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Recurrent Neural Networks

Single RNN celi

Unrolled RNN cells

output 1
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Basic RNN Caell

mput

output = new Sstate

previous state

t—1)

Given an input z®) and previous state sl , the new state is computed as

s = £(st) 0. g).

One of the simplest possibilities is

s = tanh(Us" Y + v +b).
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Basic RNN cells suffer a lot from vanishing/exploding gradients (the challenge of long-term
dependencies).

If we simplify the recurrence of states to
st) = Uslt-1),
we get
s — ts(0)
If U has eigenvalue decomposition of U = QAQ_l, we get
st — QAtQ_ls(O).

The main problem is that the same function is iteratively applied many times.

Several more complex RNN cell variants have been proposed, which alleviate this issue to some
degree, namely LSTM and GRU.
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Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from memory
cell ¢; was added.

it — O-(Wimt + Viht_l —+ bz) \/
foeo(Wla + VI | +b)
o+ o(W'z; + V°hi1 +b°)

¢, < fi-c-1+4 - tanh(WVe, + VPhy 1 +b7) - h
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Long Short-Term Memory
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Gated Recurrent Unit
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Gated Recurrent Unit
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ht:(l—zt)*ht_l—l—zt*?zt

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png
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One-hot encoding considers all words to be independent of each other.
However, words are not independent — some are more similar than others.

|deally, we would like some kind of similarity in the space of the word representations.

Distributed Representation

The idea behind distributed representation is that objects can be represented using a set of
common underlying factors.

We therefore represent words as fixed-size embeddings into R? space, with the vector elements
playing role of the common underlying factors.
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Word Embeddings Urzt

The word embedding layer is in fact just a fully connected layer on top of one-hot encoding.
However, it is important that this layer is shared across the whole network.

D1 Dl
Vv D
D, D Do
Word in % Word in vV D
one-hot = one-hot > =
encoding encoding
Dy Dy
Vv D
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Word Embeddings for Unknown Words

Recurrent Character-level WEs

Figure 1 of paper "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation”, https://arxiv.org/abs/1508.02096.
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Word Embeddings for Unknown Words et

Convolutional Character-level WEs

(e 7
\T/ Highway network

+ 4 Max-over-time
max{-} pooling layer

Convolution layer

/ with multiple filters

of different widths

Concatenation
L) of character
embeddings

moment  the E:absurdity:é is recognized

Figure 1 of paper "Character-Aware Neural Language Models", https://arxiv.org/abs/1508.06615.
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Sequence Element Classification

Use outputs for individual elements.

output 1 output 2 output 3

Sequence Representation

Use state after processing the whole sequence (alternatively, take output of the last element).
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Structured Prediction U=

Consider generating a sequence of y1,...,yn € Y given input &1,...,ZN.
Predicting each sequence element independently models the distribution P(y;|X).

However, there may be dependencies among the y; themselves, which is difficult to capture by
independent element classification.
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Linear-chain Conditional Random Fields, usually abbreviated only to CRF, acts as an output
layer. It can be considered an extension of a softmax — instead of a sequence of independent
softmaxes, CRF is a sentence-level softmax, with additional weights for neighboring sequence

elements.

N
s(X,4;0,4) = > (A4 + fo(uil X))

=1

p(y|X) = softmax,y~ (s(X, 2))

z

logp(y|X) = s(X,y) — logadd, .y~ (s(X, 2))
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Linear-Chain Conditional Random Fields (CRF) Vet

Computation
We can compute p(y|X) efficiently using dynamic programming. If we denote ay (k) as
probability of all sentences with t elements with the last y being k.

The core idea is the following:

at(k) = fo(yr = k| X) + logadd,cy (as—1(j) + Ajx)-

For efficient implementation, we use the fact that

In(a +b) = Ina + In(1 4 em071n9),
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Conditional Random Fields (CRF)
Decoding

We can perform optimal decoding, by using the same algorithm, only replacing logadd with
max and tracking where the maximum was attained.

Applications
CRF output layers are useful for span labeling tasks, like

® named entity recognition
® dialog slot filling
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Let us again consider generating a sequence of y1,...,yp given input ®1,..., 2N, but this
time M < NN and there is no explicit alignment of & and vy in the gold data.
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We enlarge the set of output labels by a — (blank) and perform a classification for every input

element to produce an extended labeling. We then post-process it by the following rules
(denoted B):

1. We remove neighboring symbols.
2. We remove the —.

Because the explicit alignment of inputs and labels is not known, we consider all possible
alignments.

