NPFL114, Lecture 2 ==

Training Neural Networks

Milan Straka

m March 2, 2020

[4 -
— L Charles University in Prague @ @) (O
F‘/L EUROPEAN UNION Faculty of Mathematics and Physics S

oo oo e ¢ Institute of Formal and Applied Linguistics ;

A LAN GTECH 825@73?2:'§$% Eoton PP g unless otherwise stated

An estimator is a rule for computing an estimate of a given value, often an expectation of some
random value(s).

The bias of an estimator is the difference of the expected value of the estimator and the true
value being estimated.

If the bias is zero, we call the estimator unbiased, otherwise we call it biased.

If we have a sequence of estimates, it also might happen that the bias converges to zero.
Consider the well known sample estimate of variance. Given x1,...,X, idenpendent and

identically distributed random variables, we might estimate mean and variance as

= %ZZ i, 67 = %Zz(xz -)*.

1

Such an estimate is biased, because E[6%] = (1 — =)o, but the bias converges to zero with

increasing n.

Also, an unbiased estimator does not necessarily have small variance — in some cases it can have
large variance, so a biased estimator with smaller variance might be preferred.

ML Basics 2/47

We usually have a training set, which is assumed to consist of examples generated
independently from a data generating distribution.

The goal of optimization is to match the training set as well as possible.

However, the main goal of machine learning is to perform well on previously unseen data, so
called generalization error or test error. We typically estimate the generalization error using a

test set of examples independent of the training set, but generated by the same data generating
distribution.

ML Basics 3/47

Machine Learning Basics

Challenges in machine learning:

® underfitting
® overfitting

Underfitting Appropriate capacity Overfitting
e @
) > >
@ ®
Lo 0 Lo

Figure 5.2, page 113 of Deep Learning Book, http://deeplearningbook.org

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 4/47

We can control whether a model underfits or overfits by modifying its capacity.

® representational capacity
® effective capacity

— - Training error
Underfitting zone| Overfitting zone

—— (Generalization error

Error

0 Optimal Capacity
Capacity

The No free lunch theorem (Wolpert, 1996) states that averaging over all possible data
distributions, every classification algorithm achieves the same overall error when processing
unseen examples. In a sense, no machine learning algorithm is universally better than others.

ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 5/47

Any change in a machine learning algorithm that is designed to reduce generalization error but
not necessarily its training error is called regularization.

Ly regularization (also called weighted decay) penalizes models with large weights (i.e., penalty

of |16]]).

Underfitting Appropriate weight decay Overfitting

(Excessive \) (Medium M) (A—0)
e @
%
b > >
o]
Lo Lo Lo

ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 6/47

Machine Learning Basics

Hyperparameters are not adapted by the learning algorithm itself.

Usually a validation set or development set is used to estimate the generalization error,
allowing to update hyperparameters accordingly.

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules

U=

7/47

under-fitting over-fitting

. Test risk

Risk

~

~ 'Training risk
sweet spot_ . —

Sa - -
Capacity of H

(a)

Risk

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

-~ Training risk

- _ interpolation threshold

Cap;city of H

(b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold

have zero training risk.

ML Basics

8/47

Why do Neural Networks Generalize

Classical Regime:
Bias-Variance Tradeoff

Modern Regime:
Larger Model is Better

so Well

N A
[\ .
0.5 ; Critical — Test 0.7 ____ Optimal Early
o [-+ Train Stopping
—
504 _ 0.6 10
. (@]
£ ! = 2
© 0.3 : w 0.5 G
= \ 1 Interpolation g 100 8
~0.2 \ ! Threshold 0.4 L
ﬁ \ 1 l_
(«}]
0.1 \: 0.3 1000
\
[N
0.0 1 1d --20 30 40 50 60 0.2 0 10 20 30 50 60

NPFL114, Lecture 2 ML Basics

ResNet18 width parameter ResNet18 Width Parameter

Figure 1: Left: Train and test error as a function of model size, for ResNetl18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

Figure 1 of the paper "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292.

Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules

9/47

Why do Neural Networks Generalize so Well

0.8 —— 0% label noise
—— 10% label noise
0.7 —— 20% label noise
<)
= 0.6
w
i
g 0.5
0.4
0.3
1 10 20 30 40 50 60 64
ResNetl8 Width Parameter
0.8 \
5 0.6
L!j \\\\\\
= L
-E 0.4 Y \\\
= ‘\‘ \‘\"\
0.2
0.0 R
1 10 20 30 40 50 60 64

ResNetl8 Width Parameter

(a) CIFAR-100. There is a peak in test error even
with no label noise.

NPFL114, Lecture 2 ML Basics

Gradient Descent

—— 0% label noise
0.4 —— 5% label noise
—— 10% label noise
i, —— 15% label noise
50.3 —— 20% label noise
i
-t
wv
£ 0.2
0.1
1 10 20 30 40 50 60 64
ResNetl8 Width Parameter
0.5 ‘
¥
0.4 L
| (198
o HIR
= N
W 031 Wy
< Wy
= 0.2 ‘I‘\\ ‘\‘\\'\‘
01 “‘\\ \ ‘\‘\\ \
0.0 T Y T
1 10 20 30 40 50 60 64

ResNetl8 Width Parameter

(b) CIFAR-10. There is a “plateau” in test error

around the interpolation point with no label noise,
which develops into a peak for added label noise.

NN Training

Figure 4 of the paper "Deep Double Descent: Where Bigger Models and More Data Hurt", https: //arxiv.org/abs/1912.02292.
Loss Backpropagation

SGDs Adaptive LR LR Schedules

10/47

Why do Neural Networks Generalize so Well

Test Error

Train Error

—70.80

0.8 .
Interpolation
Model-wise i Threshold
Double Descent \
' e 1k 0.60
Epoch-wise
Double Descent
0-4 0.40
100
0.3 |
0.20
0.2 10
: : _ 1 — | Mo.01
1 15 30 45 60 1 15 30 45 60
ResNetl18 Width Parameter ResNet18 Width Parameter

Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corre-
sponds to model-wise double descent—varying model size while training for as long as possible. The
vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent
as train time increases. Right Train error of the corresponding models. All models are Resnetl8s
trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

Figure 2 of the paper "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292,

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 11/47

A model is usually trained in order to minimize the loss on the training data.

Assuming that a model computes f(x; @) using parameters @, the mean square error is
computed as

2

% i; (f (;6) — y(i’)

A common principle used to design loss functions is the maximum likelihood principle.

Loss 12/47

Let X = {1, 2?2 ... 2™} be training data drawn independently from the data-generating
distribution pgata. We denote the empirical data distribution as Pgata-

Let Prodel (25 @) be a family of distributions. The maximum likelihood estimation of @ is:

arg Max Pmodel (X;)
0

= arg ;nax Hizl Pmodel (w(i); 0)

O

_ N (i).
arg;nm Zz‘:l 10g Pmodel (:B) 9)
= arg;nin Expoaa [~ 108 Pmode1 (5 6)]

— arg;nin H(ﬁdata, Pmodel (ZB; 9))

— al’gemin DKL (ﬁdata‘ ‘pmodel (CB; 0)) T H(ﬁdata)

Loss 13/47

Maximum Likelihood Estimation Uzt

MLE can be easily generalized to a conditional case, where our goal is to predict y given @:

Ovi = arg max Pmodel (Y|X;)
0
— arg ;nax Hizl Pmodel (y(z) |w(2) 3 9)

— arggnin Zizl _ 10g Pmodel (y(Z) |w(z), 9)

The resulting loss function is called negative log likelihood, or cross-entropy or Kullback-Leibler
divergence.

