
NPFL114, Lecture 11

Speech Synthesis,
Reinforcement Learning
Milan Straka

May 13, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

WaveNet

Our goal is to model speech, using a auto-regressive model

Figure 2 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.

p(x) = p(x ∣x , … ,x).
t

∏ t t−1 1

2/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

WaveNet

Figure 3 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.

3/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

WaveNet

Output Distribution
The raw audio is usually stored in 16-bit samples. However, classification into classes

would not be tractable, and instead WaveNet adopts -law transformation and quantize the

samples into 256 values using

Gated Activation
To allow greater flexibility, the outputs of the dilated convolutions are passed through the gated
activation units

65 536
μ

sign(x) .
ln(1 + 255)

ln(1 + 255∣x∣)

z = tanh(W ∗f x) ⋅ σ(W ∗g x).

4/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

WaveNet

Figure 4 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.

5/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

WaveNet

Global Conditioning
Global conditioning is performed by a single latent representation , changing the gated

activation function to

Local Conditioning
For local conditioning, we are given a timeseries , possibly with a lower sampling frequency.

We first use transposed convolutions to match resolution and then compute

analogously to global conditioning

h

z = tanh(W ∗f x + V h) ⋅f σ(W ∗g x + V h).g

h t

y = f(h)

z = tanh(W ∗f x + V ∗f y) ⋅ σ(W ∗g x + V ∗g y).

6/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

WaveNet

The original paper did not mention hyperparameters, but later it was revealed that:

30 layers were used
grouped into 3 dilation stacks with 10 layers each
in a dilation stack, dilation rate increases by a factor of 2, starting with rate 1 and
reaching maximum dilation of 512

filter size of a dilated convolution is 3

residual connection has dimension 512

gating layer uses 256+256 hidden units

the output convolution produces 256 filters

trained for steps using Adam with a fixed learning rate of

1 × 1

1 000 000 0.0002

7/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

WaveNet

Figure 5 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.

8/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Parallel WaveNet

The output distribution was changed from 256 -law values to a Mixture of Logistic (suggested

for another paper, but reused in other architectures since):

The logistic distribution is a distribution with a as cumulative density function (where the

mean and steepness is parametrized by and). Therefore, we can write

(where we replace -0.5 and 0.5 in the edge cases by and).

μ

ν ∼ π logistic(μ , s).
i

∑ i i i

σ

μ s

ν ∼ π [σ((x +
i

∑ i 0.5 − μ)/s) −i i σ((x − 0.5 − μ)/s)].i i

−∞ ∞

9/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Parallel WaveNet

Auto-regressive (sequential) inference is extremely slow in WaveNet.

Instead, we use a following trick. We will model as for a random drawn

from a logistic distribution. Then, we compute

Usually, one iteration of the algorithm does not produce good enough results – 4 iterations
were used by the authors. In further iterations,

p(x)t p(x ∣z)t ≤t z

x =t z ⋅t s(z) +<t μ(z).<t

x =t
i x ⋅t

i−1 s (x) +i
<t
i−1 μ (x).i

<t
i−1

10/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Parallel WaveNet

The network is trained using a probability density distillation using a teacher WaveNet, using
KL-divergence as loss.

WaveNet Teacher

WaveNet Student P (xi|z<i)

P (xi|x<i)

zi

Generated Samples

Student Output

Teacher Output

Input noise

Linguistic features

Linguistic features

xi = g(zi|z<i)

Figure 2 of paper "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433.

11/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Parallel WaveNet

Method Subjective 5-scale MOS

16kHz, 8-bit µ-law, 25h data:
LSTM-RNN parametric [27] 3.67 ± 0.098
HMM-driven concatenative [27] 3.86 ± 0.137
WaveNet [27] 4.21 ± 0.081

24kHz, 16-bit linear PCM, 65h data:
HMM-driven concatenative 4.19 ± 0.097
Autoregressive WaveNet 4.41 ± 0.069
Distilled WaveNet 4.41 ± 0.078

Table 1 of paper "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433.

