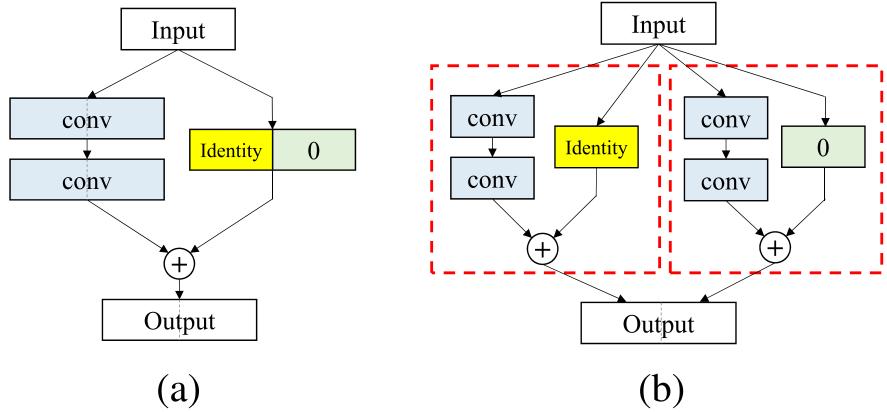


Figure 5 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

# PyramidNet – CIFAR Results



| Network                                  | # of Params | Output Feat. Dim. | Depth | Training Mem. | CIFAR-10          | CIFAR-100        |
|------------------------------------------|-------------|-------------------|-------|---------------|-------------------|------------------|
| NiN [18]                                 | -           | -                 | -     | -             | 8.81              | 35.68            |
| All-CNN [27]                             | _           | -                 | -     | -             | 7.25              | 33.71            |
| DSN [17]                                 | _           | -                 | -     | -             | 7.97              | 34.57            |
| FitNet [21]                              | _           | -                 | -     | -             | 8.39              | 35.04            |
| Highway [29]                             | _           | -                 | -     | -             | 7.72              | 32.39            |
| Fractional Max-pooling [4]               | _           | -                 | -     | -             | 4.50              | 27.62            |
| ELU [29]                                 | -           | -                 | -     | -             | 6.55              | 24.28            |
| ResNet [7]                               | 1.7M        | 64                | 110   | 547MB         | 6.43              | 25.16            |
| ResNet [7]                               | 10.2M       | 64                | 1001  | 2,921MB       | -                 | 27.82            |
| ResNet [7]                               | 19.4M       | 64                | 1202  | 2,069MB       | 7.93              | -                |
| Pre-activation ResNet [8]                | 1.7M        | 64                | 164   | 841MB         | 5.46              | 24.33            |
| Pre-activation ResNet [8]                | 10.2M       | 64                | 1001  | 2,921MB       | 4.62              | 22.71            |
| Stochastic Depth [10]                    | 1.7M        | 64                | 110   | 547MB         | 5.23              | 24.58            |
| Stochastic Depth [10]                    | 10.2M       | 64                | 1202  | 2,069MB       | 4.91              | -                |
| FractalNet [14]                          | 38.6M       | 1,024             | 21    | -             | 4.60              | 23.73            |
| SwapOut v2 (width×4) [26]                | 7.4M        | 256               | 32    | -             | 4.76              | 22.72            |
| Wide ResNet (width×4) [34]               | 8.7M        | 256               | 40    | 775MB         | 4.97              | 22.89            |
| Wide ResNet (width $\times$ 10) [34]     | 36.5M       | 640               | 28    | 1,383MB       | 4.17              | 20.50            |
| Weighted ResNet [24]                     | 19.1M       | 64                | 1192  | -             | 5.10              | -                |
| DenseNet $(k = 24)$ [9]                  | 27.2M       | 2,352             | 100   | 4,381MB       | 3.74              | 19.25            |
| DenseNet-BC $(k = 40)$ [9]               | 25.6M       | 2,190             | 190   | 7,247MB       | 3.46              | 17.18            |
| PyramidNet ( $\alpha = 48$ )             | 1.7M        | 64                | 110   | 655MB         | $4.58\pm0.06$     | 23.12±0.04       |
| PyramidNet ( $\alpha = 84$ )             | 3.8M        | 100               | 110   | 781MB         | $4.26\pm0.23$     | $20.66\pm0.40$   |
| PyramidNet ( $\alpha = 270$ )            | 28.3M       | 286               | 110   | 1,437MB       | $3.73\pm0.04$     | $18.25 \pm 0.10$ |
| PyramidNet (bottleneck, $\alpha = 270$ ) | 27.0M       | 1,144             | 164   | 4,169MB       | $3.48\pm0.20$     | $17.01\pm0.39$   |
| PyramidNet (bottleneck, $\alpha = 240$ ) | 26.6M       | 1,024             | 200   | 4,451MB       | $3.44\pm0.11$     | $16.51\pm0.13$   |
| PyramidNet (bottleneck, $\alpha = 220$ ) | 26.8M       | 944               | 236   | 4,767MB       | $3.40\pm0.07$     | $16.37\pm0.29$   |
| PyramidNet (bottleneck, $\alpha = 200$ ) | 26.0M       | 864               | 272   | 5,005MB       | <b>3.31</b> ±0.08 | $16.35 \pm 0.24$ |

| Group    | Output size | Building Block                                                                                                                                |  |  |  |  |  |
|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| conv 1   | 32×32       | $[3 \times 3, 16]$                                                                                                                            |  |  |  |  |  |
| conv 2   | 32×32       | $\begin{bmatrix} 3 \times 3, \lfloor 16 + \alpha(k-1)/N \rfloor \\ 3 \times 3, \lfloor 16 + \alpha(k-1)/N \rfloor \end{bmatrix} \times N_2$   |  |  |  |  |  |
| conv 3   | 16×16       | $ \begin{bmatrix} 3 \times 3, \lfloor 16 + \alpha(k-1)/N \rfloor \\ 3 \times 3, \lfloor 16 + \alpha(k-1)/N \rfloor \end{bmatrix} \times N_3 $ |  |  |  |  |  |
| conv 4   | 8×8         | $ \begin{bmatrix} 3 \times 3, \lfloor 16 + \alpha(k-1)/N \rfloor \\ 3 \times 3, \lfloor 16 + \alpha(k-1)/N \rfloor \end{bmatrix} \times N_4 $ |  |  |  |  |  |
| avg pool | 1×1         | $[8 \times 8, 16 + \alpha]$                                                                                                                   |  |  |  |  |  |