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 14/47

Assume that the true data generating distribution pgata lies within the model family
Pmodel (5 @), and assume there exists a unique @y, such that Paata = Pmodel (*; Opy.)-

® MLE is a consistent estimator. If we denote 0,,, to be the parameters found by MLE for a
training set with m examples generated by the data generating distribution, then 0,,

converges in probability to 6,,... .

Formally, for any € > 0, P(||60,, — 0,,..|| > €) = 0 as m — oo.

® MLE is in a sense the most statistically efficient. For any consistent estimator, we might
consider the average distance of ,,, and 0, ., formally Ex, . x ~puill|@m — Opy,. 2] 1t
can be shown (Rao 1945, Cramér 1946) that no consistent estimator has lower mean
squared error than the maximum likelihood estimator.

Therefore, for reasons of consistency and efficiency, maximum likelihood is often considered the
preferred estimator for machine learning.

15/47

Loss

Assume our goal is to perform regression, i.e., to predict p(y|e) for y € R.

Let §(a; @) give a prediction of the mean of y.

We define p(y|®) as N(y; §(a; @), 0°) for a given fixed o®. Then:

arg max p(y|x; 8) = arg min Z —logp(y? |2 0)
0 2

m 1 (y" —g(=;0))?
_ in—) log4/ N 207
arg 6fmn Z og 902 e

1=1
i (@) _ (p(). 9))2

o i=1 20°
= @Y —g(x®;0))? 1y)
— arg min — arg min — Y\ —

Loss

Let a model compute f(@; @) using parameters @, and for a given loss function L denote

J(0) = E(o,y)~poua L(f (25 0), 7).

Assuming we are minimizing an error 2.0 | | | | | | |
. . g
funCtlon 1.5F ~ Global minimum at z = 0. /1
\ Since f'(z) = 0, gradient y;
. B \ descent halts here. y |
arg min J(0) 1.0 . f
7] s 7
0.5 F i
e -~
we may use gradient descent: 0.0} I |
For x < 0, we have f'(x) , For x > 0, we have f'(x) >|0,
so we can decrease f b so we can decrease f by
0 Y 0 . aVQJ(O) —0.5F moving rightward. moving leftward. =
—10F .
. . _ 1.2
The constant « is called a learning rate and | | - - fl@) =327
L 1) 1A ' — / _—
specifies the “length” of a step we perform vo | | | | | | 1 (@) -
in every iteration of the gradient descent. 20 -15 -10 -05 00 05 10 15 20

ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 17/47

(Regular) Gradient Descent
We use all training data to compute J(8).

Online (or Stochastic) Gradient Descent
We estimate the expectation in J (@) using a single randomly sampled example from the

training data. Such an estimate is unbiased, but very noisy.
J(0) ~ L(f(a:; 0),y) for randomly chosen (x,y) from Pyata-
Minibatch SGD

The minibatch SGD is a trade-off between gradient descent and SGD — the expectation in J(6)
is estimated using m random independent examples from the training data.

J(0) ~ ZL(f(w(i); 0), y(i)) for randomly chosen (2®,y®) from Pyu..
i=1

Gradient Descent 18/47

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function is convex and continuous, then SGD converges to the unique optimum
almost surely if the sequence of learning rates «; fulfills the following conditions:

g a; = 00, E oz?<oo.
i i

For non-convex loss functions, we can get guarantees of converging to a local optimum only.

Note that finding a global minimum of an arbitrary function is at least NP-hard.

Gradient Descent

19/47

Stochastic Gradient Descent Convergence

Convex functions mentioned on the previous slide are such that for 1,22 and real 0 < ¢t <1,

fltzr + (1= t)z2) <tf(z1) + (1 — 1) f(2).

f(@)
0
8
6
tf (21) + (1 =) f (x2) Z
f ey + (1 —t)xg) > 2
0
z1 try + (1 —t)xo T2
https: //upload. wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg https: //commons.wikimedia.org/wiki/File: Partial_func_eg.svg

A twice-differentiable function is convex iff its second derivative is always non-negative.

A local minimum of a convex function is always the unique global minimum.