12/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Tacotron

Figure 1 of paper "Natural TTS Synthesis by...", https://arxiv.org/abs/1712.05884.

13/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Tacotron

System MOS

Parametric 3.492± 0.096

Tacotron (Griffin-Lim) 4.001± 0.087

Concatenative 4.166± 0.091

WaveNet (Linguistic) 4.341± 0.051

Ground truth 4.582± 0.053

Tacotron 2 (this paper) 4.526± 0.066

Table 1 of paper "Natural TTS Synthesis by...", https://arxiv.org/abs/1712.05884.

14/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Tacotron

Figure 2 of paper "Natural TTS Synthesis by...", https://arxiv.org/abs/1712.05884.

15/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Reinforcement Learning

Reinforcement Learning

16/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

History of Reinforcement Learning

Develop goal-seeking agent trained using reward signal.

Optimal control in 1950s – Richard Bellman
Trial and error learning – since 1850s

Law and effect – Edward Thorndike, 1911
Shannon, Minsky, Clark&Farley, … – 1950s and 1960s
Tsetlin, Holland, Klopf – 1970s
Sutton, Barto – since 1980s

Arthur Samuel – first implementation of temporal difference methods for playing checkers

17/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Notable Successes of Reinforcement Learning

IBM Watson in Jeopardy – 2011
Human-level video game playing (DQN) – 2013 (2015 Nature), Mnih. et al, Deepmind

29 games out of 49 comparable or better to professional game players
8 days on GPU
human-normalized mean: 121.9%, median: 47.5% on 57 games

A3C – 2016, Mnih. et al
4 days on 16-threaded CPU
human-normalized mean: 623.0%, median: 112.6% on 57 games

Rainbow – 2017
human-normalized median: 153%

Impala – Feb 2018
one network and set of parameters to rule them all
human-normalized mean: 176.9%, median: 59.7% on 57 games

18/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Notable Successes of Reinforcement Learning

AlphaGo
Mar 2016 – beat 9-dan professional player Lee Sedol

AlphaGo Master – Dec 2016
beat 60 professionals
beat Ke Jie in May 2017

AlphaGo Zero – 2017
trained only using self-play
surpassed all previous version after 40 days of training

AlphaZero – Dec 2017
self-play only
defeated AlphaGo Zero after 34 hours of training (21 million games)
impressive chess and shogi performance after 9h and 12h, respectively

19/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Notable Successes of Reinforcement Learning

Dota2 – Aug 2017
won 1v1 matches against a professional player

MERLIN – Mar 2018
unsupervised representation of states using external memory
beat human in unknown maze navigation

FTW – Jul 2018
beat professional players in two-player-team Capture the flag FPS
trained solely by self-play on 450k games

each 5 minutes, 4500 agent steps (15 per second)

OpenAI Five – Aug 2018
won 5v5 best-of-three match against professional team
256 GPUs, 128k CPUs

180 years of experience per day

AlphaStar – Jan 2019
played 11 games against StarCraft II professionals, reaching 10 wins and 1 loss

20/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Notable Successes of Reinforcement Learning

Neural Architecture Search – 2017
automatically designing CNN image recognition networks surpassing state-of-the-art
performance
AutoML: automatically discovering

architectures (CNN, RNN, overall topology)
activation functions
optimizers
…

System for automatic control of data-center cooling – 2017

21/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Multi-armed Bandits

http://www.infoslotmachine.com/img/one-armed-bandit.jpg

22/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Multi-armed Bandits

Figure 2.1 of "Reinforcement Learning: An Introduction, Second Edition".

23/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Multi-armed Bandits

We start by selecting action , which is the index of the arm to use, and we get a reward of

. We then repeat the process by selecting actions , , …

Let be the real value of an action :

Denoting our estimated value of action at time (before taking trial), we would like

 to converge to . A natural way to estimate is

Following the definition of , we could choose a greedy action as

A 1

R 1 A 2 A 3

q (a)∗ a

q (a) =∗ E[R ∣A =t t a].