Table 1 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

Table 4 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

# PyramidNet – ImageNet Results



| Network                            | # of Params | Output Feat. Dim. | Augmentation    | Train Crop       | Test Crop        | Top-1 | Top-5 |
|------------------------------------|-------------|-------------------|-----------------|------------------|------------------|-------|-------|
| ResNet-152 [7]                     | 60.0M       | 2,048             | scale           | 224×224          | 224×224          | 23.0  | 6.7   |
| Pre-ResNet-152 <sup>†</sup> [8]    | 60.0M       | 2,048             | scale+asp ratio | $224 \times 224$ | 224×224          | 22.2  | 6.2   |
| Pre-ResNet-200 <sup>†</sup> [8]    | 64.5M       | 2,048             | scale+asp ratio | $224 \times 224$ | $224 \times 224$ | 21.7  | 5.8   |
| WRN-50-2-bottleneck [34]           | 68.9M       | 2,048             | scale+asp ratio | $224 \times 224$ | $224 \times 224$ | 21.9  | 6.0   |
| PyramidNet-200 ( $\alpha = 300$ )  | 62.1M       | 1,456             | scale+asp ratio | $224 \times 224$ | $224 \times 224$ | 20.5  | 5.3   |
| PyramidNet-200 ( $\alpha = 300$ )* | 62.1M       | 1,456             | scale+asp ratio | $224 \times 224$ | $224 \times 224$ | 20.5  | 5.4   |
| PyramidNet-200 ( $\alpha = 450$ )* | 116.4M      | 2,056             | scale+asp ratio | $224 \times 224$ | $224 \times 224$ | 20.1  | 5.4   |
| ResNet-200 [7]                     | 64.5M       | 2,048             | scale           | 224×224          | 320×320          | 21.8  | 6.0   |
| Pre-ResNet-200 [8]                 | 64.5M       | 2,048             | scale+asp ratio | $224 \times 224$ | $320 \times 320$ | 20.1  | 4.8   |
| Inception-v3 [32]                  | -           | 2,048             | scale+asp ratio | 299×299          | 299×299          | 21.2  | 5.6   |
| Inception-ResNet-v1 [30]           | -           | 1,792             | scale+asp ratio | 299×299          | 299×299          | 21.3  | 5.5   |
| Inception-v4 [30]                  | -           | 1,536             | scale+asp ratio | 299×299          | 299×299          | 20.0  | 5.0   |
| Inception-ResNet-v2 [30]           | -           | 1,792             | scale+asp ratio | 299×299          | 299×299          | 19.9  | 4.9   |
| PyramidNet-200 ( $\alpha = 300$ )  | 62.1M       | 1,456             | scale+asp ratio | $224 \times 224$ | $320 \times 320$ | 19.6  | 4.8   |
| PyramidNet-200 ( $\alpha = 300$ )* | 62.1M       | 1,456             | scale+asp ratio | $224 \times 224$ | $320 \times 320$ | 19.5  | 4.8   |
| PyramidNet-200 ( $\alpha = 450$ )* | 116.4M      | 2,056             | scale+asp ratio | $224 \times 224$ | $320 \times 320$ | 19.2  | 4.7   |