2

Well-known examples of convex functions are *, e* and — log x.

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 20/47

In 2018, there have been several improvements:

® Under some models with high capacity, it can be proven that SGD will reach global
optimum by showing it will reach zero training error.

® Neural networks can be easily modified so that the augmented version has no local
minimums. Therefore, if such a network converges, it converged to a global minimum.
However, the training process can still fail to converge by increasing the size of the
parameters ||@|| beyond any limit.

Gradient Descent 21/47

Loss Function Visualization UL

Visualization of loss function of ResNet-56 (0.85 million parameters) with /without skip connections:

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 22/47

Loss Function Visualization

Visualization of loss function of ResNet-110 without skip connections and DenseNet-121.

Figure 4 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 23/47

Backpropagation Urzt

Assume we want to compute partial derivatives of a given loss function J and let g—i be known.

oJ 0J 0z 90J dg(y)

0—yz- - gﬁ—yz 0z Oy
0J 0J 0z 0y; 0J 0g(y) Of (=)
ox; 0z Oy, 0x; 0z Oy; Ox;

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 24 /47

Backpropagation Example Urzt

input layer ReLU layer output layer

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 25/47

Backpropagation Example

input layer

NPFL114, Lecture 2 ML Basics Loss

Gradient Descent

ReLU layer

output layer

Backpropagation NN Training

SGDs Adaptive LR

LR Schedules

U=

26/47

Backpropagation Example e

OL — 2(output — gold) = 6

oo

9L __ 9L do __ AL _ 9L __ 9L do __ AL _

(AN PR TS T TR A

L _ 0L 0o __ OL L oL __ o __ L
input layer ReLU layer output layer aws - %awg — _h2 — O %}f - gz aath - gzw8 —]_8

dwoe = 00wy = et =30 Gng = Goam = goto = 12

OL _ OL 9 _ IL, _ _g OL _ 0L ohy _ 0L _ _g

TRy e TR) DO

oL _ 0L Oy _ 0L, __ __ oL _ OL Ohy __ _

A P A

OL __ OL 0ia _ OL,. __ OL __ OL 0hs _ OL 1 _

%wgg - gzg %wg = (3225’31 0 g%a, Ohs gz'Lg, I 1 =12

OL __ 0L dip _ OL oL _ 5 OL 9y _

%m - gz'g %’w4 - gm Ty =0 %wl 2 gij %@1

9oL _ 9L di3 __ OL .. __ oL _ N~ OL 9y

Oows Oiz Ows 6231;1 =12 Oxy Z] 8ij Oxy 18

OL OL 013 oL
Oowg 0Oiz Ows 013 9ig V2 = 24

This is meant to be frightening — you do not do this manually when training.

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 27/47

Forward Propagation

Input: Network with nodes u) u(z), .

Each node's value is computed as ull
predecessors P(u(?)) of u®)
Output: Value of u(™.

'Forz—l ()
o A®) %{u(3| c P(u9)}
o> ul) fO(A0)

® Return ul™

,u(n) numbered in topological order.
= fO(AD) for A being a set of values of the

Backpropagation

28/47

Simple Variant of Backpropagation

Input: The network as in the Forward propagation algorithm.
() _ ou
— Oul

Output: Partial derivatives g of ul™ with respect to all ul®.

® Run forward propagation to compute all ul®

® Fore=n—1,...,1:
. N Ou)
° g = 2 jiieP(ud) g9 G

® Return g

In practice, we do not usually represent networks as collections of scalar nodes; instead we

represent them as collections of tensor functions — most usually functions f : R®” — R™. Then

_8];;:1:) is a Jacobian. However, the backpropagation algorithm is analogous.

