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Estimators and Bias

An estimator is a rule for computing an estimate of a given value, often an expectation of some
random value(s).

The bias of an estimator is the difference of the expected value of the estimator and the true
value being estimated.

If the bias is zero, we call the estimator unbiased, otherwise we call it biased.

If we have a sequence of estimates, it also might happen that the bias converges to zero.
Consider the well known sample estimate of variance. Given  idenpendent and

identically distributed random variables, we might estimate mean and variance as

Such an estimate is biased, because , but the bias converges to zero with

increasing .

Also, an unbiased estimator does not necessarily have small variance – in some cases it can have
large variance, so a biased estimator with smaller variance might be preferred.
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Machine Learning Basics

We usually have a training set, which is assumed to consist of examples generated
independently from a data generating distribution.

The goal of optimization is to match the training set as well as possible.

However, the main goal of machine learning is to perform well on previously unseen data, so
called generalization error or test error. We typically estimate the generalization error using a
test set of examples independent of the training set, but generated by the same data generating
distribution.
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Machine Learning Basics

Challenges in machine learning:

underfitting
overfitting

 

Figure 5.2, page 113 of Deep Learning Book, http://deeplearningbook.org
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Machine Learning Basics

We can control whether a model underfits or overfits by modifying its capacity.

representational capacity
effective capacity

 

Figure 5.3, page 115 of Deep Learning Book, http://deeplearningbook.org

The No free lunch theorem (Wolpert, 1996) states that averaging over all possible data
distributions, every classification algorithm achieves the same overall error when processing
unseen examples. In a sense, no machine learning algorithm is universally better than others.
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Machine Learning Basics

Any change in a machine learning algorithm that is designed to reduce generalization error but
not necessarily its training error is called regularization.

 regularization (also called weighted decay) penalizes models with large weights (i.e., penalty

of ).

 

Figure 5.5, page 119 of Deep Learning Book, http://deeplearningbook.org
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Machine Learning Basics

Hyperparameters are not adapted by the learning algorithm itself.

Usually a validation set or development set is used to estimate the generalization error,
allowing to update hyperparameters accordingly.
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Why do Neural Networks Generalize so Well





 

 

  

 

 





 

 

  





 

 







 

               
             
             
            
             
   

 

Figure 1 of paper "Reconciling modern machine learning practice and the bias-variance trade-off", https://arxiv.org/abs/1812.11118.
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Why do Neural Networks Generalize so Well

                 
               
              

 

Figure 1 of the paper "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292.
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Why do Neural Networks Generalize so Well

         
   

        
       
        

 

Figure 4 of the paper "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292.
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Why do Neural Networks Generalize so Well

                 
              
           
              
              

 

Figure 2 of the paper "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292.
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Loss Function

A model is usually trained in order to minimize the loss on the training data.

Assuming that a model computes  using parameters , the mean square error is

computed as

A common principle used to design loss functions is the maximum likelihood principle.

f(x; θ) θ

  f(x ; θ) − y .
m

1

i=1

∑
m

( (i) (i))
2
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Maximum Likelihood Estimation

Let  be training data drawn independently from the data-generating

distribution . We denote the empirical data distribution as .

Let  be a family of distributions. The maximum likelihood estimation of  is:

X = {x ,x , … ,x }(1) (2) (m)

p  data   p̂data

p  (x; θ)model θ

  

θ  ML =  p  (X; θ)
θ

arg max model

=   p  (x ; θ)
θ

arg max∏
i=1

m

model
(i)

=   − log p  (x ; θ)
θ

arg min∑
i=1

m

model
(i)

=  E  [− log p  (x; θ)]
θ

arg min x∼   p̂data model

=  H(   , p  (x; θ))
θ

arg min p̂data model

=  D  (   ∣∣p  (x; θ)) + H(   )
θ

arg min KL p̂data model p̂data
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Maximum Likelihood Estimation

MLE can be easily generalized to a conditional case, where our goal is to predict  given :

The resulting loss function is called negative log likelihood, or cross-entropy or Kullback-Leibler
divergence.

y x

  

θ  ML =  p  (Y∣X; θ)
θ

arg max model

=   p  (y ∣x ; θ)
θ

arg max∏
i=1

m

model
(i) (i)

=   − log p  (y ∣x ; θ)
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arg min∑
i=1

m

model
(i) (i)
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Properties of Maximum Likelihood Estimation

Assume that the true data generating distribution  lies within the model family 

, and assume there exists a unique  such that .

