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Figure 1 of paper "Fast R-CNN", https://arxiv.org/abs/1504.08083.
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The bounding box is parametrized as follows. Let z,, y,, w., h, be center coordinates and

width and height of the Rol, and let x, y, w, h be parameters of the bounding box. We
represent them as follows:

=(z —z)/wr, ty=(y—y)/hr
=lo (w/wr)a th = log(h/hr)

Usually a smoothj, loss, or Huber loss, is employed for bounding box parameters

0.5z if |x| < 1

lz| — 0.5 otherwise

smoothy, () = {

The complete loss is then

L(¢,%,¢,t) = Las(é,¢) + Ale >1] > smoothy, (£ — t;).
ZE{X7Y7W7h}
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Intersection over union

For two bounding boxes (or two masks) the intersection over union (loU) is a ration of the
intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing Rols for training

During training, we use 2 images with 64 Rols each. The Rols are selected so that 25% have

intersection over union (loU) overlap with ground-truth boxes at least 0.5; the others are
chosen to have the loU in range [0.1,0.5).

Choosing Rols during inference

Single object can be found in multiple Rols. To choose the most salient one, we perform non-
maximum suppression -- we ignore Rols which have an overlap with a higher scoring Rol of the
same type, where the loU is larger than a given threshold (usually, 0.3 is used). Higher scoring
Rol is the one with higher probability from the classification head.
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Object Detection Evaluation =

Average Precision
Evaluation is performed using Average Precision (AP).

We assume all bounding boxes (or masks) produced by a system have confidence values which
can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order
of the ranks and generate precision/recall curve, considering a bounding box correct if it has
loU at least 0.5 with any ground-truth box. We define AP as an average of precisions for recall

levels 0,0.1,0.2,...,1.
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Figure 6 ofpaper '"The PASCAL Visual Object Classes (VOC) Challenge", Figure 6 ofpaper "The PASCAL Visual Object Classes (\/OC) Challenge”,
http://homepages.inf.ed.ac.uk/ckiw/postscript /ijcv_ voc09. pdf http: //homepages.inf.ed.ac.uk/ckiw/postscript /ijcv_ voc09. pdf
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For Fast R-CNN, the most time consuming part is generating the Rols.

Therefore, Faster R-CNN jointly generates regions of interest using a region proposal network
and performs object detection.
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Mask R-CNN
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Figure 1 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN UL
RolAlign

More precise alignment is required for the Rol in order to predict the masks. Therefore, instead
of max-pooling used in the Rol pooling, RolAlign with bilinear interpolation is used.

Figure 3 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN

Masks are predicted in a third branch of the object detector.

® Usually higher resolution is needed (14 X 14 instead of 7 X 7).

® The masks are predicted for each class separately.
® The masks are predicted using convolutions instead of fully connected layers.
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Figure 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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net-depth-features | AP APsg APr7s AP APs50 APr75 align? | bilinear? | agg. | AP  APsg APrs

ResNet-50-C4 30.3 51.2 31.5 softmax 24.8 44.1 25.1 RolPool [12] max| 269 488 264

ResNet-101-C4 32.7 54.2 34.3 sigmoid 30.3 51.2 31.5 v max| 27.2 492 27.1
RolWarp [10]

ResNet-50-FPN 33.6 55.2 35.3 +5.5 +7.1 +6.4 v ave | 27.1 489  27.1

ResNet-101-FPN | 354 57.3 37.5 RolAli v v max| 30.2 51.0 31.8

ResNeXt-101-FPN | 367  59.5  38.9 s sl v lave| 303 512 315

(a) Backbone Architecture: Better back-
bones bring expected gains: deeper networks
do better, FPN outperforms C4 features, and

ResNeXt improves on ResNet.

(ResNet-50-C4):

(b) Multinomial vs. Independent Masks
Decoupling via per-
class binary masks (sigmoid) gives large
gains over multinomial masks (softmax).

(c) RolAlign (ResNet-50-C4): Mask results with various Rol
layers. Our RolAlign layer improves AP by ~3 points and
AP75 by ~5 points. Using proper alignment is the only fac-
tor that contributes to the large gap between Rol layers.

AP AP59 AP;5 | AP®  APYY AP mask branch AP AP5y APy
RolPool | 23.6 465 216 | 282 527 269 MLP fc: 1024—1024—80-282 3.5 537 328
RolAlign | 309  51.8 321 | 340 553 364 MLP fc: 1024—1024—1024—80-282 3.5 540 326
+7.3  +53 4105 | +58 426  +9.5 FCN | conv: 256—256—256—256—256—80 | 33.6 552  35.3

(d) RoIAlign (ResNet-50-CS, stride 32): Mask-level and box-level
AP using large-stride features. Misalignments are more severe than
with stride-16 features (Table 2c¢), resulting in big accuracy gaps.

(e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs.
multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs im-

prove results as they take advantage of explicitly encoding spatial layout.