Backpropagation 29/47

Neural Network Architecture a la '80s UkzL

There is a weight on each edge, and an activation function f is performed on the hidden layers,
and optionally also on the output layer.

h, = f Zwi,jazj + b;
J

If the network is composed of layers, we can use matrix notation and write:

h=f(Wgz+b)

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 31/47

- U=
Neural Networks and Biases L
hidden units
Figure 5.1 of Pattern Recognition and Machine Learning.
NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 32/47

Neural Network Activation Functions

Hidden Layers Derivatives

® 0O
W) — o@)- (1 - o(a))
® tanh:
d tanh
aj;r(w)::l——tanh(m)2
® RelU:
)
1 if 0
dReLU() be
= qNaN ifxz=0
dx .
0 ifz <0

NPFL114, Lecture 2 ML Basics Loss

Gradient Descent

Backpropagation NN Training SGDs Adaptive LR

LR Schedules

U=

33/47

Stochastic Gradient Descent (SGD) Algorithm

Input: NN computing function f(a; @) with initial value of parameters 6.
Input: Learning rate a.
Output: Updated parameters 0.

® Repeat until stopping criterion is met: . |
O Sample a minibatch of m training examples (:B(Z),y(z))

o g+ LVe> . L(f(z9;0),y")
© 0+ 60—ag

SGDs 34 /47

SGD With Momentum

Input: NN computing function f(a; @) with initial
value of parameters 6.

Input: Learning rate o, momentum 8.

Output: Updated parameters 6.

® Repeat until stopping criterion is met:
O Sample a minibatch of m training examples

(w(i),y(i))
© g Vo>, L(f(z1;8),y")
o v<+ fv—ag
© 0+ 0+wv

20

10

0

—10

—20

—30
-30 =20 —-10 O 10 20

SGDs 35/47

SGD With Nesterov Momentum

. . . . Momentum update Nesterov momentum update
Input: NN computing function f(x;0)
“lookahead” gradient
step (bit different than
original)

with initial value of parameters 0.

momentum
step

momentum
step
actual step

Input: Learning rate o, momentum 8.
actual step

Output: Updated parameters 6.

gradient
step

® Repeat until stopping criterion is met:
O Sample a minibatch of m training

examples (), ()

0 < 0 + [v

g 1Vo X, L(f(2;), y)
v+ fv—ag

0 — 0 —ag

O O O O

SGDs 36/47

AdaGrad (2011)

Input: NN computing function f(a; @) with initial value of parameters 6.
Input: Learning rate o, constant € (usually 107%).
Output: Updated parameters 0.

® Repeat until stopping criterion is met: | .
© Sample a minibatch of m training examples (w(z),y(z))

© g Vo>, L(f(x";80),y")
O PP+ g
@)

00— "—g

Adaptive LR 37/47

AdaGrad has favourable convergence properties (being faster than regular SGD) for convex loss
landscapes. In this settings, gradients converge to zero reasonably fast.

However, for non-convex losses, gradients can stay quite large for a long time. In that case, the
algorithm behaves as if decreasing learning rate by a factor of 1/\/2 because if each

9%907

then after ¢ steps

and therefore

Adaptive LR 38/47

RMSProp (2012)

Input: NN computing function f(a; @) with initial value of parameters 6.
Input: Learning rate o, momentum B (usually 0.9), constant € (usually 107%).
Output: Updated parameters 0.

® Repeat until stopping criterion is met: | _
© Sample a minibatch of m training examples (w(z),y(z))
°© g Vo, L(f(=";80),y")

° 7 fr+(1-p)g”

O

00— g

However, after first step, 7 = (1 — 3)g?, which for default 8 = 0.9 is
r =0.1g°,

a biased estimate (but the bias converges to zero exponentially fast).

Adaptive LR

39/47

Adam (2014)

Input: NN computing function f(a; @) with initial value of parameters 6.
Input: Learning rate a (default 0.001), constant € (usually 1073).

Input: Momentum B; (default 0.9), momentum (B2 (default 0.999).
Output: Updated parameters 6.

