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Recurrent Neural Networks
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Basic RNN Caell

mput

output = new Sstate

previous state

t—1)

Given an input z®) and previous state sl , the new state is computed as

s = £(st) 0. g).

One of the simplest possibilities is

s = tanh(Us" Y + v +b).
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Basic RNN cells suffer a lot from vanishing/exploding gradients (the challenge of long-term
dependencies).

If we simplify the recurrence of states to
st) = Uslt-1),
we get
s — ts(0)
If U has eigenvalue decomposition of U = QAQ_l, we get
st — QAtQ_ls(O).

The main problem is that the same function is iteratively applied many times.

Several more complex RNN cell variants have been proposed, which alleviate this issue to some
degree, namely LSTM and GRU.
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Long Short-Term Memory Uz

Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from memory
cell ¢; was added.

i, — o(Wim, + Vihe | + b)) N/
fo—o(Wla,+V/ih_, +b) ;]
o; +— o(W°x +V°h;_ 1+ b°)

c; < f,-¢ci1+ 1 -tanh(WVx; + VVhy_ 1 +bY) - h
h; < o; - tanh(c;) h>> = ] = ] -
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Long Short-Term Memory
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Long Short-Term Memory

(

N
> —O——®

U=

i
J

|
&)

NPFL114, Lecture 7 Refresh

J

|
®)

GRU Highway Networds RNN Regularization

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png

Word Embeddings

CRF 7/45



Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-C-line.png
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Long Short-Term Memory
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Long Short-Term Memory

fi ft — J(Wf‘[ht_ljxt] + bf)

http://colah.github.io/posts/2015-08-Understanding-LSTMs /img/LSTM3-focus-f.png
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Long Short-Term Memory

Ji itr‘% Cy = fr % Crq + iy % Cy

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-C.png
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Long Short-Term Memory
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Gated Recurrent Unit Uz

Gated recurrent unit (GRU) was proposed by Cho et al. (2014) as a simplification of LSTM.
The main differences are

® no memory cell
® forgetting and updating tied together
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Gated Recurrent Unit
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Gated Recurrent Unit

2 =0 (W, - hi—1, 2
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ht — tanh (W . [’)"t X ht_l,il’ft])
ht:(l—zt)*ht_l—l—zt*?zt

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png
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Highway Networks

NPFL114, Lecture 7 Refresh GRU

Highway Networks

Highway Networds

RNN Regularization

Word Embeddings

CRF

U=

16,45



Highway Networks

For input @, fully connected layer computes
y < H(x,Wpg).

Highway networks add residual connection with gating:

y<« Hz,Wg) - T(z,Wr)+x-(1-T(z, Wr)).

Usually, the gating is defined as

T(w, WT) — O'(WTiB + bT)
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Highway Networks

10" 5 = 10
E — 10 layers
1 Plain Networks Highway Networks = = 20layers

10° ghway - .- 50layers 10°
2 100 layers

=
e
=

107 4

S lea e ie.,

10° 4

Training Set Cross Entropy Error

10
04 00000 T~ T
1076 T T T T T T T T T T T T T T 1076
0 50 100 150 200 250 300 350 400 350 300 250 200 150 100 50 0
Epochs Epochs

Training Set Cross Entropy Error

I Plain
Ed Highway

10

= 10°

20 50 100
Number of layers

Figure 1: Comparison of optimization of plain networks and highway networks of various depths.
Left: The training curves for the best hyperparameter settings obtained for each network depth.
Right: Mean performance of top 10 (out of 100) hyperparameter settings. Plain n tworks become
much harder to optimize with increasing depth, while highway networks with up to 100 layers can
still be optimized well. Best viewed on screen (larger version included in Supplementary Material).

