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Designing and training a neural network is not a one-shot action, but instead an iterative
procedure.

® \When choosing hyperparameters, it is important to verify that the model does not underfit

and does not overfit.
Underfitting can be checked by increasing model capacity or training longer.

® Qverfitting can be tested by observing train/dev difference and by trying stronger
regularization.

Specifically, this implies that:

® \We need to set number of training epochs so that training loss/performance no longer
increases at the end of training.

® Generally, we want to use a large batchsize that does not slow us down too much (GPUs
sometimes allow larger batches without slowing down training). However, with increasing
batch size we need to increase learning rate, which is possible only to some extent. Also,
small batch size sometimes work as regularization (especially for vanilla SGD algorithm).
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® Using tf.keras.Model.save, both the architecture and model weights are saved. But

saving the architecture is currently quite brittle:
O tf.keras.layers.InputLayer does not work correctly

O object losses (inherited from tf.losses.Loss) cannot be loaded
O TensorFlow specific functions (not in tf.keras.layers) works only sometimes
©)

Of course, the bugs are being fixed.

® Using tf.keras.Model.save_weights, only the weights of the model are saved. If the

model is constructed again by the script (which usually required specifying the same
hyperparameters as during model training), weights can be loaded using
tf.keras.Model.load_weights.
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Convolutions can provide
O local interactions in spacial /temporal dimensions

O shift invariance
O much less parameters than a fully connected layer

Usually repeated 3 X 3 convolutions are enough, no need for larger filter sizes.

When pooling is performed, double number of channels.
Final fully connected layers are not needed, global average pooling is usually enough.

Batch normalization is a great regularization method for CNNss.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented in Fig. 4.
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Figure 2. Residual learning: a building block.
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Figure 5. A deeper residual function F for ImageNet. Left: a

1x1, 256

building block (on 56x 56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck’ building block for ResNet-50/101/152.
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0 =
ResNet — 2015 (3.6% error) PRl
layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 7Tx7, 64, stride 2
33 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] Ix1,64 ]
2_ 56x56 ’ ’ ’
convex 8 { gig gj ]><2 { gig gj ]><3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
’ ’ | 1x1,256 | | 1x1,256 | | 1x1,256 |
- 1 - 1 [ 1x1, 128 | [ 1x1, 128 | [ 1x1, 128 |
conv3x | 28x28 ;ig 32 ) ;ig 32 x4 | | 3x3,128 | x4 3x3, 128 | x4 3x3, 128 | x8
- ’ - - ’ - | Ix1,512 | | Ix1,512 | | Ix1,512 |
. - . - [ 1x1,256 ] 1x1,256 ] 1x1,256 |
conv4_x 14x14 gig’ 322 X2 gig’ 322 X6 3x3,256 | x6 3x3,256 | x23 3x3,256 | x36
- ’ - - ’ - | 1x1,1024 | 1x1,1024 | 1x1,1024 |
- - - . [ 1x1,512 ] 1x1,512 1x1,512
convS.x | Tx7 giggg 2 giggg x3 || 3x3,512 |x3 3x3,512 | x3 3x3,512 | x3
- ’ . - ’ . | 1x1,2048 | 1x1,2048 1x1,2048
Ix1 average pool, 1000-d fc, softmax
FLOPs 1.8x10? 3.6x10° 3.8x10? 7.6x107 11.3x10°
Table 1 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error) UpzL

VGG-19 34-layer plain 34-layer residual
gy T T The residual connections cannot be applied
. .
i directly when number of channels increase.
“‘“
[ soomim ]
S The authors considered several alternatives, and
& zmg chose the one where in case of channels
| increase a 1 X 1 convolution is used on the
o i:l projections to match the required number of
== channels.
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Figure 3 of paper "Deep Residual Learning for Image Recognition”,
https://arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error) Upzt

plain-18 ResNet-18
=—plain-34 =—ResNet-34 34-layer
2OO 10 20 30 40 50 2OO 10 20 30 40 50
iter. (1e4) iter. (1e4)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 laye s. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.
Figure 4 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error) Ut

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43T

GoogleNet [44] (ILSVRC’14) - 7.89 method top-5 err. (test)
VGG [41] (v5) 24.4 7.1 VGG [41] (ILSVRC’14) 7.32
PReLU-net [13] 21.59 5.71 GoogleNet [44] (ILSVRC’ 14) 6.66
BN-inception [16] 21.99 5.81 VGG [41] (v5) 6.8
ResNet-34 B 21.84 5.71 PReLU-net [13] 4.94
ResNet-34 C 21.53 5.60 BN-inception [16] 4.82
ResNet-50 20.74 5.25 ResNet (ILSVRC’15) 3.57
ResNet-101 13.87 4.60 Table 5. Error rates (%) of ensembles. The top-5 error is on the
ResNet-152 19.38 4.49 test set of ImageNet and reported by the test server.

