NPFL114, Lecture 3 Uz

Training Neural Networks I

Milan Straka

m March 9, 2020

[4 -
— L Charles University in Prague @ @) (O
F‘/L EUROPEAN UNION Faculty of Mathematics and Physics S

oo oo e ¢ Institute of Formal and Applied Linguistics ;

A LAN GTECH 825@73?2:'§$% Eoton PP g unless otherwise stated

Let us have a dataset with a training, validation and test sets, each containing examples (w,y)

Depending on y, consider one of the following output activation functions:

’

none ifyeR
QO if y is a probability of an outcome

| softmax if y is a gold class

If £ € R?, we can use a neural network with an input layer of size d, hidden layer of size h
with a non-linear activation function, and an output layer of size o (either 1 or number of
classification classes) with the mentioned output function.

NN Training

2/40

We have

hi = f (Z Wz, + b§1)>
j

where

Input Hidden Output
layer layer layer

e Wi c R"*% is 3 matrix of weights,
o pV c R” is a vector of biases,
e f() is an activation function.

The weights are sometimes also called a kernel.

The biases define general behaviour in case of
zero/very small input.

Transformations of type wx + b are called
affine instead of linear.

NN Training 3/40

Input Hidden Output Similarly
layer layer layer

0; = (Z wWh; + b§2)>
J

e W € R°*" another matrix of weights,
e p? € R? another vector of biases,
o

f(2) being an output activation function.

NN Training 4/40

The parameters of the model are therefore W(l), W(z), b(l), b of total size d x h + h X
o+ h+ o.

To train the network, we repeatedly sample m training examples and perform SGD (or any its
adaptive variant), updating the parameters to minimize the loss.

We set the hyperparameters (size of the hidden layer, hidden layer activation function, learning
rate, ..) using performance on the validation set and evaluate generalization error on the test
set.

NN Training 5/40

® Processing all input in batches.

® \/ector representation of the network.

Considering h; = f(l) (Z] Wg,l]) T; + bgl)), we can write
h=fO (me n b<1>)
o= f® (W(z> ht b<2>) _ @ (W<z> (£ (Wu)w n b<1>)) n b(2>)

The derivatives

af) (Wmm +b(l)) af (Wmm +,,(1))
ox ’ ow W

are then matrices (called Jacobians) or even higher-dimensional tensors.

NN Training 6/40

Computation Graph

U=

L

Classical ('90s) Deep Learning

Architecture | ;- :i:iiiiiii CNN, RNN, Transformer, VAE, GAN, ..
Activation func. tanh, o tanh, ReLU, PReLU, ELU, GELU, Swish, Mish, ..
Output function | none, o none, o, softmax

Loss function | MSE NLL (or cross-entropy or KL-divergence)

Optimization SGD, momentum SGD, RMSProp, Adam, ..

Regularization L2, L1 L2, Dropout, Label smoothing, BatchNorm, LayerNorm, ...

NN Training 8/40

Derivative of MSE Loss UL

Given the MSE loss of
L= (y—§(x0)" = (§(x;0) —y),

the derivative with respect to ¢ is simply:

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 9/40

Derivative of Softmax MLE Loss UL

Softmax
Z (0]
Let us have a softmax output layer with
e’

O;

= —Z] ezj .

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 10/40

Consider now the MLE estimation. The loss for gold class index gold is then
L(softmax(z), gold) = —log 04014

The derivation of the loss with respect to 2z is then

OL 0 e~9old 02gold Olog(>] e)
0z; 0z > ;€% 0z; 0z;
1
>] e
= — [gold = 1] + o;.

Zj

= — [gold = 1] + e

Therefore, g—i = 0 — 144, where 1,44 is 1 at index gold and O otherwise.

Loss Derivatives 1 1/40

Derivative of Softmax MLE Loss UL

Gold distribution

Model distribution

Loss derivative with
respect to the softmax
inputs.

e e I s [- [

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 12/40

Derivative of Softmax and Sigmoid MLE Losses

In the previous case, the gold distribution was sparse, with only one target probability being 1.

In the case of general gold distribution g, we have

L(softmax(z Z g; log o;.

Repeating the previous procedure for each target probability, we obtain

OL

—— =o0-—q.
0z g

Sigmoid

Analogously, for o = o(z) we get 2L

5, — O — g, Where g is the target gold probability.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence

U=

13/40

Derivative of Softmax MLE Loss UL

¢ Gold distribution

Model distribution

Loss derivative with
respect to the softmax
inputs.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 14/40

As already mentioned, regularization is any change in the machine learning algorithm that is
designed to reduce generalization error but not necessarily its training error.

Regularization is usually needed only if training error and generalization error are different. That
is often not the case if we process each training example only once. Generally the more training
data, the better generalization performance.