Table 5 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915



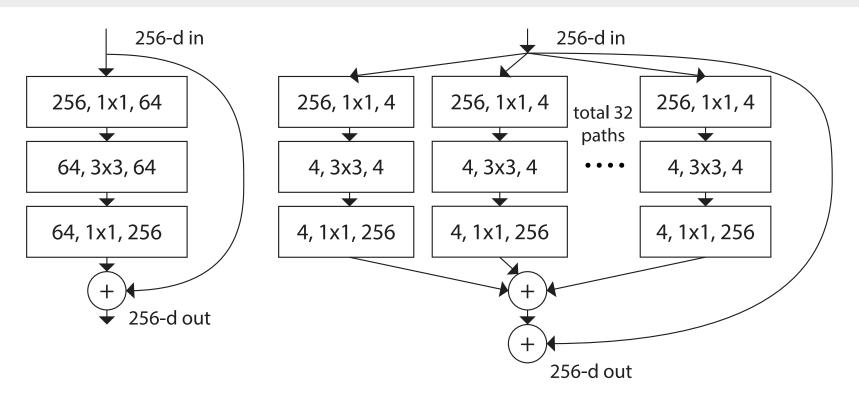


Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

Figure 1 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431



| stage | output              | ResNet-50                                       |                     | <b>ResNeXt-50</b> (32×4d)                              |            |  |
|-------|---------------------|-------------------------------------------------|---------------------|--------------------------------------------------------|------------|--|
| conv1 | 112×112             | 7×7, 64, stride                                 | 2                   | 7×7, 64, stride 2                                      |            |  |
|       |                     | $3\times3$ max pool, st                         | ride 2              | 3×3 max pool, stride                                   | 2          |  |
| conv2 | 56×56               | [ 1×1, 64 ]                                     |                     | [ 1×1, 128 ]                                           |            |  |
| COHVZ | 30 × 30             | $3\times3,64$                                   | $\times 3$          | 3×3, 128, <i>C</i> =32                                 | $\times 3$ |  |
|       |                     | $[1\times1,256]$                                |                     | $\begin{bmatrix} 1 \times 1, 256 \end{bmatrix}$        |            |  |
|       |                     | $\begin{bmatrix} 1 \times 1, 128 \end{bmatrix}$ |                     | $\begin{bmatrix} 1 \times 1, 256 \end{bmatrix}$        |            |  |
| conv3 | $28 \times 28$      | 3×3, 128                                        | $\times 4$          | 3×3, 256, <i>C</i> =32                                 | $\times 4$ |  |
|       |                     | $\begin{bmatrix} 1 \times 1,512 \end{bmatrix}$  |                     | $\left[\begin{array}{c}1\times1,512\end{array}\right]$ |            |  |
|       |                     | 1×1, 256                                        |                     | [ 1×1,512 ]                                            |            |  |
| conv4 | $14 \times 14$      | $3 \times 3,256$                                | ×6                  | $3 \times 3, 512, C=32$                                | ×6         |  |
|       |                     | $1 \times 1,1024$                               |                     | $\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$       |            |  |
|       |                     | $1 \times 1,512$                                |                     | 1×1, 1024                                              |            |  |
| conv5 | 7×7                 | $3 \times 3,512$                                | ×3                  | $3 \times 3, 1024, C=32$                               | ×3         |  |
|       |                     | $1 \times 1,2048$                               |                     | 1×1, 2048                                              |            |  |
|       | global average pool |                                                 | global average pool |                                                        |            |  |
|       | 1×1                 | 1000-d fc, softr                                | nax                 | 1000-d fc, softmax                                     |            |  |
| # pa  | arams.              | rams. <b>25.5</b> × $10^6$ <b>25.0</b> × $10^6$ |                     | $25.0 \times 10^6$                                     |            |  |
| FI    | LOPs                | <b>4.1</b> $\times 10^9$                        |                     | <b>4.2</b> ×10 <sup>9</sup>                            |            |  |

Table 1 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431



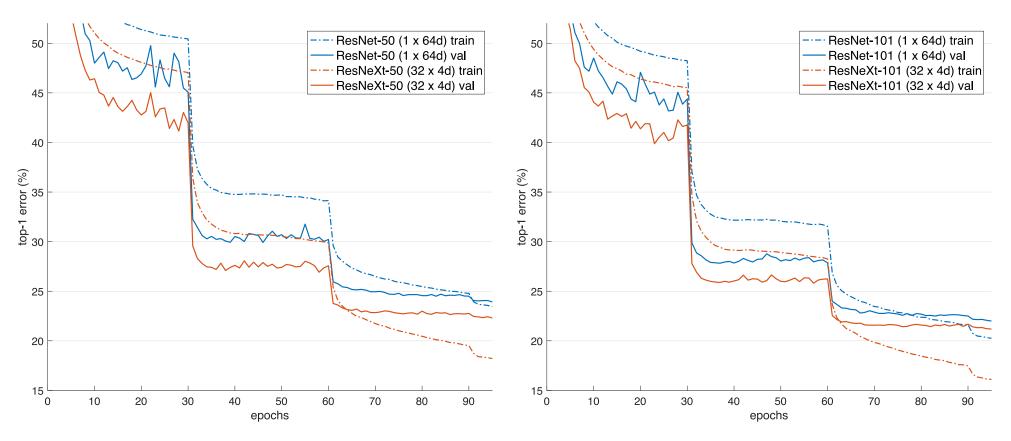


Figure 5. Training curves on ImageNet-1K. (**Left**): ResNet/ResNeXt-50 with preserved complexity ( $\sim$ 4.1 billion FLOPs,  $\sim$ 25 million parameters); (**Right**): ResNet/ResNeXt-101 with preserved complexity ( $\sim$ 7.8 billion FLOPs,  $\sim$ 44 million parameters).

Figure 5 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431



|             | setting        | top-1 error (%) |
|-------------|----------------|-----------------|
| ResNet-50   | 1 × 64d        | 23.9            |
| ResNeXt-50  | $2 \times 40d$ | 23.0            |
| ResNeXt-50  | $4 \times 24d$ | 22.6            |
| ResNeXt-50  | $8 \times 14d$ | 22.3            |
| ResNeXt-50  | $32 \times 4d$ | 22.2            |
| ResNet-101  | 1 × 64d        | 22.0            |
| ResNeXt-101 | $2 \times 40d$ | 21.7            |
| ResNeXt-101 | $4 \times 24d$ | 21.4            |
| ResNeXt-101 | $8 \times 14d$ | 21.3            |
| ResNeXt-101 | $32 \times 4d$ | 21.2            |

Table 3 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

|                           | setting          | top-1 err (%) | top-5 err (%) |  |  |  |  |  |
|---------------------------|------------------|---------------|---------------|--|--|--|--|--|
| 1× complexity references: |                  |               |               |  |  |  |  |  |
| ResNet-101                | 1 × 64d          | 22.0          | 6.0           |  |  |  |  |  |
| ResNeXt-101               | $32 \times 4d$   | 21.2          | 5.6           |  |  |  |  |  |
| 2× complexity mode        | els follow:      |               |               |  |  |  |  |  |
| ResNet-200 [15]           | 1 × 64d          | 21.7          | 5.8           |  |  |  |  |  |
| ResNet-101, wider         | 1 × <b>100</b> d | 21.3          | 5.7           |  |  |  |  |  |
| ResNeXt-101               | <b>2</b> × 64d   | 20.7          | 5.5           |  |  |  |  |  |
| ResNeXt-101               | <b>64</b> × 4d   | 20.4          | 5.3           |  |  |  |  |  |