Figure 1 of paper "Training Very Deep Networks", https://arxiv.org/abs/1507.06228.
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Highway Networks

Transform Gate Biases

R

R ]

1 %.. i"‘.| -|'|r hf

20:‘;7.': '. *3'5."

b o= ! ll': Nl N

i P “||= g1
= A 0 III ]

sk e IT (R

S LT {8

40 58 B :|h|.' 4

'H.:'.'i" J

L - []
|
(=] 20 = . 8
= = : o,
2 5 ph D el AT
| .| |
{,E) DSOE—"‘I (4 _l -B-".?'Ju"j

NPFL114, Lecture 7 Refresh

GRU

Mean Transform Gate Qutputs

Highway Networds

RNN Regularization

Transform Gate Outputs

‘I
o
)

2 = e
v o o

0.2
0.1

[l

i 1 1 |

(= N - A~ O~ = |
w r o N >

e =
P

0.0

0 10 20 30 40

Block

Word Embeddings

0

Figure 2 of paper "Training Very Deep Networks",

CRF

Block Outputs

0.2
0.0

-0.2
—0.4
-0.6
-0.8

-1.0
1.0
0.8
0.6

A

0.4
0.2

0.0
-=0.2
. —0.4
-0.6

—0.8

: —-1.0
10 20 30 40

Block
https://arxiv.org/abs/1507.06228.

19/45



Lesioned Highway Layer Lesioned Highway Layer
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Figure 4: Lesioned training set performance (y-axis) of he best 50-layer highway networks on
MNIST (left) and CIFAR-100 (right), as a function of the lesioned layer (x-axis). Evaluated on
the full training set while forcefully closing all the transform gates of a single layer at a time. The
non-lesioned performance is indicated as a dashed line at the bottom.
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Dropout
® Using dropout on hidden states interferes with long-term dependencies.

® However, using dropout on the inputs and outputs works well and is used frequently.
O |n case residual connections are present, the output dropout needs to be applied before

adding the residual connection.

® Several techniques were designed to allow using dropout on hidden states.
O Variational Dropout

O Recurrent Dropout
O Zoneout
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Regularizing RNNs Urzt

Variational Dropout

Yt—1 Yt Yt+1 Yt—1 Yt Yt+1
A A T A A A
————— J------>0------>0----> ——3[] > > 1—>
A A A A A
————— > T————>g———>T> )T 9T ﬁT >
Lt—1 Lt Li+1 Lt—1 Lt Li+1
(a) Naive dropout RNN (b) Variational RNN

Figure 1 of paper "A Theoretically Grounded Application of Dropout in Recurrent Neural Networks", https://arxiv.org/abs/1512.05287. pdf

Implemented in tf.keras.layers.{RNN,LSTM,GRU} using dropout and
recurrent_dropout arguments (for dropping inputs and previous states, respectively).
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Recurrent Dropout

Dropout only candidate states (i.e., values added to the memory cell in LSTM and previous
state in GRU).

Zoneout

Randomly preserve hidden activations instead of dropping them.

Batch Normalization

Very fragile and sensitive to proper initialization (there were papers with negative results until
people managed to make it work).

RNN Regularization 25/45



Regularizing RN Ns

Layer Normalization

Much more stable than batch normalization.
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Figure 2: Validation curves for the attentive reader model. BN results are taken from [Cooijmans
et al., 2016].

Figure 2 of paper "Layer Normalization", https://arxiv.org/abs/1607.06450.
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One-hot encoding considers all words to be independent of each other.
However, words are not independent — some are more similar than others.

|deally, we would like some kind of similarity in the space of the word representations.

Distributed Representation

The idea behind distributed representation is that objects can be represented using a set of
common underlying factors.

We therefore represent words as fixed-size embeddings into R? space, with the vector elements
playing role of the common underlying factors.
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Word Embeddings Upt

The word embedding layer is in fact just a fully connected layer on top of one-hot encoding.
However, it is important that this layer is shared across the whole network.

D1 Dl
Vv D
D, D Do
Word in % Word in Vv D
one-hot = one-hot > =
encoding encoding
Dy Dy
Vv D
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Word Embeddings for Unknown Words Uz

Recurrent Character-level WEs

Character
Lookup
Table

/
ST @0 008 O o'/ol © 5 0l

embeddings
for word "cats"

Figure 1 of paper "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation”, https://arxiv.org/abs/1508.02096.
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Word Embeddings for Unknown Words Vet

Convolutional Character-level WEs

(e 7
\T/ Highway network

+ 4 Max-over-time
max{-} pooling layer

Convolution layer

/ with multiple filters

of different widths

Concatenation
L) of character
embeddings

moment  the E:absurdity:é is recognized

Figure 1 of paper "Character-Aware Neural Language Models", https://arxiv.org/abs/1508.06615.
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Character-level WE Implementation

Training
® (Generate unique words per batch.
® Process the unique words in the batch.