Q (a)t a t t

Q (a)t q (a)∗ Q (a)t

Q (a)t =def
 .

number of times action a was taken
sum of rewards when action a is taken

Q (a)t A t

A (a)t =def
 Q (a).

a
arg max t

24/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

-greedy Methodε

Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. We however also need to explore
the space of actions to improve our estimates.

An -greedy method follows the greedy action with probability , and chooses a uniformly

random action with probability .

ε 1 − ε

ε

25/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

-greedy Methodε

(greedy)

0

0.5

1

1.5

Average

reward

0 250 500 750 1000

Steps

0%

20%

40%

60%

80%

100%

%

Optimal

action

0 250 500 750 1000

Steps

1

1

ε=0.1

ε=0.01

ε=0.1

ε=0.01

ε=0

(greedy)ε=0

Figure 2.2 of "Reinforcement Learning: An Introduction, Second Edition".

26/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

-greedy Methodε

Incremental Implementation
Let be an estimate using rewards .Q n+1 n R , … ,R 1 n

Q n+1 = R

n

1

i=1

∑
n

i

= (R + R)
n

1
n

n − 1
n − 1

i=1

∑
n−1

i

= (R + (n − 1)Q)
n

1
n n

= (R + nQ − Q)
n

1
n n n

= Q + (R − Q)n
n

1
n n

27/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

-greedy Method Algorithmε

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a)← 0
N(a)← 0

Loop forever:

A←

⇢

argmaxaQ(a) with probability 1− ε (breaking ties randomly)
a random action with probability ε

R← bandit(A)
N(A)← N(A) + 1
Q(A)← Q(A) + 1

N(A)

⇥

R−Q(A)
⇤

Algorithm 2.4 of "Reinforcement Learning: An Introduction, Second Edition".

28/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Markov Decision Process

Agent

Environment

action

At

reward

Rt

state

St

Rt+1

St+1

Figure 3.1 of "Reinforcement Learning: An Introduction, Second Edition".

A Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action will lead from

state to , producing a reward ,

 is a discount factor (we will always use).

Let a return be . The goal is to optimize .

(S,A, p, γ)

S
A
p(S =t+1 s ,R =′

t+1 r∣S =t s,A =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1] γ = 1

G t G t =def
 γ R ∑k=0

∞ k
t+1+k E[G]0

29/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Multi-armed Bandits as MDP

To formulate -armed bandits problem as MDP, we do not need states. Therefore, we could

formulate it as:

one-element set of states, ;

an action for every arm, ;

assuming every arm produces rewards with a distribution of , the MDP dynamics

function is defined as

One possibility to introduce states in multi-armed bandits problem is to have separate reward
distribution for every state. Such generalization is usually called Contextualized Bandits problem.
Assuming that state transitions are independent on rewards and given by a distribution ,

the MDP dynamics function for contextualized bandits problem is given by

n

S = {S}
A = {a , a , … , a }1 2 n

N (μ ,σ)i i
2

p

p(S, r∣S, a) =i N (r∣μ ,σ).i i
2

next(s)

p(s , r∣s, a) =′
i N (r∣μ ,σ) ⋅i,s i,s

2 next(s ∣s).′

30/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

(State-)Value and Action-Value Functions

A policy computes a distribution of actions in a given state, i.e., corresponds to a

probability of performing an action in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy is defined analogously as

Evidently,

π π(a∣s)
a s

v (s)π

v (s)π =def E G S = s =π [t∣ t] E γ R S = s .π [∑
k=0

∞
k

t+k+1∣
∣
∣

t]

π

q (s, a)π =def E G S = s,A = a =π [t∣ t t] E γ R S = s,A = a .π [∑
k=0

∞
k

t+k+1∣
∣
∣

t t]

v (s)π

q (s, a)π

= E [q (s, a)],π π

= E [R + γv (S)∣S = s,A = a].π t+1 π t+1 t t

31/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Optimal Value Functions

Optimal state-value function is defined as

analogously

Any policy with is called an optimal policy. Such policy can be defined as

.