Denoting the probability of label [ at time t as pf, we define

t
e /
at(s) d:f Z Hpirt/ *
t'=1

labeling 7:B(71.+)=y,.,
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In CRF, we normalize the whole sentences, therefore we need to compute unnormalized
probabilities for all the (exponentially many) sentences. Decoding can be performed optimally.

In CTC, we normalize per each label. However, because we do not have explicit alignment, we
compute probability of a labeling by summing probabilities of (generally exponentially many)
extended labelings.
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Connectionist Temporal Classification

Computation

When aligning an extended labeling to a regular one, we need to consider whether the extended
labeling ends by a blank or not. We therefore define

t
/
o (s) = > 117,
t'=1

labeling m:B(m1.4)=Yq.,,Tt=—

t
ol (s) = > 117,

labeling 7:B(w1:t)=y,.,,m#— t' =1

and compute a’(s) as ot (s) + al(s).
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Computation

We initialize as as follows:

e ol (0) «+ pt
* a,(1) < p,

S NON RON |

-

We then proceed recurrently according to:
o ol (s) «+ pt (o t(s) +all(s))
Pl (el l(s) + ol M (s — 1) +a (s — 1)), if ys # Ys1

* o, (s) < i ,
Py, (@ (s) + a7 (s — 1)), if ys = Yo
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Unlike CRF, we cannot perform the decoding optimally. The key observation is that while an
optimal extended labeling can be extended into an optimal labeling of a larger length, the same
does not apply to regular (non-extended) labeling. The problem is that regular labeling
coresponds to many extended labelings, which are modified each in a different way during an
extension of the regular labeling.

]_O """ ‘. - - mmeom
‘. V4
A Y V4
. '
. .
0.8 ' K p(I=blank) = p(- -)
blank  *, K = 0.7%0.6
0.6 MY = 0.42
~
0.4
p(1=A) = p(AA)+p(A-)+p(-A)
0.2 A = 0.3*0.4 + 0.3*0.6 + 0.7*0.4
' = 0.58
0.0
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Beam Search

To perform beam search, we keep k best regular labelings for each prefix of the extended

labelings. For each regular labeling we keep both «x_ and a, and by best we mean such regular
labelings with maximum a_ + a.

To compute best regular labelings for longer prefix of extended labelings, for each regular
labeling in the beam we consider the following cases:

® adding a blank symbol, i.e., updating both a_ and a;
® adding any non-blank symbol, i.e., updating a.

Finally, we merge the resulting candidates according to their regular labeling and keep only the
k best.
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The embeddings can be trained for each task separately.

However, a method of precomputing word embeddings have been proposed, based on
distributional hypothesis:

Words that are used in the same contexts tend to have similar meanings.

The distributional hypothesis is usually attributed to Firth (1957).
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INPUT PROJECTION OUTPUT

Wt4-1

Wt+2

SUM

INPUT PROJECTION OUTPUT

CBOW (Continuous Bag Of Words)

Mikolov et al. (2013) proposed two very simple architectures for precomputing word
embeddings, together with a C multi-threaded implementation word2vec.

Word2vec

NN

Skip-gram

Wt41

W42
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Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: 1iPhone
Apple: Jobs
USA: pizza

Word2vec

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).
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Word2Vec — SkipGram Model Uz

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
Wt—9 Wt—2
o / o

SUM Wy Wy ——
. \ W
Wyy2 W42
CBOW (Continuous Bag Of Words) Skip-gram

Considering input word w; and output w,, the Skip-gram model defines

1

S, eVeVu
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Word2Vec — Hierarchical Softmax

Instead of a large softmax, we construct a binary tree over the words, with a sigmoid classifier
for each node.

If word w corresponds to a path nq,n9,...,n7, we define

L-1
prs (w|w;) = H o([+1if n; ; is right child else-1] - W,TLJ V)
=1
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Instead of a large softmax, we could train individual sigmoids for all words.
We could also only sample the negative examples instead of training all of them.

