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Fast R-CNN

 

Figure 1 of paper "Fast R-CNN", https://arxiv.org/abs/1504.08083.
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Fast R-CNN

The bounding box is parametrized as follows. Let  be center coordinates and

width and height of the RoI, and let  be parameters of the bounding box. We

represent them as follows:

Usually a  loss, or Huber loss, is employed for bounding box parameters

The complete loss is then
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Fast R-CNN

Intersection over union
For two bounding boxes (or two masks) the intersection over union (IoU) is a ration of the
intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing RoIs for training
During training, we use  images with  RoIs each. The RoIs are selected so that  have

intersection over union (IoU) overlap with ground-truth boxes at least 0.5; the others are
chosen to have the IoU in range .

Choosing RoIs during inference
Single object can be found in multiple RoIs. To choose the most salient one, we perform non-
maximum suppression -- we ignore RoIs which have an overlap with a higher scoring RoI of the
same type, where the IoU is larger than a given threshold (usually, 0.3 is used). Higher scoring
RoI is the one with higher probability from the classification head.

2 64 25%

[0.1, 0.5)
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Object Detection Evaluation

Average Precision
Evaluation is performed using Average Precision (AP).

We assume all bounding boxes (or masks) produced by a system have confidence values which
can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order
of the ranks and generate precision/recall curve, considering a bounding box correct if it has
IoU at least 0.5 with any ground-truth box. We define AP as an average of precisions for recall
levels .

 

Figure 6 of paper "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf.

 

Figure 6 of paper "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf.
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Faster R-CNN

For Fast R-CNN, the most time consuming part is generating the RoIs.

Therefore, Faster R-CNN jointly generates regions of interest using a region proposal network
and performs object detection.

 

Figure 2 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497
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Mask R-CNN

 

Figure 1 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

7/41NPFL114, Lecture 6 Refresh ImageSegmentation FPN FocalLoss TransferLearning GroupNorm RNN LSTM



Mask R-CNN

RoIAlign
More precise alignment is required for the RoI in order to predict the masks. Therefore, instead
of max-pooling used in the RoI pooling, RoIAlign with bilinear interpolation is used.

 

Figure 3 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN

Masks are predicted in a third branch of the object detector.

Usually higher resolution is needed (  instead of ).

The masks are predicted for each class separately.
The masks are predicted using convolutions instead of fully connected layers.

 

Figure 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

14 × 14 7 × 7
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Mask R-CNN

 

Table 2 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN – Human Pose Estimation

 

Figure 7 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

Testing applicability of Mask R-CNN architecture.

Keypoints (e.g., left shoulder, right elbow, …) are detected as independent one-hot masks of
size  with  output function.

 

Table 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

56 × 56 softmax
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Feature Pyramid Networks

(a) Featurized image pyramid
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(b) Single feature map
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predict

predict

predict

 

Figure 1 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks

predict

predict

predict

predict

 

Figure 2 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks

2x up

1x1 conv +
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Figure 3 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks

image test-dev test-std

method backbone competition pyramid AP@.5 AP APs APm APl AP@.5 AP APs APm APl

ours, Faster R-CNN on FPN ResNet-101 - 59.1 36.2 18.2 39.0 48.2 58.5 35.8 17.5 38.7 47.8

Competition-winning single-model results follow:

G-RMI† Inception-ResNet 2016 - 34.7 - - - - - - - -

AttractioNet‡ [10] VGG16 + Wide ResNet§ 2016  53.4 35.7 15.6 38.0 52.7 52.9 35.3 14.7 37.6 51.9

Faster R-CNN +++ [16] ResNet-101 2015  55.7 34.9 15.6 38.7 50.9 - - - - -

Multipath [40] (on minival) VGG-16 2015 49.6 31.5 - - - - - - - -

ION‡ [2] VGG-16 2015 53.4 31.2 12.8 32.9 45.2 52.9 30.7 11.8 32.8 44.8

 

Table 4 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Focal Loss
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Figure 1 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.

For single-stage object detection
architectures, class imbalance has been
identified as the main issue preventing to
obtain performance comparable to two-
stage detectors. In a single-stage detector,
there can be tens of thousands of anchors,
with only dozens of useful training
examples.

Cross-entropy loss is computed as

Focal-loss (loss focused on hard examples)
is proposed as

L  =cross-entropy − log p  (y∣x).model

L  =focal-loss −(1 − p  (y∣x)) ⋅model
γ log p  (y∣x).model
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Focal Loss
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Figure 4. Cumulative distribution functions of the normalized loss for positive and negative samples for different values of γ for a converged

model. The effect of changing γ on the distribution of the loss for positive examples is minor. For negatives, however, increasing γ heavily

concentrates the loss on hard examples, focusing nearly all attention away from easy negatives.