® (Copy the resulting embeddings suitably in the batch.

Inference

® \We can cache character-level word embeddings during inference.
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Sequence Element Classification

Use outputs for individual elements.

output 1 output 2 output 3

Sequence Representation

Use state after processing the whole sequence (alternatively, take output of the last element).

Word Embeddings 32/45



Refresh

cats eat fish

Word Lookup
o ' .

Lexical = e e i

Composition
Model
embedings
O ‘ O O O for words

Bi-LSTM v v v

00 00

00
o:;}4x> 0000

__!gfi \/ \/ .
embedings
O O . . . O for words

in context
Softmax / \J /
over
o D0 @00 [0oe
\
NNS VBP NN
GRU Highway Networds RNN Regularization Word Embeddings CRF

33/45



Sequence Tagging

GRU
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—
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Figure 1 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch”, https://arxiv.org/abs/1603.06270.
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Multitask Learning

NPFL114, Lecture 7 Refresh

Figure 2 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.
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Multitask Learning ez

Traditional Stacking Stack-propagation

Task B Task B

Task A Task A

Backpropagation

] |
Figure 1 of paper "Stack-propagation: Improved Representation Learning for Syntax", https://arxiv.org/abs/1603.06598.
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Multitask Learning
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Figure 2 of paper "Stack-propagation: Improved Representation Learning for Syntax", https://arxiv.org/abs/1603.06598.
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Multitask Learning Urzt
t

Entailment
L’ A V<‘

Entailment Entailment
encoder encoder

Relatedness

semantic
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encoder encoder

DEP DEP

syntactic
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word level

| word representation | word representation
Sentencey Sentences

Figure 1 of paper "A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks", https://arxiv.org/abs/1611.01587.
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Structured Prediction
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Structured Prediction U=

Consider generating a sequence of Y1,...,yn € YV given input 1,...,ZN.
Predicting each sequence element independently models the distribution P(y;|X).

However, there may be dependencies among the y; themselves, which is difficult to capture by
independent element classification.
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Let G = (V, E) be a graph such that Y is indexed by vertices of G. Then (X, y) is a
conditional Markov field, if the random variables y conditioned on X obey the Markov
property with respect to the graph, i.e.,

Usually we assume that dependencies of y, conditioned on X, form a chain.

CRF
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Linear-chain Conditional Random Fields, usually abbreviated only to CRF, acts as an output
layer. It can be considered an extension of a softmax — instead of a sequence of independent
softmaxes, CRF is a sentence-level softmax, with additional weights for neighboring sequence

elements.

N
s(X,4;0,A4) = > (A4 + fo(uil X))

=1

p(y|X) = softmax,y~ (s(X, 2))

z

logp(y|X) = s(X,y) — logadd, .y~ (s(X, 2))
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Linear-Chain Conditional Random Fields (CRF) Vet

Computation
We can compute p(y|X) efficiently using dynamic programming. We denote a; (k) the
logarithmic probability of all t-element sequences with the last label y being k.

The core idea is the following:

il ok

t—1
ai(k) = fo(y: = k| X) + logadd,cy (a1 (j) + A1)

For efficient implementation, we use the fact that

In(a + b) =Ina + In(1 + ™07109),
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Inputs: Network computing fg(y: = k|X), an unnormalized probability of output sequence
element probability being k at time .

Inputs: Transition matrix A € RY *Y

Inputs: Input sequence X of length IN, gold labeling y? € YV
Outputs: Value of log p(y|X).

Time Complexity: O(N - Y?).

® Fort=1,...,N:
© Fork=1,...,Y:
" ou(k) < fo(y: = k| X)
m|f¢>1:
" Forj=1,...,Y:
" oy(k) + logadd(ou(k), a:—1(4) + Ajk)

» Return 1y folye = 47 1X) + 200y Ay — logadd)_ (a(k))
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Conditional Random Fields (CRF)
Decoding

We can perform optimal decoding, by using the same algorithm, only replacing logadd with
max and tracking where the maximum was attained.

Applications
CRF output layers are useful for span labeling tasks, like

® named entity recognition
® dialog slot filling
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