Table 4 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

|                                                         | 224>      | <224      | 320×320 / 299×299 |           |  |
|---------------------------------------------------------|-----------|-----------|-------------------|-----------|--|
|                                                         | top-1 err | top-5 err | top-1 err         | top-5 err |  |
| ResNet-101 [14]                                         | 22.0      | 6.0       | -                 | -         |  |
| ResNet-200 [15]                                         | 21.7      | 5.8       | 20.1              | 4.8       |  |
| Inception-v3 [39]                                       | -         | -         | 21.2              | 5.6       |  |
| Inception-v4 [37]                                       | -         | -         | 20.0              | 5.0       |  |
| Inception-ResNet-v2 [37]                                | _         | -         | 19.9              | 4.9       |  |
| $\overline{\text{ResNeXt-101} (64 \times \mathbf{4d})}$ | 20.4      | 5.3       | 19.1              | 4.4       |  |

Table 5 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

NPFL114, Lecture 5

Refresh

ResNetModifications

CNNRegularization

EfficientNet

TransferLearning

TransposedConvolution

### Deep Networks with Stochastic Depth



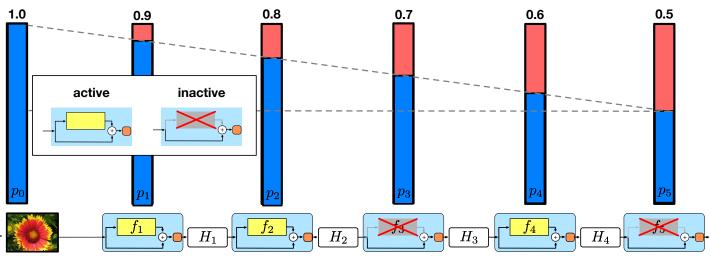


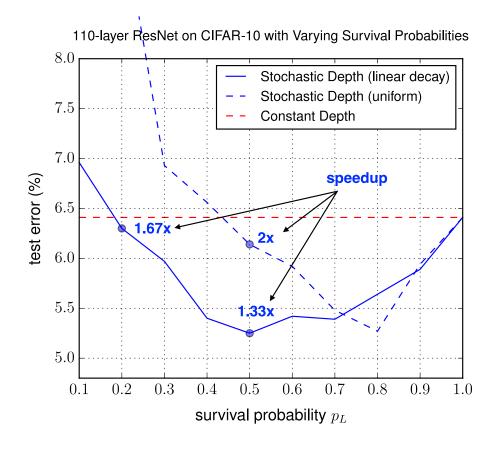
Figure 2 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

We drop a whole block (but not the residual connection) with probability  $1 - p_l$ . During inference, we multiply the block output by  $p_l$  to compensate.

All  $p_l$  can be set to a constant, but more effective is to use a simple linear decay  $p_l=1-l/L(1-p_L)$  where  $p_L$  is the final probability of the last layer, motivated by the intuition that the initial blocks extract low-level features utilized by the later layers and should therefore be present.

### Deep Networks with Stochastic Depth





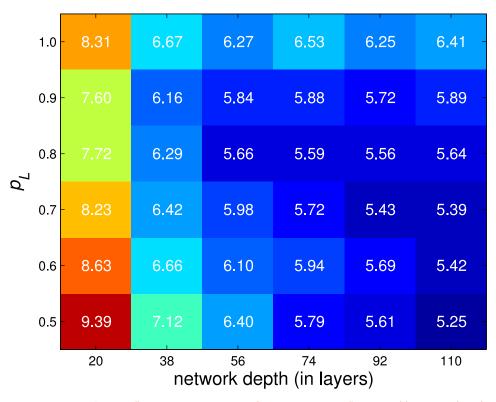


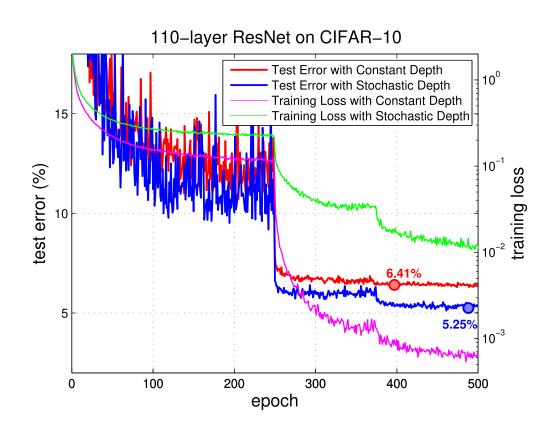
Figure 8 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

According to the ablation experiments, linear decay with  $p_L=0.5$  was selected.

NPFL114, Lecture 5

### Deep Networks with Stochastic Depth





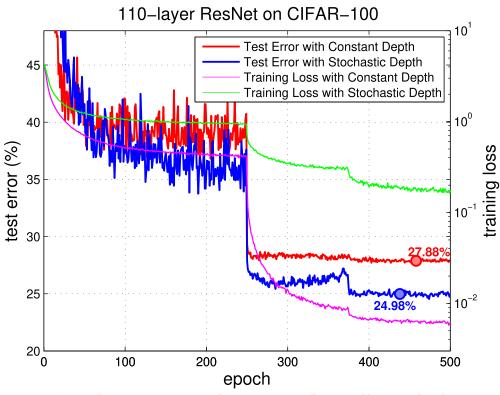


Figure 3 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

#### Cutout





Figure 1 of paper "Improved Regularization of Convolutional Neural Networks with Cutout", https://arxiv.org/abs/1708.04552

Drop 16 imes 16 square in the input image, with randomly chosen center. The pixels are replaced by a their mean value from the dataset.