Table 2. Ablations. We train on t rainval35k, test on minival, and report mask AP unless otherwise noted.
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Mask R-CNN — Human Pose Estimation et

Figure 7 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
® Testing applicability of Mask R-CNN architecture.

® Keypoints (e.g., left shoulder, right elbow, ..) are detected as independent one-hot masks of
size 56 X 56 with softmax output function.

k k k k

AP AP AP | AP AP

CMU-Pose+++ [6] 61.8 849 675 | 57.1 682
G-RMI [32]1 624 840 685 | 59.1 68.1

Mask R-CNN, keypoint-only 62.7 87.0 684 | 574 7T1.1
Mask R-CNN, keypoint & mask| 63.1 87.3 68.7 | 57.8 714

Table 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Feature Pyramid Networks
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(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

Figure 1 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks
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Figure 2 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks
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Figure 3 of paper "Feature Pyramid Networks for Object Detection”, https://arxiv.org/abs/1612.03144.
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Feature Pyramid Networks

image test—-dev test-std

method backbone competition | pyramid | APq 5 | AP | APs AP,, AP; | APa s | AP | APs AP,, AP
ours, Faster R-CNN on FPN ResNet-101 - 591 [36.2 (182 39.0 482 | 585 |358|17.5 38.7 4738
Competition-winning single-model results follow:

G-RMIT Inception-ResNet 2016 - 347 - - - - - - - -
AttractioNet¥ [10] VGG16 + Wide ResNet? 2016 v 534 357|156 38.0 52.7| 529 (353|147 37.6 519
Faster R-CNN +++ [16] ResNet-101 2015 v 557 (349|156 387 509 - - - - -
Multipath [40] (onminival) VGG-16 2015 49.6 |31.5| - - - - - - - -
ION* [2] VGG-16 2015 534 |31.2]|128 329 452 | 529 |30.7|11.8 32.8 4438

Table 4 of paper "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144.
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Focal Loss UL

For single-stage object detection
architectures, class imbalance has been
identified as the main issue preventing to
obtain performance comparable to two-
stage detectors. In a single-stage detector,
there can be tens of thousands of anchors,
with only dozens of useful training
examples. i

CE(p) = —log(p)
FL(p) = —(1 — p)" log(pr)

1 T TR TR
N —= oo
(3
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0
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o

well-classified
examples

Cross-entropy loss is computed as

0 l ‘
r — _1lo ( |33) 0 0.2 0.4 0.6 0.8 1
cross-entropy — & Pmodel \Y|T)- probability of ground truth class

Figure 1 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
Focal-loss (loss focused on hard examples)
is proposed as

Lfocal-loss — _(]- — Pmodel (y|$))7 : 1ngmodel (y|CL’)
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Focal Loss =
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Figure 4. Cumulative distribution functions of the normalized loss for positive and negative samples for different values of -y for a converged
model. The effect of changing ~y on the distribution of the loss for positive examples is minor. For negatives, however, increasing v heavily
concentrates the loss on hard examples, focusing nearly all attention away from easy negatives.

Figure 4 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
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RetinaNet UL

RetineNet is a single-stage detector, using feature pyramid network architecture. Built on top of
ResNet architecture, the feature pyramid contains levels P53 through P;, with each P, having

256 channels and resolution 2! lower than the input. On each pyramid level P}, we consider 9
anchors for every position, with 3 different aspect ratios (1, 1 : 2, 2 : 1) and with 3 different
sizes ({2,21/3,22/3) . 4. 21). The classification and boundary regression heads do not share
parameters and are fully convolutional, generating anchors - classes sigmoids and anchors
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(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)
Figure 3 of paper "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002.
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During training we assign anchors to ground-truth object boxes if loU is at least 0.5; to
background if loU with any ground-truth region is at most 0.4 (the rest of anchors are ignored

during training). The classification head is trained using focal loss with v = 2 (but according to

the paper, all values in [0.5, 5] range works well); the boundary regression head is trained using
smoothy, loss as in Fast(er) R-CNN.

During inference, we consider at most 1000 objects with at least 0.05 probability from every
pyramid level, merging the top predictions from all levels using non-maximum suppression with

0.5 threshold.

backbone AP AP50 AP75 AP S AP M AP L
Two-stage methods
Faster R-CNN+++ [16] ResNet-101-C4 34.9 55.7 374 15.6 38.7 50.9
Faster R-CNN w FPN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [34] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [32] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 52.1
One-stage methods
YOLOvV2 [27] DarkNet-19 [27] 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 22, 9] ResNet-101-SSD 31.2 504 33.3 10.2 34.5 49.8
DSSD513 [9] ResNet-101-DSSD 33.2 53.3 35.2 13.0 354 51.1
RetinaNet (ours) ResNet-101-FPN 39.1 59.1 42.3 21.8 427 50.2
RetinaNet (ours) ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2

FocallLoss
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In many situations, we would like to utilize a model trained on a different dataset — generally,
this cross-dataset usage is called transfer learning.

In image processing, models trained on ImageNet are frequently used as general feature
extraction models.