This gives rise to the following negative sampling objective:

k
INEG ('woa wi) = logU(Wgo sz) + ZijNP(w) log (]- - O-(szj sz))

j=1
For P(w), both uniform and unigram distribution U (w) work, but
U(w)3/4

outperforms them significantly (this fact has been reported in several papers by different
authors).

Word2vec
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increased | John Noahshire phding
reduced | Richard || Nottinghamshire mixing
improved | George Bucharest modelling
expected | James Saxony styling
decreased | Robert Johannesburg blaming
targeted | Edward || Gloucestershire | christening

Subword Embeddings

Table 2: Most-similar in-vocabular words under
the C2W model; the two query words on the left
are 1n the training vocabulary, those on the right
are nonce (invented) words.
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In Vocabulary Out-of-Vocabulary

while his you richard trading computer-aided misinformed  looooook
although your  conservatives jonathan  advertised — — —
LSTM-Word letting her we robc?rt advertising — — —
though my guys neil turnover — — —
minute their [ nancy turnover — — —
chile this your hard heading computer-guided informed look
LSTM-Char whole hhs young rich training computerized performed cook
(before highway)  meanwhile is four richer reading disk-drive transformed looks
white has youth richter leading computer inform shook
meanwhile hhs we eduard trade computer-guided informed look
LSTM-Char whole this your gerard training computer-driven performed looks
(after highway) though their doug edward traded computerized outperformed  looked
nevertheless  your i carl trader computer transformed looking

Table 6: Nearest neighbor words (based on cosine similarity) of word representations from the large word-level and character-level (before

and after highway layers) models trained on the PTB. Last three words are OOV words, and therefore they do not have representations in the
word-level model.
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Another simple idea appeared simultaneously in three nearly simultaneous publications as
Charagram, Subword Information or SubGram.

A word embedding is a sum of the word embedding plus embeddings of its character n-grams.
Such embedding can be pretrained using same algorithms as word2vec.

The implementation can be

® dictionary based: only some number of frequent character n-grams is kept;
® hash-based: character n-grams are hashed into K buckets (usually K ~ 10° is used).
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https://arxiv.org/abs/1607.02789
https://arxiv.org/abs/1607.04606
http://link.springer.com/chapter/10.1007/978-3-319-45510-5_21

query tiling tech-rich english-born  micromanaging  eateries dendritic

sisg tile tech-dominated  british-born ~ micromanage  restaurants dendrite
flooring tech-heavy polish-born  micromanaged eaterie dendrites

sg bookcases technology-heavy most-capped defang restaurants  epithelial
built-ins JIxic ex-scotland internalise delis pS3

Table 7: Nearest neighbors of rare words using our representations and skipgram. These hand picked
examples are for illustration.
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Charagram WEs

NPFL114, Lecture

<rar - <you - b
arari - i <youn - | | 5
' <young | | B | s
<rarit - B 2 “youn - i
B S = N | i
rari - S young
i | <, young> - g
rarit oung i
%’ rarity - b oung> - | | B
& arit| 1 [Tt TN | N E
L i PEOITVOTVI OV F2NON oY COCECEAEAAN
i S e S T R R
arity> GESES 28588 "RE €g o3 2g°8g7 a5 8
rity - q v 2 @ - @
rity> - 4 preadolescent
WL O ELQURCOCOCOPOPBERAY AN
M = © = =
§ESBECEEBEEEREBREELIREAG :
Vve "o 0d " w2 egogsegacge <chi B
v S @ £ 3 5 <chip i
carcene: 2 <chip> 1
5 chip e
chip= B
. . . . hip> ]
<pav [ 1 K AA
<pavi - B 3°
v [ HEEE N
pavi - B
pavin 9
2 paving F i
£ paving . ——
E avin q <spi
aving - b <spic . .
aving> - 1 <spici - )
o [
’ spic 9
vings i P
ng>r, . M spiot )
5 ﬁ [g - spicin - b
picin . A
@ iein b 4
T —— T —— ——— @ on
<con [,
S icine [ B
<conn o
<conne Z icines B
conn B cine - B
conne 1 cines
connec 1
u ciness A
E onne 1 .
ines - B
c i
c onnec
3 onnect B iness |- b
nnec b iness> - B
nnect 1
|| ness | | i
nnect> 1
| :
nect> ess> [ L L L 1 L L L 1 L 1 L L 1 L
ect> o 38 3 @ g % S g 5 2 >0 3 A 344
Lo N Co L = 75 75 @ 2 g € @ ¢ 0 ¢ -
= . = = a 3 a =1 S§3§c2zcdce
cgs E3 EEEZ4:E4¢ vegegeTeidigSggeg g
Ve s = E s SESEE v a g =3 g
interlink piguancy

Figure 2: Illustration of the similarity between character n-grams in out-of-vocabulary words. For each pair,
only one word is OOV, and is shown on the = axis. Red indicates positive cosine, while blue negative.