MLE is a consistent estimator. If we denote  to be the parameters found by MLE for a

training set with  examples generated by the data generating distribution, then 

converges in probability to .

Formally, for any ,  as .

MLE is in a sense the most statistically efficient. For any consistent estimator, we might
consider the average distance of  and , formally . It

can be shown (Rao 1945, Cramér 1946) that no consistent estimator has lower mean
squared error than the maximum likelihood estimator.

Therefore, for reasons of consistency and efficiency, maximum likelihood is often considered the
preferred estimator for machine learning.
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Mean Square Error as MLE

Assume our goal is to perform regression, i.e., to predict  for .

Let  give a prediction of the mean of .

We define  as  for a given fixed . Then:

p(y∣x) y ∈ R
 (x; θ)ŷ y
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 p(y∣x; θ) =
θ

arg max

=

=

=

  − log p(y ∣x ; θ)
θ

arg min
i=1

∑
m

(i) (i)

 −  log  e
θ

arg min
i=1

∑
m

 

2πσ2

1 −  2σ2
(y −  (x ;θ))(i) ŷ (i) 2
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Gradient Descent

 

Figure 4.1, page 83 of Deep Learning Book, http://deeplearningbook.org

Let a model compute  using parameters , and for a given loss function  denote

Assuming we are minimizing an error
function

we may use gradient descent:

The constant  is called a learning rate and

specifies the “length” of a step we perform
in every iteration of the gradient descent.

f(x; θ) θ L

J(θ) = E  L(f(x; θ), y).(x,y)∼   p̂data

 J(θ)
θ

arg min

θ ← θ − α∇  J(θ)θ

α
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Gradient Descent Variants

(Regular) Gradient Descent
We use all training data to compute .

Online (or Stochastic) Gradient Descent
We estimate the expectation in  using a single randomly sampled example from the

training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD
The minibatch SGD is a trade-off between gradient descent and SGD – the expectation in 

is estimated using  random independent examples from the training data.

J(θ)

J(θ)

J(θ) ≈ L(f(x; θ), y)  for randomly chosen  (x, y)  from     .p̂data

J(θ)
m

J(θ) ≈   L(f(x ; θ), y )  for randomly chosen  (x , y )  from     .
m

1

i=1

∑
m

(i) (i) (i) (i) p̂data
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Stochastic Gradient Descent Convergence

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function is convex and continuous, then SGD converges to the unique optimum
almost surely if the sequence of learning rates  fulfills the following conditions:

For non-convex loss functions, we can get guarantees of converging to a local optimum only.

Note that finding a global minimum of an arbitrary function is at least NP-hard.

α  i

 α  =
i

∑ i ∞,      α  <
i

∑ i
2 ∞.
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Stochastic Gradient Descent Convergence

Convex functions mentioned on the previous slide are such that for  and real ,

 

https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg

































































































 

https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

A twice-differentiable function is convex iff its second derivative is always non-negative.

A local minimum of a convex function is always the unique global minimum.

Well-known examples of convex functions are ,  and .

x  ,x  1 2 0 ≤ t ≤ 1

f(tx  +1 (1 − t)x  ) ≤2 tf(x  ) +1 (1 − t)f(x  ).2

x2 ex − log x
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Stochastic Gradient Descent Convergence

In 2018, there have been several improvements:

Under some models with high capacity, it can be proven that SGD will reach global
optimum by showing it will reach zero training error.

Neural networks can be easily modified so that the augmented version has no local
minimums. Therefore, if such a network converges, it converged to a global minimum.
However, the training process can still fail to converge by increasing the size of the
parameters  beyond any limit.∣∣θ∣∣
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Loss Function Visualization

Visualization of loss function of ResNet-56 (0.85 million parameters) with/without skip connections:

 

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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Loss Function Visualization

Visualization of loss function of ResNet-110 without skip connections and DenseNet-121.

 

Figure 4 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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Backpropagation

Assume we want to compute partial derivatives of a given loss function  and let  be known.
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Backpropagation Example
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Backpropagation Example
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Backpropagation Example

  

  

  

  

  

  

  

  

  

  

  

  

 





  












 




     



 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 

  




 





 


  



 





 


  



 





 


  













 













 

This is meant to be frightening – you do not do this manually when training.
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Backpropagation Algorithm

Forward Propagation

Input: Network with nodes  numbered in topological order. 