¢ s+ 0,r+0,t<«<0

® Repeat until stopping criterion is met: | -
© Sample a minibatch of m training examples (w(z),y(z))

°© g+ Ve X, L(f(=";6),y")
O t<«t+1
O 8¢+ 18+ (1—p1)g (biased first moment estimate)
O 7 < Bor + (1 — B2)g® (biased second moment estimate)
© 3 FS/(1—51) P r/(1-p3)
© 0+ 60— =5
r—i—s

Adaptive LR 40/47

Adam (2014)

Input: NN computing function f(a; @) with initial value of parameters 6.
Input: Learning rate a (default 0.001), constant € (usually 1073).

Input: Momentum B; (default 0.9), momentum (B2 (default 0.999).
Output: Updated parameters 6.

¢ s+ 0,r+0,t<0

® Repeat until stopping criterion is met: | -
© Sample a minibatch of m training examples (w(z),y(z))

g =Vo >, L(f(x;0),y")

t<—t+1

8< P18+ (1 —P1)g (biased first moment estimate)

P < Bor + (1 — B2)g? (biased second moment estimate)

oy < ay/1— /(1 —pY)

0%9—\/;?3

O O O O O O

Adaptive LR 41/47

Adam Bias Correction Urzt

After t steps, we have
2,
ry — 1 - 52 Zﬁt Z
Assuming that the second moment [E[g?] is stationary, we have

t
Elr =E (1 —5) Zﬂ; 'g;
i=1

—Blg]- (1 52) > 5

=Elg;] - (1~ 83)

and analogously for correction of s.

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 42 /47

Adaptive Optimizers Animations =
2 T ™
..:.-':.:.) — sgd
v —— momentum [
o i nng E
/ - adagrad Y
=1 adadelta [y
i \
il rmsprop \
-2k y
-3} II
Il
_s L]
-2 =1 L
lﬂD L L T L i
80 | 1
60 | :
40} :
20t]
ﬂ. 1 ! 1 1 1
0 20 40 60 80 100 120

http://2.bp.blogspot.com/-q6I120Vs4P_w/VPmIC7sEhnl JAAAAAAAACC4/g3UOUX2r_yA /s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for. html

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 43/47

Adaptive Optimizers Animations UL

—= Momentum
- NAG

— Adagrad
Adadelta
Rmsprop

L

NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 44 /47

Adaptive Optimizers Animations Vet

- 5GD
- Momentum
- NAG
-— Adagrad
—— Adadelta
! — Rmsprop
. et 7 —
: s T
(AR
i G
A
-2 !
-4

1.0

-0.5
—=1.5
http://3.bp.blogspot.com/-nrt JPrdBWuE /VPmIB46F2al /JAAAAAAAACCw/vaE_BOSVy5k/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for. htm/
NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 45 /47

Adaptive Optimizers Animations

— 5GD

— Momentum
— NAG

— Adagrad
—— Adadelta
- Rmsprop

-0.5
0.0
I:..E 1u-1-n

http://1.bp.blogspot.com/-K_X-yud8nj8/VPmIBxwGls| /JAAAAAAAACCO/JS-h1fa09EQ/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
NPFL114, Lecture 2 ML Basics Loss Gradient Descent Backpropagation NN Training SGDs Adaptive LR LR Schedules 46/47

Even if RMSProp and Adam are adaptive, they still usually require carefully tuned decreasing
learning rate for top-notch performance.

® FExponential decay: learning rate is multiplied by a constant each batch/epoch/several

epochs.

. ¢
© @ = Qpitjal * C

O Often used for convolutional networks (image recognition etc.).

® Polynomial decay: learning rate is multiplied by some polynomial of .
O [nverse time decay uses & = Qlnitial * % and has theoretical guarantees of convergence,

but is usually too fast for deep neural networks.

O [nverse-square decay uses & = Qiipitial * L and is currently used by best machine
q y G y y

translation models.
® (Cosine decay, restarts, warmup, ..

The tf.optimizers.schedules offers several such learning rate schedules, which can be
passed to any Keras optimizer directly as a learning rate.

LR Schedules 47 /47