NPFL114, Lecture 5

# Cutout



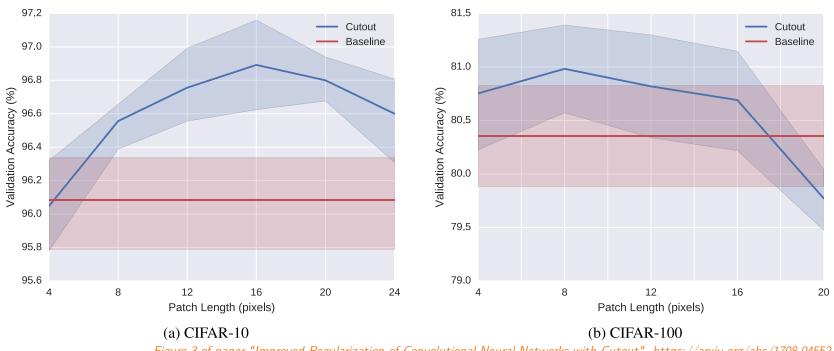


Figure 3 of paper "Improved Regularization of Convolutional Neural Networks with Cutout", https://arxiv.org/abs/1708.04552

| Method                              | C10              | C10+                         | C100             | C100+            | SVHN            |
|-------------------------------------|------------------|------------------------------|------------------|------------------|-----------------|
| ResNet18 [5]                        | $10.63 \pm 0.26$ | $4.72 \pm 0.21$              | $36.68 \pm 0.57$ | $22.46 \pm 0.31$ | -               |
| ResNet18 + cutout                   | $9.31 \pm 0.18$  | $3.99 \pm 0.13$              | $34.98 \pm 0.29$ | $21.96 \pm 0.24$ | -               |
| WideResNet [22]                     | $6.97 \pm 0.22$  | $3.87 \pm 0.08$              | $26.06 \pm 0.22$ | $18.8 \pm 0.08$  | $1.60 \pm 0.05$ |
| WideResNet + cutout                 | $5.54 \pm 0.08$  | $3.08 \pm 0.16$              | $23.94 \pm 0.15$ | $18.41 \pm 0.27$ | $1.30 \pm 0.03$ |
| Shake-shake regularization [4]      | -                | 2.86                         | -                | 15.85            | -               |
| Shake-shake regularization + cutout | _                | $\boldsymbol{2.56 \pm 0.07}$ | -                | $15.20 \pm 0.21$ | _               |

Table 1 of paper "Improved Regularization of Convolutional Neural Networks with Cutout", https://arxiv.org/abs/1708.04552



Dropout drops individual values, SpatialDropout drops whole channels, DropBlock drops rectangular areas independently in every channel.

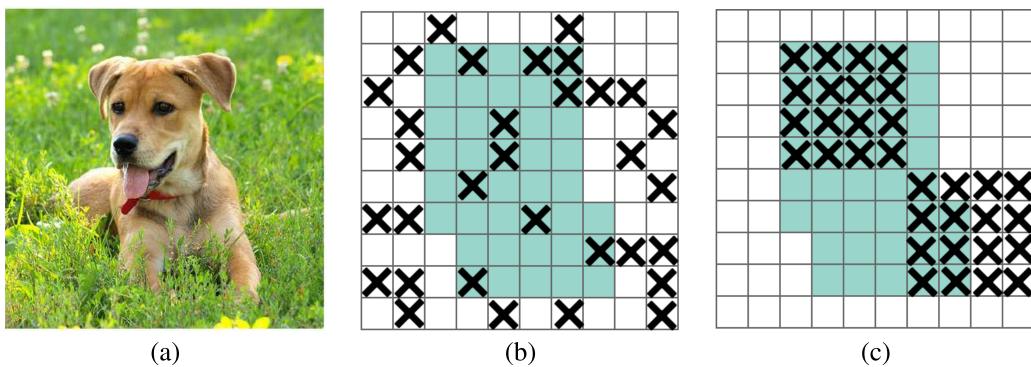


Figure 1 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890



#### **Algorithm 1** DropBlock

- 1: **Input:** output activations of a layer (A),  $block\_size$ ,  $\gamma$ , mode
- 2: **if** mode == Inference **then**
- 3: return A
- **4: end if**
- 5: Randomly sample mask  $M: M_{i,j} \sim Bernoulli(\gamma)$
- 6: For each zero position  $M_{i,j}$ , create a spatial square mask with the center being  $M_{i,j}$ , the width, height being  $block\_size$  and set all the values of M in the square to be zero (see Figure 2).
- 7: Apply the mask:  $A = A \times M$
- 8: Normalize the features:  $A = A \times \mathbf{count}(M)/\mathbf{count\_ones}(M)$

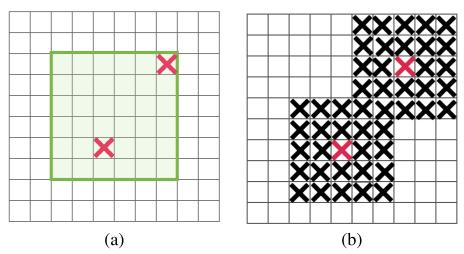


Figure 2 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890



The authors have chosen block size=7 and also employ linear schedule of the keep probability, which starts at 1 and linearly decays until the target value is reached at the end of training.