 

Figure 4 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
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RetinaNet

RetineNet is a single-stage detector, using feature pyramid network architecture. Built on top of
ResNet architecture, the feature pyramid contains levels  through , with each  having

256 channels and resolution  lower than the input. On each pyramid level , we consider 9

anchors for every position, with 3 different aspect ratios ( , , ) and with 3 different

sizes ( ). The classification and boundary regression heads do not share

parameters and are fully convolutional, generating  sigmoids and 

bounding boxes per position.
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Figure 3 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
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RetinaNet

During training we assign anchors to ground-truth object boxes if IoU is at least 0.5; to
background if IoU with any ground-truth region is at most 0.4 (the rest of anchors are ignored
during training). The classification head is trained using focal loss with  (but according to

the paper, all values in  range works well); the boundary regression head is trained using

 loss as in Fast(er) R-CNN.

During inference, we consider at most 1000 objects with at least 0.05 probability from every
pyramid level, merging the top predictions from all levels using non-maximum suppression with
0.5 threshold.

backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ [16] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [17] Inception-ResNet-v2 [34] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [32] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

YOLOv2 [27] DarkNet-19 [27] 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [22, 9] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [9] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet (ours) ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet (ours) ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2

 

Table 2 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.

γ = 2
[0.5, 5]

smooth  L  1
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Transfer Learning

In many situations, we would like to utilize a model trained on a different dataset – generally,
this cross-dataset usage is called transfer learning.

In image processing, models trained on ImageNet are frequently used as general feature
extraction models.

The easiest scenario is to take a ImageNet model, drop the last classification layer, and use the
result of the global average pooling as image features. The ImageNet model is not modified
during training.

For efficiency, we may precompute the image features once and reuse it later many times.
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Transfer Learning – Finetuning

After we have successfully trained a network employing an ImageNet model, we may improve
performance further by finetuning – training the full network including the ImageNet model,
allowing the feature extraction to adapt to the current dataset.

The laters after the ImageNet models must be already trained to convergence.

Usually a smaller learning rate is necessary (for example one tenth of the original one, i.e.,
0.0001 for Adam).

We have to think about batch normalization, data augmentation or other regularization
techniques.
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Normalization

Batch Normalization
Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization
Neuron value is normalized across the layer.
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Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Group Normalization

Group Normalization is analogous to Layer normalization, but the channels are normalized in
groups (by default, ).
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Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Figure 1 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.

G = 32
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Group Normalization
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Figure 4. Compar ison of er ror curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation

error (right) vs. numbers of training epochs. The model is ResNet-50.
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Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.

 

Figures 4 and 5 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Group Normalization

 

Tables 4 and 5 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Recurrent Neural Networks

Recurrent Neural Networks
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Recurrent Neural Networks

Single RNN cell

input

output
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Unrolled RNN cells
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Basic RNN Cell

input

previous state

output = new state

Given an input  and previous state , the new state is computed as

One of the simplest possibilities is

x(t) s(t−1)

s =(t) f(s ,x ; θ).(t−1) (t)

s =(t) tanh(Us +(t−1) V x +(t) b).
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Basic RNN Cell

Basic RNN cells suffer a lot from vanishing/exploding gradients (the challenge of long-term
dependencies).

If we simplify the recurrence of states to

we get

If  has eigenvalue decomposition of , we get

The main problem is that the same function is iteratively applied many times.

Several more complex RNN cell variants have been proposed, which alleviate this issue to some
degree, namely LSTM and GRU.

s =(t) Us ,(t−1)

s =(t) U s .t (0)

U U = QΛQ−1

s =(t) QΛ Q s .t −1 (0)
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Basic RNN Applications

Sequence Element Classification
Use outputs for individual elements.

input 1

output 1

state

input 2

output 2

state
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state
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output 4

state

Sequence Representation
Use state after processing the whole sequence (alternatively, take output of the last element).
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Basic RNN Applications

Sequence Prediction
During training, predict next sequence element.
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During inference, use predicted elements as further inputs.
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Long Short-Term Memory

Hochreiter & Schmidhuber (1997) suggested that to enforce constant error flow, we would like

They propose to achieve that by a constant error carrousel.

xt

ht−1

ht

f =′ 1.
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Long Short-Term Memory
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They also propose an input and output gates which control the flow of information into and out
of the carrousel (memory cell ).c  t
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Long Short-Term Memory
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Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from memory
cell  was added.c  t
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Long Short-Term Memory

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png

35/41NPFL114, Lecture 6 Refresh ImageSegmentation FPN FocalLoss TransferLearning GroupNorm RNN LSTM



Long Short-Term Memory

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png
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Long Short-Term Memory

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-C-line.png
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Long Short-Term Memory

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-i.png
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Long Short-Term Memory

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-f.png
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Long Short-Term Memory

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-C.png
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Long Short-Term Memory

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-o.png
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