Figure 2 of paper "Enriching Word Vectors with Subword Information”, https://arxiv.org/abs,/1607.04606.
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Sequence-to-Sequence Architecture

Sequence-to-Sequence Architecture
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Sequence-to-Sequence Architecture

(PR S S S A
Lt

Figure 1 of paper "Sequence to Sequence Learning with Neural Networks", https://arxiv.org/abs/1409.0473.
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Sequence-to-Sequence Architecture

Decoder

X1 X2 Xt

Encoder

Figure 1 of paper "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation", https://arxiv.org/abs/1406.1078.
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Training

The so-called teacher forcing is used during
training — the gold outputs are used as inputs
during training.

Inference

During inference, the network processes its own
predictions.

Usually, the generated logits are processed by
an arg max, the chosen word embedded and

used as next input.

Seq2seq 39/49



Tying Word Embeddings ezt

Target word id

!

Matrix V x D

'

Target word embedding

!

—> RNN —
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Output layer

'

Matrix D x V

'

Target word logits
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As another input during decoding, we add context vector ¢;:

S; — f(si—h Yi1s Cz)

We compute the context vector as a weighted combination of
source sentence encoded outputs:

C, — Zaijhj
J

The weights «;; are softmax of e;; over j, h, [ h 7 hs[ ™ T hy

a; = softmax(e;), — || — — | -«

with e;; being

X, X X a
€ij = v' tanh(th + Ws; 1+ b)

Attention 41/49
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Translate subword units instead of words. The subword units can be generated in several ways,

the most commonly used are

® BPE - Using the byte pair encoding algorithm. Start with characters plus a special end-of-
word symbol -. Then, merge the most occurring symbol pair A, B by a new symbol AB,

with the symbol pair never crossing word boundary.
Considering a dictionary with words low, lowest, newer, wider:
r o=
[ o—lo
lo w— low

e r-— er

® \Wordpieces — Joining neighboring symbols to maximize unigram language model likelihood.

Usually quite little subword units are used (32k-64k), often generated on the union of the two

vocabularies (the so-called joint BPE or shared wordpieces).
NMT
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Google NMT ezt
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Figure 1 of paper "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", https://arxiv.org/abs/1609.08144.
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Google NMT ezt
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Figure 5 of paper "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", https://arxiv.org/abs/1609.08144.
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Google NMT Ut
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Figure 6 of paper "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", https://arxiv.org/abs/1609.08144.
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Beyond one Language Pair

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
on a ramp. . frisbee.

motorcycle on a dirt road.

A group of young people Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
playing a game of frisbee _fighting over the puck. food and drinks.

A herd of eiehants walki ng

A close up of a cat laying
across a dry grass field.

A red motorcycle parked on the A yellow school bus parked
on a couch.

side of the road. ~====in a parking lot.

Fig. 5. A selection of evaluation results, grouped by human rating.

Somewhat related to the image

Figure 5 of "Show and Tell: Lessons learned from the 2015 MSCOCO...", https://arxiv.org/abs/1609.06647.
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Beyond one Language Pair U=

—

What vegetable is the dog  What kind of dog is this? ~ What kind of flooring does

chewing on? MCB: husky the room have?
MCB: carrot GT: husky MCB: carpet
GT: carrot GT: carpet
#
i
‘ w
| .

What color is the traffic Is this an urban area? Where are the buildings?
light? MCB: yes MCB: in background
MCB: green GT: yes GT: on left
GT: green

Figure 6 of "Multimodal Compact Bilinear Pooling for VQA and Visual Grounding", https://arxiv.org/abs/1606.01847.
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Multilingual Translation

Many attempts at multilingual translation.

® |ndividual encoders and decoders, shared attention.

® Shared encoders and decoders.
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