The easiest scenario is to take a ImageNet model, drop the last classification layer, and use the
result of the global average pooling as image features. The ImageNet model is not modified

during training.

For efficiency, we may precompute the image features once and reuse it later many times.
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After we have successfully trained a network employing an ImageNet model, we may improve
performance further by finetuning — training the full network including the ImageNet model,
allowing the feature extraction to adapt to the current dataset.

® The laters after the ImageNet models must be already trained to convergence.

® Usually a smaller learning rate is necessary (for example one tenth of the original one, i.e.,
0.0001 for Adam).

® \We have to think about batch normalization, data augmentation or other regularization
techniques.
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Normalization

Batch Normalization

Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization

Neuron value is normalized across the layer.
Batch Norm Layer Norm Instance Norm Group Norm

H, W
H, W

NAVANAVAVA
NAVANAVAVA
NAVANAVAVA

NAVANAVANAN

NAVAVAVAVAN
Z A\ A\ N\ N\

Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Group Normalization

Group Normalization is analogous to Layer normalization, but the channels are normalized in

groups (by default, G = 32).

NPFL114, Lecture 6

Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Figure 1 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Group Normalization
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Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation
error (right) vs. numbers of training epochs. The model is ResNet-50.
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Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.
Figures 4 and 5 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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APbbox APbbox APbbox

backbone APMak  Apmask A prask
BN® 377 579 409 | 328 543 347
GN 388 592 422 | 33.6 559 354

Table 4. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 C4. BN" means BN is frozen.

APbeX APbeX APbeX

backbone | box head APMask AP3j mask APmaSk
BN’ - 38.6 595 419 | 342 56.2 36.1
BN’ GN | 395 60.0 432 | 344 564 363
GN GN | 40.0 61.0 433 | 348 573 363

Table 5. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 FPN and a 4conv1fc bounding box
head. BN means BN is frozen.
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Recurrent Neural Networks
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Recurrent Neural Networks

Single RNN cell

Unrolled RNN cells

output 1
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Basic RNN Caell

mnput

output = new Sstate

previous state

t—1)

Given an input z®) and previous state sl , the new state is computed as

s = £(st) 2. g).

One of the simplest possibilities is

s = tanh(Us" Y + v 1 b).

NPFL114, Lecture 6 Refresh ImageSegmentation FPN FocallLoss TransferLearning GroupNorm RNN

LSTM

U=

28/41



Basic RNN cells suffer a lot from vanishing/exploding gradients (the challenge of long-term
dependencies).

If we simplify the recurrence of states to
st) = Uslt-1),
we get
s — tg(0)
If U has eigenvalue decomposition of U = QAQ_l, we get
st — QAtQ_ls(O).

The main problem is that the same function is iteratively applied many times.

Several more complex RNN cell variants have been proposed, which alleviate this issue to some

degree, namely LSTM and GRU.
RNN 29/41



Sequence Element Classification

Use outputs for individual elements.

output 1 output 2 output 3

Sequence Representation

Use state after processing the whole sequence (alternatively, take output of the last element).
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Sequence Prediction

During training, predict next sequence element.
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Long Short-Term Memory Uz

Hochreiter & Schmidhuber (1997) suggested that to enforce constant error flow, we would like
f =1.

They propose to achieve that by a constant error carrousel.

Lt

>
h

t—1

NPFL114, Lecture 6 Refresh ImageSegmentation FPN FocallLoss TransferLearning GroupNorm RNN LSTM 32/41



Long Short-Term Memory Uz

They also propose an input and output gates which control the flow of information into and out
of the carrousel (memory cell ¢;).

’it <— O'(Wimt -+ Viht_l — bz)
O, <— O'(Womt -+ Voht_l + bo)

¢ < ¢i1+ 4 - tanh(WVx, + VPhy 1 +b7) = h
ht < O - tanh(ct) h>>m t m—x—’H

Ct
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Long Short-Term Memory Uz

Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from memory
cell ¢; was added.

i, — o(Wim, + Vihe | + b)) N/
f,—o(Wla,+V/ih_, +b) ;]
o; +— o(W°x +V°h;_ 1+ b°)

c; < f,-¢ci1+ 1 -tanh(WVx; + VVhy_ 1 +bY) - h
h; < o; - tanh(c;) h>> = ] = o] -
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Long Short-Term Memory
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Long Short-Term Memory
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Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-C-line.png
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Long Short-Term Memory UL

14 =0 (Wi'[ht—lawt} + b'i)
Ct — tanh(WC°[ht_1, $t] -+ bc)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-i.png
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Long Short-Term Memory

fi ft — J(Wf‘[ht_ljxt] + bf)

http://colah.github.io/posts/2015-08-Understanding-LSTMs /img/LSTM3-focus-f.png
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Long Short-Term Memory

Ji itr‘% Cy = fr % Crq + iy % Cy

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-C.png
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Long Short-Term Memory Uz

Ot — O'(WO [ht_l,ZCt] -+ bo)
= oy * tanh (C})

o3
|

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-o.png
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