® FEarly stopping

® |2, L1 regularization
® Dataset augmentation
® Ensembling

® Dropout

® |abel smoothing

Regularization 15/40

Regularization — Early Stopping Uz

0.20 |

—s Training set loss
0.15 —— Validation set loss |-

Loss (negative log-likelihood)
= =
- —
S S
|

0.00

100 150 200 250
Time (epochs)

Figure 7.3, page 246 of Deep Learning Book, http://deeplearningbook.org

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 16/40

We prefer models with parameters small under L2 metric.

The L2 regularization, also called weight decay, Tikhonov regularization or ridge regression
therefore minimizes

J(6;X) = J(6;X) + \||6]3

for a suitable (usually very small) A.
During the parameter update of SGD, we get

oJ
00;

H'i < 92 — — 2&)\9Z

L2 17/40

L2 Regularization Uz

~
\
T \
\ ~L“7 s/
~ ~ S
w1

Figure 7.1, page 233 of Deep Learning Book, http://deeplearningbook.org

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 18/40

Another way to arrive at L2 regularization is to utilize Bayesian inference.
With MLE we have

O\i.r = arg max p(X; 0).
0

Instead, we may want to maximize maximum a posteriori (MAP) point estimate:

Omap = arg max p(6; X)
0

Using Bayes' theorem
p(0; X) = p(X; 60)p(0) /p(X),
we get

Oniap = arg ;naxp(X; 0)p(0).
L2

19/40

The p(@) are prior probabilities of the parameter values (our preference).

One possibility for such a prior is N(8; 0, 02).

Then
Oniap = arg;naxp(X; 6)p(6)
_ " (4)
= argmax 11, »;6)p(6)
_ "o ().) —
= a,rgemm Zz—l log p(x'*; 0) — log p(0)

By substituting the probability of the Gaussian prior, we get

= 1 6’
. 7 2
Oriap = arg min E —logp(x'?; @)+~ log(27c?) + —
0 - 2 20
=1
NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing

Convergence

20/40

L1 Regularization

Similar to L2 regularization, but we prefer low L1 metric of parameters. We therefore minimize

~

J(0;X) = J(0;X) + A[|0]]1

The corresponding SGD update is then

oJ ,
0; — 0, — a(?—&i — sign(6;)aA.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence

U=

21/40

Regularization — Dataset Augmentation

For some data, it is cheap to generate slightly modified examples.

® |mage processing: translations, horizontal flips, scaling, rotations, color adjustments, ..
O Mixup (appeared in 2017)

ERM mixup
'y
o .o L . o.o Y

St T

- ‘s - A s
‘:’ o‘ *:’ k' ’ff o‘

0,; . 0.: LV & R

[\ u . ..3 [u A ..f

N Xy T " Xy T

(b) Effect of mixup on a toy problem.

Figure 1b of paper "mixup: Beyond Empirical Risk Minimization", https://arxiv.org/abs/1710.09412

® Speech recognition: noise, frequency change, ..

® More difficult for discrete domains like text.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 22/40

Ensembling (also called model averaging or in some contexts bagging) is a general technique for
reducing generalization error by combining several models. The models are usually combined by
averaging their outputs (either distributions or output values in case of a regression).

The main idea behind ensembling it that if models have uncorrelated (independent) errors, then
by averaging model outputs the errors will cancel out.

Because for independent identically distributed random values x; we have
Var (Z Xi) = ZVar(xi), Var(a - x) = a® Var(x),
we get that
1 1
Var (ﬁ ZXZ) = ﬁ V&I’(Xl).
However, ensembling usually has high performance requirements.

Ensembling 23/40

There are many possibilities how to train the models to average:

® Generate different datasets by sampling with replacement (bagging).

Original dataset

@©®

First resampled dataset

® Use random different initialization.

® Average models from last hours/days of training.

NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 24/40

How to design good universal features?

® |n reproduction, evolution is achieved using gene swapping. The genes must not be just
good with combination with other genes, they need to be universally good.
|dea of dropout by (Srivastava et al., 2014), in preprint since 2012.

When applying dropout to a layer, we drop each neuron independently with a probability of p
(usually called dropout rate). To the rest of the network, the dropped neurons have value of
Zero.

(a) Standard Neural Network (b) Network after Dropout

Dropout 25/40

Regularization — Dropout Urzt

Dropout is performed only when training, during inference no nodes are dropped. However, in
that case we need to scale the activations down by a factor of 1 — p to account for more

neurons than usual.

Neuron Activations Training Inference

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 26/40

Regularization — Dropout

Alternatively, we might scale the activations up during training by a factor of 1/(1 — p).