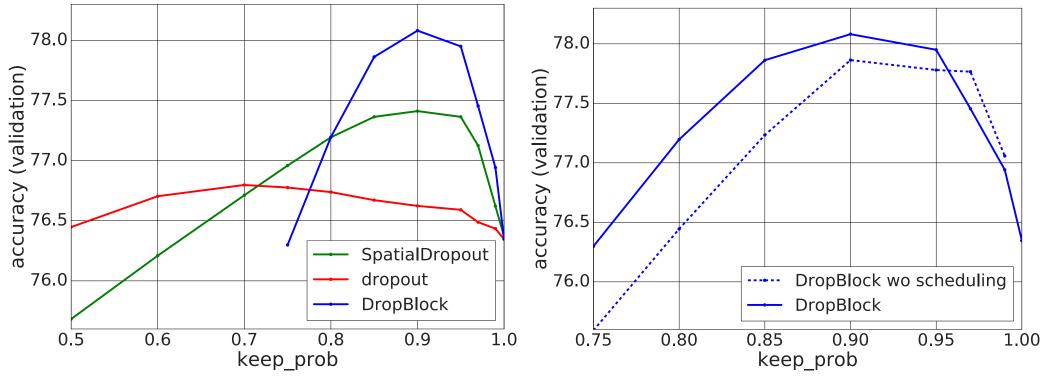


Figure 3 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890



| Model                                                  | top-1(%)         | top-5(%)         |
|--------------------------------------------------------|------------------|------------------|
| ResNet-50                                              | $76.51 \pm 0.07$ | $93.20 \pm 0.05$ |
| ResNet-50 + dropout (kp=0.7) [1]                       | $76.80 \pm 0.04$ | $93.41 \pm 0.04$ |
| ResNet-50 + DropPath (kp=0.9) [17]                     | $77.10 \pm 0.08$ | $93.50 \pm 0.05$ |
| ResNet-50 + SpatialDropout (kp=0.9) [20]               | $77.41 \pm 0.04$ | $93.74 \pm 0.02$ |
| ResNet-50 + Cutout [23]                                | $76.52 \pm 0.07$ | $93.21 \pm 0.04$ |
| ResNet-50 + AutoAugment [27]                           | 77.63            | 93.82            |
| ResNet-50 + label smoothing (0.1) [28]                 | $77.17 \pm 0.05$ | $93.45 \pm 0.03$ |
| ResNet-50 + DropBlock, (kp=0.9)                        | $78.13 \pm 0.05$ | $94.02 \pm 0.02$ |
| ResNet-50 + DropBlock (kp=0.9) + label smoothing (0.1) | $78.35 \pm 0.05$ | $94.15 \pm 0.03$ |

Table 1 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890

# **Squeeze and Excitation**



The ILSVRC 2017 winner was SENet, Squeeze and Excitation Network, which augments existing architectures by a squeeze and excitation block.

- squeeze (global information embedding) computes the average value of every channel
- excitation (adaptive recalibration) computes a weight for every channel using a sigmoid activation function and multiplies the corresponding channel with it

Figure 1 of paper "Squeeze-and-Excitation Networks", https://arxiv.org/abs/1709.01507

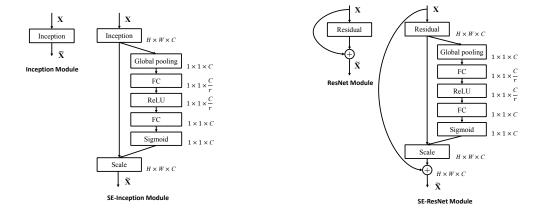


Fig. 2. The schema of the original Inception module (left) and the SE-Inception module (right).

Fig. 3. The schema of the original Residual module (left) and the SE-ResNet module (right).

Figure 2 of paper "Squeeze-and-Excitation Networks", https://arxiv.org/abs/1709.01507

To not increase the number of parameters too much (by  $C^2$ ), a an additional small hidden layer with C/16 neurons is employed.

### Mobile Inverted Bottleneck Convolution



When designing convolutional neural networks for mobile phones, the following mobile inverted bottleneck block was proposed.

- Regular convolution is replaced by separable convolution, which consists of
  - a depthwise separable convolution (for example  $3 \times 3$ ) acting on each channel separately (which reduces time

(a) Residual block

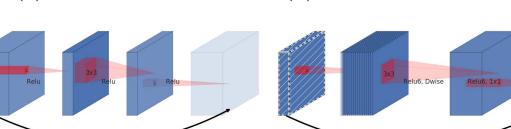


Figure 3 of paper "MobileNetV2: Inverted Residuals and Linear Bottlenecks" https://arxiv.org/abs/1801.04381

(b) Inverted residual block

- and space complexity of a regular convolution by a factor equal to the number of channels)
- a 1 imes 1 convolution acting on each position independently (which reduces time and space complexity of a regular convolution by a factor of  $3 \cdot 3$ )
- The residual connections connect bottlenecks (layers with least channels)
- There is no non-linear activation on the bottlenecks (it would lead to loss of information given small capacity of bottlenecks)

### Mobile Inverted Bottleneck Convolution



The mobile inverted bottleneck convolution is denoted for example as  $MBConv6\ k3x3$ , where the 6 denotes expansion factor after the bottleneck and  $3\times3$  is the kernel size of the separable convolution.

Furthermore, mobile inverted bottleneck convolution can be augmented with squeeze and excitation blocks.

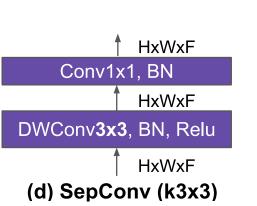


Figure 7 of paper "MnasNet: Platform-Aware Neural Architecture Search for Mobile", https://arxiv.org/abs/1807.11626

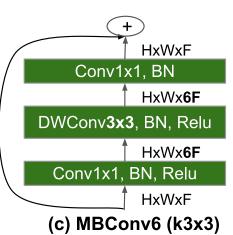


Figure 7 of paper "MnasNet: Platform-Aware Neural Architecture Search for Mobile", https://arxiv.org/abs/1807.11626

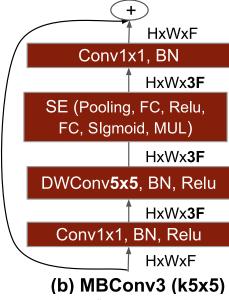


Figure 7 of paper "MnasNet: Platform-Aware Neural Architecture Search for Mobile", https://arxiv.org/abs/1807.11626

#### **EfficientNet**



As far as I know, the currently best architecture (as of Jan 2020) for image recognition is *EfficientNet*.

The EfficientNet architecture was created using a multi-objective neural architecture search that optimized both accuracy and computation complexity.

The resulting network is denoted as **EfficientNet-B0** baseline network.