Each node's value is computed as  for  being a set of values of the

predecessors  of .  

Output: Value of .

For :

Return 

u ,u , … ,u(1) (2) (n)

u =(i) f (A )(i) (i) A(i)

P (u )(i) u(i)

u(n)

i = 1, … ,n
A ←(i) {u ∣j ∈(j) P (u )}(i)

u ←(i) f (A )(i) (i)

u(n)
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Backpropagation Algorithm

Simple Variant of Backpropagation

Input: The network as in the Forward propagation algorithm. 

Output: Partial derivatives  of  with respect to all .

Run forward propagation to compute all 

For :

Return 

In practice, we do not usually represent networks as collections of scalar nodes; instead we
represent them as collections of tensor functions – most usually functions . Then 

 is a Jacobian. However, the backpropagation algorithm is analogous.

g =(i)
 ∂u(i)

∂u(n)
u(n) u(i)

u(i)

g =(n) 1
i = n − 1, … , 1
g ←(i)

 g  ∑j:i∈P (u )(j)
(j)

∂u(i)
∂u(j)

g

f : R →n Rm

 ∂x
∂f (x)
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Neural Network Architecture à la '80s

x3 h3

h4

h1

h2

x4

x1

x2 o1

o2

Input
layer

Hidden
layer

Output
layer
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Neural Network Architecture à la '80s

There is a weight on each edge, and an activation function  is performed on the hidden layers,

and optionally also on the output layer.

If the network is composed of layers, we can use matrix notation and write:

f

h  =i f  w  x  + b  (
j

∑ i,j j i)

h = f Wx + b( )
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Neural Networks and Biases





























 

 

 

Figure 5.1 of Pattern Recognition and Machine Learning.
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Neural Network Activation Functions

Hidden Layers Derivatives
:

:

ReLU:

σ

 =
dx

dσ(x)
σ(x) ⋅ (1 − σ(x))

tanh

 =
dx

d tanh(x)
1 − tanh(x)2

 =
dx

d ReLU(x)
   

⎩⎪⎪
⎨
⎪⎪⎧1

NaN
0

if x > 0
if x = 0
if x < 0
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) Algorithm

Input: NN computing function  with initial value of parameters . 

Input: Learning rate . 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

f(x; θ) θ

α

θ

m (x , y )(i) (i)

g ←  ∇   L(f(x ; θ), y )
m
1

θ∑i
(i) (i)

θ ← θ − αg
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SGD With Momentum

 

Figure 8.5, page 297 of Deep Learning Book, http://deeplearningbook.org

SGD With Momentum

Input: NN computing function  with initial

value of parameters . 

Input: Learning rate , momentum . 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

f(x; θ)
θ

α β

θ

m

(x , y )(i) (i)

g ←  ∇   L(f(x ; θ), y )
m
1

θ∑i
(i) (i)

v ← βv − αg

θ ← θ + v
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SGD With Nesterov Momentum

 

https://github.com/cs231n/cs231n.github.io/blob/master/assets/nn3/nesterov.jpeg

SGD With Nesterov Momentum

Input: NN computing function 

with initial value of parameters . 

Input: Learning rate , momentum . 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training

examples 

f(x; θ)
θ

α β

θ

m

(x , y )(i) (i)

θ ← θ + βv

g ←  ∇   L(f(x ; θ), y )
m
1

θ∑i
(i) (i)

v ← βv − αg

θ ← θ − αg
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Algorithms with Adaptive Learning Rates

AdaGrad (2011)

Input: NN computing function  with initial value of parameters . 

Input: Learning rate , constant  (usually ). 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

f(x; θ) θ

α ε 10−8

θ

m (x , y )(i) (i)

g ←  ∇   L(f(x ; θ), y )
m
1

θ∑i
(i) (i)

r ← r + g2

θ ← θ −  g
 r+ε

α
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Algorithms with Adaptive Learning Rates

AdaGrad has favourable convergence properties (being faster than regular SGD) for convex loss
landscapes. In this settings, gradients converge to zero reasonably fast.

However, for non-convex losses, gradients can stay quite large for a long time. In that case, the
algorithm behaves as if decreasing learning rate by a factor of , because if each

then after  steps

and therefore

1/  t

g ≈ g  ,0

t

r ≈ t ⋅ g  0
2

 ≈
 r + ε

α
 .
 g  + ε/t0

2

α/  t
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Algorithms with Adaptive Learning Rates

RMSProp (2012)

Input: NN computing function  with initial value of parameters . 