Existence
Under some mild assumptions, there always exists a unique optimal state-value function, unique
optimal action-value function, and (not necessarily unique) optimal policy. The mild
assumptions are that either termination is guaranteed from all reachable states, or .

v (s)∗ =def
 v (s),

π
max π

q (s, a)∗ =
def

 q (s, a).
π

max π

π ∗ v =π ∗ v ∗

π (s)∗ =def
 q (s, a) =

a
arg max ∗ E[R +

a
arg max t+1 γv (S)∣S =∗ t+1 t s,A =t a]

γ < 1

32/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Monte Carlo Methods

We now present the first algorithm for computing optimal policies without assuming a
knowledge of the environment dynamics.

However, we still assume there are finitely many states and we will store estimates for each of

them.

Monte Carlo methods are based on estimating returns from complete episodes. Furthermore, if
the model (of the environment) is not known, we need to estimate returns for the action-value
function instead of .

S

q v

33/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Monte Carlo Methods

To guarantee convergence, we need to visit each state infinitely many times. One of the
simplest way to achieve that is to assume exploring starts, where we randomly select the first
state and first action, each pair with nonzero probability.

Furthermore, if a state-action pair appears multiple times in one episode, the sampled returns
are not independent. The literature distinguishes two cases:

first visit: only the first occurence of a state-action pair in an episode is considered
every visit: all occurences of a state-action pair are considered.

Even though first-visit is easier to analyze, it can be proven that for both approaches, policy
evaluation converges. Contrary to the Reinforcement Learning: An Introduction book, which
presents first-visit algorithms, we use every-visit.

34/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Monte Carlo with Exploring Starts

Modification (no first-visit) of algorithm 5.3 of "Reinforcement Learning: An Introduction, Second Edition".

35/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Monte Carlo and -soft Policiesε

A policy is called -soft, if

For -soft policy, Monte Carlo policy evaluation also converges, without the need of exploring

starts.

We call a policy -greedy, if one action has maximum probability of .

The policy improvement theorem can be proved also for the class of -soft policies, and using

-greedy policy in policy improvement step, policy iteration has the same convergence

properties. (We can embed the -soft behaviour “inside” the environment and prove

equivalence.)

ε

π(a∣s) ≥ .
∣A(s)∣

ε

ε

ε 1 − ε + ∣A(s)∣
ε

ε

ε

ε

36/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small

Initialize arbitrarily (usually to 0), for all

Initialize to 0, for all

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S ,A ,R , … ,S ,A ,R 0 0 1 T−1 T−1 T

ε

A t =def arg max Q(S , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG + R T+1

C(S ,A) ←t t C(S ,A) +t t 1
Q(S ,A) ←t t Q(S ,A) +t t (G −

C(S ,A)t t

1 Q(S ,A))t t

37/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Policy Gradient Methods

Instead of predicting expected returns, we could train the method to directly predict the policy

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution instead of just -greedy sampling.

However, to train the network, we maximize the expected return and to that account we

need to compute its gradient .

π(a∣s; θ).

π ε

v (s)π

∇ v (s)θ π

38/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Policy Gradient Methods

In addition to discarding -greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).

probability of right action

-11.6

0.1 0.2

-20

-40

-60

-80

-100

0.3 0.40 0.6 0.7 0.8 0.90.5 1

-greedy left

-greedy right

optimal

stochastic

policy

J(θ) = vπθ (S)

GS

Example 13.1 of "Reinforcement Learning: An Introduction, Second Edition".

ε

39/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Policy Gradient Theorem

Let be a parametrized policy. We denote the initial state distribution as and the

on-policy distribution under as . Let also .

Then

and

where is probability of transitioning from state to using 0, 1, … steps.

π(a∣s; θ) h(s)
π μ(s) J(θ) =def E v (s)h,π π

∇ v (s) ∝θ π P (s →
s ∈S′

∑ … → s ∣π) q (s , a)∇ π(a∣s ; θ)′

a∈A

∑ π
′

θ
′

∇ J(θ) ∝θ μ(s) q (s, a)∇ π(a∣s; θ),
s∈S

∑
a∈A

∑ π θ

P (s → … → s ∣π)′ s s′

40/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Proof of Policy Gradient Theorem

We now expand .

