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Generative Models Uz

Generative models are given a set X of realizations of a random variable x and their goal is to
estimate P(x).

Usually the goal is to be able to sample from P(x), but sometimes an explicit calculation of

P(x) is also possible.
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Deep Generative Models Uz
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Figure 1 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

One possible approach to estimate P(&) is to assume that the random variable x depends on a
latent variable z:

P(x) = P(z)P(x|z).

We use neural networks to estimate the conditional probability with Py (x|z).
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AutoEncoders

® unsupervised feature extraction

® input compression for z <

® when @ + € is used as input, autoencoders can perform denoising
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Variational AutoEncoders

We assume P(z) is fixed and independent on X.

We approximate P(@|z) using Py(x|z). However, in order to train an autoencoder, we need
to know the posterior Py(z|a), which is usually intractable.

We therefore approximate Pg(z|x) by a trainable Q. (2|x).
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Let us define variational lower bound or evidence lower bound (ELBO), denoted L£(8, ¢

L(0, p;x) = log Po(x) — Dx1(Qy(2]2)||Pe(2])).

Because KL-divergence is non-negative, £(8, ¢;x) < log Py(x).

By using simple properties of conditional and joint probability, we get that

L(0,p;x) = Eq,(2/x) [log Po() + log Py(2z|®) — log Qp (2|)]
= Eq, (2/z)[log Po(x, ) —log Qy (2|x)]
= Eq,(zx) |log Po(@|z) + log P(z) — log Qy(2|)]
= Eq,(2|z)[log Po(x|z)] — Dxi(Qy(2[2)||P(2)).
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L(0, p;x) = Eq,(z|z) [l0g Po(|2)] — Dk (Qy(2|2)||P(2))

We train a VAE by maximizing £(0, ¢; x), taking a single point estimate of the expectation
and using a prior P(z) = N(0,1).
Note that the loss has 2 intuitive components:

® reconstruction loss: Starting with @, and passing though () and then again through P

should arrive back at .
® latent loss: The distribution of Q. (z|®) should be as close to the prior P(z) = N (0, 1),

which is independent on .
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Variational AutoEncoders

In order to derivate through 2z ~ Q,(z|x), note that if
z ~ N(p,0%),
we can write 2 as
z~pu+o-N(0,1).

Such formulation then allows differentiating 2z with respect to pt and o and is called a
reparametrization trick (Kingma and Welling, 2013).
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Variational AutoEncoders
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(b) Learned MNIST manifold

Figure 4 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.
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Variational AutoEncoders
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

Figure 5 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.
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We have a generator, which given z ~ P(z) generates data .
We denote the generator as G(z;8,).

Then we have a discriminator, which given data @ generates a probability whether & comes
from real data or is generated by a generator.

We denote the discrimininator as D(x; ;).

The discriminator and generator play the following game:

min max Eq.p,,, [log D()] + Exp(s llog(1 ~ D(G(2)))]
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Generative Adversarial Networks
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Figure 1 of paper "Generative Adversarial Nets", https: //arxiv.org/abs/1406.2661.
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(z).
e Sample minibatch of m examples {m(l), e ,x(m)} from data generating distribution
pdata(w)~

e Update the discriminator by ascending its stochastic gradient:

Vo, 23" [log D () 410 (1- D (6 ()]

1=

end for
e Sample minibatch of m noise samples {z(1), ... 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, o (10 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Generative Adversarial Networks
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Figure 2 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.
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Conditional GAN

Gscriminator D(xly) @

- ece0®

00000

éenerator G(zly) (. ‘ ‘ ‘ .1
00000

_

~

- 00000 00000

\_

_/

Figure 1 of paper "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784.
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Deep Convolutional GAN Uz

\_ 2N /
(a) (c)

Figure 1 of paper "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269.
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Deep Convolutional GAN Uz
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Figure 1 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN Uz
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Figure 2 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN Uz

Figure 3 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 10 Autoencoders VAE ReparametrizationTrick GAN CGAN DCGAN WGAN *GAN 21/33




Deep Convolutional GAN Uz
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Figure 4 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN
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Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN
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Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN Uz

Figure 8 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv. org/abs]1511.06434.
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GANs are Problematic to Train
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Figure 2 of paper "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163.
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Minibatch Discrimination
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Figure 1 of paper "Improved Techniques for Training GANs", https://arxiv.org/abs/1606.03498.
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Instead of minimizing JS divergence
JS(p,q) = KL(pl||lq) + KL(ql|p),
Wasserstein GAN minimizes Earth-Mover distance

Wip,q) = inf E._ ., |||z — :
(p, q) nf ) |1z — ||

The joint distribution v € II(p, q) indicates how much “mass” must be transported from x to
Yy, and EM is the “cost” of the optimal transport plan.
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Wasserstein GAN UF\RL

Using a dual version of the Earth-Mover definition, we arrive at

W9 = sup Eeop[f(2)] — Eyeg[f()].
HIlfllL<1

— Density of real

— Density of fake
— GAN Discriminator
—  WGAN Critic
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Figure 2 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, Neritic = O.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritics the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6y, initial generator’s parameters.
1: while 6 has not converged do
2 for t =0, ..., Neritic do
3 Sample {29}, ~ P, a batch from the real data.
4: Sample {z(V}™  ~ p(z) a batch of prior samples.
S gt Vi [R S ful(e®) = LS fu(gp(=0))]
6:
7
8
9

w  w + a - RMSProp(w, g,)
w < clip(w, —¢, ¢)
end for
: Sample {z(V}™  ~ p(z) a batch of prior samples.
10: gp =V >ty fulge(27))
11: 0 < 6 — o - RMSProp(0, go)
12: end while
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Wasserstein GAN UF\RL

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:
standard GAN formulation. Both algorithms produce high quality samples.
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Figure 6: Algorithms trained with a generator without batch normalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.
Figures 5 and 6 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

NPFL114, Lecture 10 Autoencoders VAE ReparametrizationTrick GAN CGAN DCGAN WGAN *GAN 31/33



Wasserstein GAN UF\RL

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReL U
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for itmage generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.

Figure 7 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Generative Adversarial Networks are still in active development:

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs
for Improved Quality, Stability, and Variation https://arxiv.org/abs/1710.10196

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral
Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957

Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in
Generative Adversarial Nets https: //arxiv.org/abs/1807.00751

Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High
Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096

Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for
Generative Adversarial Networks https://arxiv.org/abs/1812.04948

Alternative approaches are also explored: Diederik P. Kingma, Prafulla Dhariwal: Glow:
Generative Flow with Invertible 1x1 Convolutions https://arxiv.org/abs/1807.03039
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