Input: Learning rate , momentum  (usually ), constant  (usually ). 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

However, after first step, , which for default  is

a biased estimate (but the bias converges to zero exponentially fast).

f(x; θ) θ

α β 0.9 ε 10−8

θ

m (x , y )(i) (i)

g ←  ∇   L(f(x ; θ), y )
m
1

θ∑i
(i) (i)

r ← βr + (1 − β)g2

θ ← θ −  g
 r+ε

α

r = (1 − β)g2 β = 0.9

r = 0.1g ,2
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Algorithms with Adaptive Learning Rates

Adam (2014)

Input: NN computing function  with initial value of parameters . 

Input: Learning rate  (default 0.001), constant  (usually ). 

Input: Momentum  (default 0.9), momentum  (default 0.999). 

Output: Updated parameters .

, , 

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

    (biased first moment estimate)

   (biased second moment estimate)

, 

f(x; θ) θ

α ε 10−8

β  1 β  2

θ

s ← 0 r ← 0 t ← 0

m (x , y )(i) (i)

g ←  ∇   L(f(x ; θ), y )
m
1

θ∑i
(i) (i)

t ← t + 1
s ← β  s +1 (1 − β  )g1

r ← β  r +2 (1 − β  )g2
2

←ŝ s/(1 − β  )1
t ←r̂ r/(1 − β  )2

t

θ ← θ −  

 +εr̂

α ŝ
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Algorithms with Adaptive Learning Rates

Adam (2014)

Input: NN computing function  with initial value of parameters . 

Input: Learning rate  (default 0.001), constant  (usually ). 

Input: Momentum  (default 0.9), momentum  (default 0.999). 

Output: Updated parameters .

, , 

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

    (biased first moment estimate)

   (biased second moment estimate)

f(x; θ) θ

α ε 10−8

β  1 β  2

θ

s ← 0 r ← 0 t ← 0

m (x , y )(i) (i)

g ←  ∇   L(f(x ; θ), y )
m
1

θ∑i
(i) (i)

t ← t + 1
s ← β  s +1 (1 − β  )g1

r ← β  r +2 (1 − β  )g2
2

α  ←t α  /(1 −1 − β  2
t β  )1

t

θ ← θ −  s
 r+ε

α  t
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Adam Bias Correction

After  steps, we have

Assuming that the second moment  is stationary, we have

and analogously for correction of .

t

r  =t (1 − β  )  β  g  .2
i=1

∑
t

2
t−i

i
2

E[g  ]i
2

  

E[r  ]t = E (1 − β  ) β  g  [ 2
i=1

∑
t

2
t−i

i
2]

= E[g  ] ⋅ (1 − β  )  β  t
2

2
i=1

∑
t

2
t−i

= E[g  ] ⋅ (1 − β  )t
2

2
t

s
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Adaptive Optimizers Animations

 

http://2.bp.blogspot.com/-q6l20Vs4P_w/VPmIC7sEhnI/AAAAAAAACC4/g3UOUX2r_yA/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

 

http://2.bp.blogspot.com/-L98w-SBmF58/VPmICIjKEKI/AAAAAAAACCs/rrFz3VetYmM/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

 

http://3.bp.blogspot.com/-nrtJPrdBWuE/VPmIB46F2aI/AAAAAAAACCw/vaE_B0SVy5k/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

 

http://1.bp.blogspot.com/-K_X-yud8nj8/VPmIBxwGlsI/AAAAAAAACC0/JS-h1fa09EQ/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Learning Rate Schedules

Even if RMSProp and Adam are adaptive, they still usually require carefully tuned decreasing
learning rate for top-notch performance.

Exponential decay: learning rate is multiplied by a constant each batch/epoch/several
epochs.

Often used for convolutional networks (image recognition etc.).

Polynomial decay: learning rate is multiplied by some polynomial of .

Inverse time decay uses  and has theoretical guarantees of convergence,

but is usually too fast for deep neural networks.
Inverse-square decay uses  and is currently used by best machine

translation models.

Cosine decay, restarts, warmup, …

The tf.optimizers.schedules offers several such learning rate schedules, which can be
passed to any Keras optimizer directly as a learning rate.
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