It was trained using RMSProp with decay 0.9 and momentum 0.9, weight decay 1e-5 and initial learning rate 0.256 decayed by 0.97 every

| Stage i | Operator $\hat{\mathcal{F}}_i$ | Resolution $\hat{H}_i \times \hat{W}_i$ | #Channels $\hat{C}_i$ | $\hat{L}_i$ |
|---------|--------------------------------|-----------------------------------------|-----------------------|-------------|
| 1       | Conv3x3                        | $224 \times 224$                        | 32                    | 1           |
| 2       | MBConv1, k3x3                  | $112 \times 112$                        | 16                    | 1           |
| 3       | MBConv6, k3x3                  | $112 \times 112$                        | 24                    | 2           |
| 4       | MBConv6, k5x5                  | $56 \times 56$                          | 40                    | 2           |
| 5       | MBConv6, k3x3                  | $28 \times 28$                          | 80                    | 3           |
| 6       | MBConv6, k5x5                  | $14 \times 14$                          | 112                   | 3           |
| 7       | MBConv6, k5x5                  | $14 \times 14$                          | 192                   | 4           |
| 8       | MBConv6, k3x3                  | 7 	imes 7                               | 320                   | 1           |
| 9       | Conv1x1 & Pooling & FC         | $7 \times 7$                            | 1280                  | 1           |

Table 1 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946

2.4 epochs. Dropout with dropout rate 0.2 is used on the last layer, stochastic depth with survival probability 0.8 is employed, and  $\mathrm{swish}(\boldsymbol{x}) \stackrel{\text{def}}{=} \boldsymbol{x} \cdot \sigma(\boldsymbol{x})$  activation function is utilized.

### **EfficientNet – Compound Scaling**



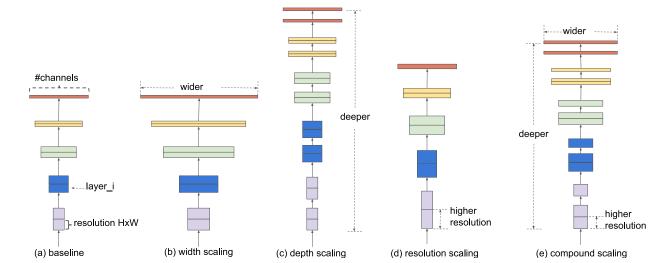


Figure 2 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946

To effectively scale the network, the authors propose a simultaneous increase of three qualities:

- width, which is the number of channels;
- depth, which is the number of layers;
- resolution, which is the input image resolution.

By a grid search on a network with double computation complexity, the best trade-off of scaling width by 1.1, depth by 1.2 and resolution by 1.15 was found  $(1.1^2 \cdot 1.2 \cdot 1.15^2 \approx 2)$ .

# **EfficientNet – Results**



| Model                                      | Top-1 Acc. | Top-5 Acc. | #Params | Ratio-to-EfficientNet | #FLOPS | Ratio-to-EfficientNet |
|--------------------------------------------|------------|------------|---------|-----------------------|--------|-----------------------|
| EfficientNet-B0                            | 77.3%      | 93.5%      | 5.3M    | 1x                    | 0.39B  | 1x                    |
| ResNet-50 (He et al., 2016)                | 76.0%      | 93.0%      | 26M     | 4.9x                  | 4.1B   | 11x                   |
| DenseNet-169 (Huang et al., 2017)          | 76.2%      | 93.2%      | 14M     | 2.6x                  | 3.5B   | 8.9x                  |
| EfficientNet-B1                            | 79.2%      | 94.5%      | 7.8M    | 1x                    | 0.70B  | 1x                    |
| ResNet-152 (He et al., 2016)               | 77.8%      | 93.8%      | 60M     | 7.6x                  | 11B    | 16x                   |
| DenseNet-264 (Huang et al., 2017)          | 77.9%      | 93.9%      | 34M     | 4.3x                  | 6.0B   | 8.6x                  |
| Inception-v3 (Szegedy et al., 2016)        | 78.8%      | 94.4%      | 24M     | 3.0x                  | 5.7B   | 8.1x                  |
| Xception (Chollet, 2017)                   | 79.0%      | 94.5%      | 23M     | 3.0x                  | 8.4B   | 12x                   |
| EfficientNet-B2                            | 80.3%      | 95.0%      | 9.2M    | 1x                    | 1.0B   | 1x                    |
| Inception-v4 (Szegedy et al., 2017)        | 80.0%      | 95.0%      | 48M     | 5.2x                  | 13B    | 13x                   |
| Inception-resnet-v2 (Szegedy et al., 2017) | 80.1%      | 95.1%      | 56M     | 6.1x                  | 13B    | 13x                   |
| EfficientNet-B3                            | 81.7%      | 95.6%      | 12M     | 1x                    | 1.8B   | 1x                    |
| ResNeXt-101 (Xie et al., 2017)             | 80.9%      | 95.6%      | 84M     | 7.0x                  | 32B    | 18x                   |
| PolyNet (Zhang et al., 2017)               | 81.3%      | 95.8%      | 92M     | 7.7x                  | 35B    | 19x                   |
| EfficientNet-B4                            | 83.0%      | 96.3%      | 19M     | 1x                    | 4.2B   | 1x                    |
| SENet (Hu et al., 2018)                    | 82.7%      | 96.2%      | 146M    | 7.7x                  | 42B    | 10x                   |
| NASNet-A (Zoph et al., 2018)               | 82.7%      | 96.2%      | 89M     | 4.7x                  | 24B    | 5.7x                  |
| AmoebaNet-A (Real et al., 2019)            | 82.8%      | 96.1%      | 87M     | 4.6x                  | 23B    | 5.5x                  |
| PNASNet (Liu et al., 2018)                 | 82.9%      | 96.2%      | 86M     | 4.5x                  | 23B    | 6.0x                  |
| EfficientNet-B5                            | 83.7%      | 96.7%      | 30M     | 1x                    | 9.9B   | 1x                    |
| AmoebaNet-C (Cubuk et al., 2019)           | 83.5%      | 96.5%      | 155M    | 5.2x                  | 41B    | 4.1x                  |
| EfficientNet-B6                            | 84.2%      | 96.8%      | 43M     | 1x                    | 19B    | 1x                    |
| EfficientNet-B7                            | 84.4%      | 97.1%      | 66M     | 1x                    | 37B    | 1x                    |
| GPipe (Huang et al., 2018)                 | 84.3%      | 97.0%      | 557M    | 8.4x                  | -      | -                     |