Neuron Activations Training Inference

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence

U=

27 /40

Regularization — Dropout as Ensembling

NPFL114, Lecture 3 NN Training

pere
ejo

Base network

Loss Derivatives

o6
ST

cjc

®

®

®

@eee

o O oy

Regularization

Ensemble of subnetworks

L2 Ensembling

Figure 7.6, page 260 of Deep Learning Book, http://deeplearningbook.org

Dropout

Label Smoothing

Convergence

U=

28/40

Regularization — Dropout Effect Uz

L
L

|y
¥

Falk

] [t

.
[-

|

"3 IC

e
»

|

-
-
Kl
Q'b)
s r 5.
“j";
'3
_t‘
.
.‘r‘ =h =y
- o ‘!!'m.r el M
ﬂ“
M
"i
§- 0 fipal T
(it

-

-
1=

P AN

|~
P

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified

linear units.
Figure 7 of paper "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", http://jmlr.org/papers/volumel5/srivastavalda/srivastaval4a.pdf

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 29/40

Regularization — Dropout Implementation et

def dropout(inputs, rate=0.5, training=False):
def do_inference():
return tf.identity(inputs)

def do_train():
random_noise = tf.random.uniform(tf.shape(inputs))
mask = tf.cast(tf.less(random noise, rate), tf.float32)
return inputs * mask / (1 - rate)

if training == True:
return do_train()
if training == False:

return do_inference()
return tf.cond(training, do_train, do_inference)

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 30/40

Problem with softmax MLE loss is that it is never satisfied, always pushing the gold label
probability higher (but it saturates near 1).

This behaviour can be responsible for overfitting, because the network is always commanded to
respond more strongly to the training examples, not respecting similarity of different training
examples.

|deally, we would like a full (non-sparse) categorical distribution of classes for training examples,
but that is usually not available.

We can at least a simple smoothing technique, called /label smoothing, which allocates some
small probability volume « uniformly for all possible classes.

The target distribution is then

1
number of classes

(1 —a)lyy+ o

Label Smoothing 31/40

Regularization — Label Smoothing

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization

L2

Ensembling

Dropout

Gold distribution

Smoothed distribution

Label Smoothing

Convergence

F

/

L

32/40

When you need to regularize, then a good default strategy is to:

® use dropout on all hidden dense layers (not on the output layer), good default dropout rate
is 0.5 (or use 0.3 if the model is underfitting);

® use L2 regularization for your convolutional networks;
® use label smoothing (start with 0.1);

® if you require best performance and have a lot of resources, also perform ensembling.

Label Smoothing 33/40

Convergence UrRL
The training process might or might not converge. Even if it does, it might converge slowly or
quickly.

There are many factors influencing convergence and its speed, we now discuss three of them:

® saturating non-linearities,
® parameter initialization strategies,
® gradient clipping.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 34/40

Convergence — Saturating Non-linearities

. Tanh
70.8 — = = Derivative of Tanh

4=

Image from https://isaacchanghau.github.io/images/deeplearning/activationfunction /tanh.png.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 35/40

Neural networks usually need random initialization to break symmetry.

® Biases are usually initialized to a constant value, usually O.

® \Weights are usually initialized to small random values, either with uniform or normal

distribution.
O The scale matters for deep networks!

o Originally, people used U[NG \/—} distribution.

O Xavier Glorot and Yoshua Bengio, 2010: Understanding the difficulty of training deep
feedforward neural networks.

The authors theoretically and experimentally show that a suitable way to initialize a

R™ ™ matrix is
] 6 / 6
m+n Vm+n

Convergence 36/40

Convergence — Parameter Initialization =
b | | | '

0 e — = Ly -
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value

2 ! g I | I | [

p—
N
T

©
n
T

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value

i \ I i

Figure 6 of paper "Understanding the difficulty of training deep feedforward neural networks", http://proceedings.mlr.press/v9/glorot10a/glorot10a. pdf.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 37/40

Convergence — Parameter Initialization ezt

100 : w
— Layer 1
—Layer 2
—Layer 3
~ Layer5
0 J "'.’ = = L. Y e ot i
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients
10 x
— Layer 1
~ Layer2
—Layer 3
5- |—Layer 4|
~ Layer$5
L i 1 | 1 ' o N, - L

-025 -02 -0.15 -0.1 -0.05 0 005 0.1 015 02 025
Backpropagated gradients
Figure 7 of paper "Understanding the difficulty of training deep feedforward neural networks", http://proceedings.mlr.press/v9/glorot10a/glorot10a. pdf.

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 38/40

Convergence — Gradient Clipping

J(w,b)

b

Figure 8.3, page 289 of Deep Learning Book, http://deeplearningbook.org

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 39/40

Convergence — Gradient Clipping

Without clipping With clipping

J(w,b)
J(w,b)

b

Figure 10.17, page 414 of Deep Learning Book, http://deeplearningbook.org

Using a given maximum norm, we may clip the gradient.

g if [|g]| < c

CH;%H if ||g|| > ¢

g <—

The clipping can be per weight (clipvalue of tf.optimizers.Optimizer), per variable or
for the gradient as a whole (clipnorm of tf.optimizers.Optimizer).

NPFL114, Lecture 3 NN Training Loss Derivatives Regularization L2 Ensembling Dropout Label Smoothing Convergence 40/40