Continuing to expand all , we obtain the following:

∇v (s) =π ∇[π(a∣s; θ)q (s, a)]∑
a

π

= [∇π(a∣s; θ)q (s, a) +∑
a

π π(a∣s; θ)∇q (s, a)]π

= [∇π(a∣s; θ)q (s, a) +∑
a

π π(a∣s; θ)∇(p(s ∣s, a)(r +∑
s′

′ v (s)))]π
′

= [∇π(a∣s; θ)q (s, a) +∑
a

π π(a∣s; θ)(p(s ∣s, a)∇v (s))]∑
s′

′
π

′

v (s)π
′

= [∇π(a∣s; θ)q (s, a) +∑
a

π π(a∣s; θ)(p(s ∣s, a)(∑
s′

′

 [∇π(a ∣s ; θ)q (s , a) +∑
a′

′ ′
π

′ ′ π(a ∣s ; θ)(p(s ∣s , a)∇v (s)))]′ ′ ∑
s′′

′′ ′ ′
π

′′

v (s)π
′′

∇v (s) =π P (s →
s ∈S′

∑ … → s ∣π) q (s , a)∇ π(a∣s ; θ).′

a∈A

∑ π
′

θ
′

41/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

Proof of Policy Gradient Theorem

Recall that the initial state distribution is and the on-policy distribution under is .

If we let denote the number of time steps spent, on average, in state in a single episode,

we have

The on-policy distribution is then the normalization of :

The last part of the policy gradient theorem follows from the fact that is

h(s) π μ(s)
η(s) s

η(s) = h(s) + η(s) π(a∣s)p(s∣s , a).
s′

∑ ′

a

∑ ′ ′

η(s)

μ(s) =
def

 .
 η(s)∑s′

′

η(s)

μ(s)

μ(s) = E P (s →s ∼h(s)0 0 … → s∣π).

42/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

maximizing . The loss is defined as

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

where we used the fact that

J(θ) =def E v (s)h,π π

−∇ J(θ)θ ∝ μ(s) q (s, a)∇ π(a∣s; θ)
s∈S

∑
a∈A

∑ π θ

= E q (s, a)∇ π(a∣s; θ).s∼μ

a∈A

∑ π θ

−∇ J(θ) ∝θ E E q (s, a)∇ ln π(a∣s; θ),s∼μ a∼π π θ

∇ ln π(a∣s; θ) =θ ∇ π(a∣s; θ).
π(a∣s; θ)

1
θ

43/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

REINFORCE Algorithm

REINFORCE therefore minimizes the loss

estimating the by a single sample.

Note that the loss is just a weighted variant of negative log likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

Modification of Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition".

−E E q (s, a)∇ ln π(a∣s; θ),s∼μ a∼π π θ

q (s, a)π

44/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

REINFORCE with Baseline

The returns can be arbitrary – better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline to

The baseline can be a function or even a random variable, as long as it does not depend

on , because

b(s)

∇ J(θ) ∝θ μ(s) (q (s, a) −
s∈S

∑
a∈A

∑ π b(s))∇ π(a∣s; θ).θ

b(s)
a

 b(s)∇ π(a∣s; θ) =
a

∑ θ b(s) ∇ π(a∣s; θ) =
a

∑ θ b(s)∇1 = 0.

45/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

REINFORCE with Baseline

A good choice for is , which can be shown to minimize variance of the estimator.

Such baseline reminds centering of returns, given that

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting function is also called an advantage function

Of course, the baseline can be only approximated. If neural networks are used to estimate

, then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

b(s) v (s)π

v (s) =π E q (s, a).a∼π π

q (s, a) −π v (s)π

a (s, a)π =def
q (s, a) −π v (s).π

v (s)π

π(a∣s; θ)

46/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

REINFORCE with Baseline

Modification of Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition".

47/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

REINFORCE with Baseline

Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".

48/48NPFL114, Lecture 11 WaveNet ParallelWaveNet Tacotron RL MDP MonteCarlo REINFORCE Baseline