Table 2 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946

### EfficientNet - Results



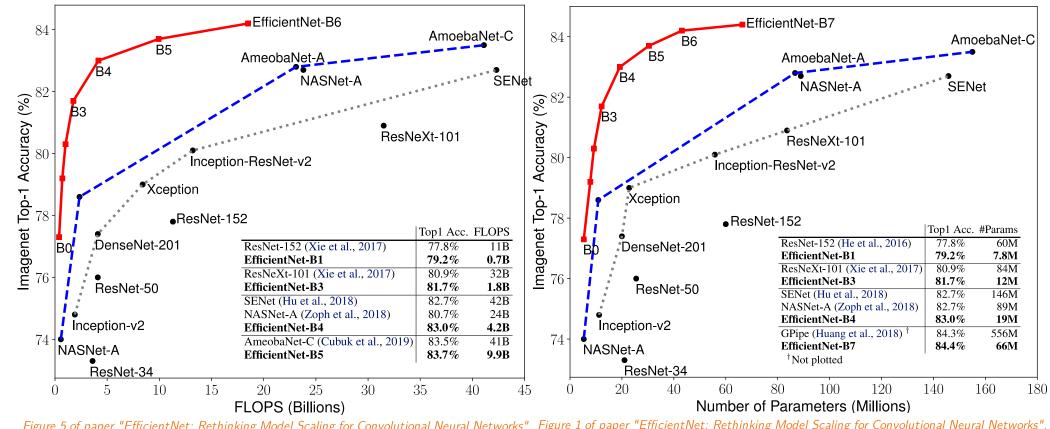


Figure 5 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", Figure 1 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946.

### **Transfer Learning**



In many situations, we would like to utilize a model trained on a different dataset – generally, this cross-dataset usage is called *transfer learning*.

In image processing, models trained on ImageNet are frequently used as general **feature** extraction models.

The easiest scenario is to take a ImageNet model, drop the last classification layer, and use the result of the global average pooling as image features. The ImageNet model is not modified during training.

For efficiency, we may precompute the image features once and reuse it later many times.

# **Transfer Learning – Finetuning**



After we have successfully trained a network employing an ImageNet model, we may improve performance further by *finetuning* – training the full network including the ImageNet model, allowing the feature extraction to adapt to the current dataset.

- The laters after the ImageNet models **should** be already trained to convergence.
- Usually a smaller learning rate is necessary, because the original model probably finished training with a very small learning rate. A good starting point is one tenth of the original starting learning rate (therefore, 0.0001 for Adam).
- We have to think about batch normalization, data augmentation or other regularization techniques.

# **Transposed Convolution**



So far, the convolution operation produces either an output of the same size, or it produced a smaller one if stride was larger than one.

In order to come up with *upscaling convolution*, we start by considering how a gradient is backpropagated through a fully connected layer and a regular convolution.

In a fully connected layer without activation:

- ullet during the forward pass, input  $oldsymbol{x}$  is multiplied by the weight matrix  $oldsymbol{W}$  as  $oldsymbol{x}\cdotoldsymbol{W}$ ;
- ullet during the backward pass, the gradient  $m{g}$  is multiplied by the transposed weight matrix as  $m{g} \cdot m{W}^T$ .

# **Transposed Convolution**



Analogously, in a convolutional layer without activation:

ullet during the forward pass, the cross-correlation operation between input I and kernel K is performed as

$$(\mathsf{K}\star\mathsf{I})_{i,j,o} = \sum_{m,n,c} \mathsf{I}_{i\cdot S+m,j\cdot S+n,c} \mathsf{K}_{m,n,c,o};$$

• during the backward pass, we obtain  $G_{i,j,o} = \frac{\partial L}{\partial (\mathsf{K} \star \mathsf{I})_{i,j,o}}$  and we need to backpropagate it to obtain  $\frac{\partial L}{\partial \mathsf{I}_{i,j,o}}$ . It is not difficult to show that

$$rac{\partial L}{\partial \mathsf{I}_{i,j,o}} = \sum_{\substack{i',m \ i'\cdot S+m=i \ j'\cdot S+n=j}} \sum_{c} \mathsf{G}_{i',j',c} \mathsf{K}_{m,n,o,c}.$$

This operation is called **transposed** or **upscaling** convolution and stride greater than one makes the output larger, not smaller.

NPFL114, Lecture 5

### **Transposed Convolution**



Given that the transposed convolution must be implemented for efficient backpropagation of a regular convolution, it is usually available for direct usage in neural network frameworks.

It is frequently used to perform upscaling of an image, as an "inverse" operation to pooling (or convolution with stride > 1), which is useful for example in *image segmentation*:

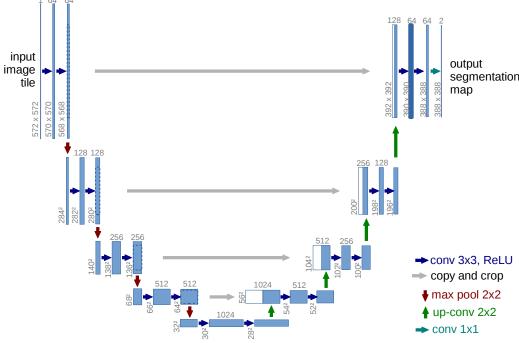


Figure 1 of paper "U-Net: Convolutional Networks for Biomedical Image Segmentation", https://arxiv.org/abs/1505.04597