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except T reported on the test set).
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Figure 1: Various residual blocks used in the paper. Batch normalization and ReLLU precede
each convolution (omitted for clarity)
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® Authors do not consider bottleneck blocks. Instead,
they experiment with different block types, e.g.,

B(1,3,1) of B(3,3)

block type | depth | # params | time,s | CIFAR-10
B(1,3,1) 40 1.4M 85.8 6.06
B(3,1) 40 1.2M 67.5 5.78
B(1,3) 40 1.3M 72.2 6.42
B(3,1,1) 40 1.3M 82.2 5.86
B(3,3) 28 1.5M 67.5 5.73
B(3,1,3) 22 1.1M 59.9 5.78

group name | output size | block type = B(3,3)
convl 32 %32 ] [3x3, 16]_
3x3,16xk
conv2 32x32 _ 3%3. 165k | XN
[ 3x3,32xk |
conv3 16x16 _ 3% 3. 32xk | XN
[ 3x3, 64xk |
conv4 8x8 _ 3%3. 64xKk | xN
avg-pool 1x1 [8 x 8]
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® Authors evaluate various widening factors k

depth | k& | #params | CIFAR-10 | CIFAR-100

40 1 0.6M 6.85 30.89
40 2 2.2M 5.33 26.04
40 4 8.9M 4.97 22.89
40 8 35. "M 4.66 -

28 10 | 36.5M 4.17 20.50
28 12 | 52.5M 4.33 20.43
22 8 17.2M 4.38 21.22
22 10 | 26.8M 4.44 20.75
16 8 11.0M 4.81 22.07
16 10 17.1M 4.56 21.59

group name | output size | block type = B(3,3)
convl 32 %32 ] [3x3, 16]_
3x3,16xk
conv2 32x32 _ 3%3. 165k | XN
[ 3x3,32xk |
conv3 16x16 _ 3% 3. 32xk | XN
[ 3x3, 64xk |
conv4 8x8 _ 3%3. 64xKk | xN
avg-pool 1x1 [8 x 8]
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® Authors measure the effect of dropping out inside the _groupname | outputsize | block type = 5(3,3)
) ) . . convl 32 x 32 [3x3, 16]
residual block (but not the residual connection itself) 393 1oxk
9) 32%32 : N
depth | k | dropout | CIFAR-10 | CIFAR-100 | SVHN conv 8 | 3x3, 16xk |~
16 4 5.02 24.03 1.85 [ 3%3,32xk |
16 | 4 v 5.24 2391 1.64 conv3 16x16 3x3.32xk | N
28 10 4.00 19.25 - [ 3%3, 64k |
28 |10 v 3.89 18.85 . conv4 88 s eaxk | <N
52 |1 6.43 29.89 2.08 avg-pool i1 | igxs]
52 1 v 6.28 29.78 1.70
‘\; ~~~~~~~~ &/‘HN ‘ ‘ ‘ 5 ‘ | N o - ‘ nSYHN ‘ ‘ 5
— ResNet-50(error 2.07%) | T—— WRN-16-4(error 1.85%)
102 | — WRN-16-4(error 1.85%) —  WRN-16-4-dropout(error 1.64%)
rrrrrrrrrrrrrrrrrrrrrrrr - ' 4 102 B4 4
g ........................................ 3% é ......................................... 3%"
I R 72 Al | SO |
S | S N [ N I,
s S P S s SR
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depth-k  # params

CIFAR-10 CIFAR-100

NIN [20] 381 35.67
DSN [19] 8.22 34.57
FitNet [24] 8.39 35.04
Highway [28] 7.72 32.39
ELU [5] 6.55 2428
. 110 1M 6.43 75.16
original-ResNet 111 1155, 190m 7.93 27.82
110 1M 5.23 7453
stoc-depth[ 14] 1202 10.2M 491 i
110 T7M 637 i
pre-act-ResNet[13] 164 1.7M 5.46 24.33
1001 102M  4.92(4.64) 2271
104 89M 153 2118
WRN (ours) 16-8  11.0M 427 20.43
28-10  36.5M 4.00 19.25
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Figure 2 of paper
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Figure 1 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993
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“Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993
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Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 X 3 max pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv I x 1 conv 1 x 1 conv
56 x 56 6 6 6 6
(1) 8 [3»><3conv]>< [3><3»c0nv]>< [3><3c0nv]>< [3><3conv}><
Transition Layer 56 x 56 I x 1 conv
(1) 28 x 28 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv I x 1 conv 1 x 1 conv
28 x 28 12 12 12 12
(2) % [3»><3c0nv]>< [3><3»c:0nv]>< [3><3conv]x [3><3c0nv}><
Transition Layer 28 x 28 I x 1 conv
(2) 14 x 14 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv I x 1 conv 1 x 1 conv 1 x 1 conv
14 x 14 24 32 48 64
3) 8 [3»><3c0nv]>< [3><3»c:0nv}>< [3><3c:onv}>< [3><3c0nv}><
Transition Layer 14 x 14 I x 1 conv
(3) 7 x7 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
7 x 7 16 32 32 48
4) 8 [3><3c0nv]>< [3><3c:0nv}>< [3><3c:onv}>< [3><3conv}><
Classification 1 x1 7 x 7 global average pool
Layer 1000D fully-connected, softmax
Howto ResNet ResNet Modifications CNN Regularization Image Detection Segmentation 19/51



DenseNet — Results Urzt

Method Depth Params C10 C10+ C100 C100+ SVHN

Network in Network [22] - - 10.41 8.81 35.68 - 2.35
All-CNN [32] - - 9.08 7.25 - 33.71 -
Deeply Supervised Net [20] - - 9.69 7.97 - 34.57 1.92
Highway Network [34] - - - 7.72 - 32.39 -
FractalNet [17] 21 38.6M 10.18 5.22 35.34 23.30 2.01
with Dropout/Drop-path 21 38.6M 7.33 4.60 28.20 23.73 1.87 275 275
ResNet [11] 110 1.7M - 6.61 - - - %65 ResNet-34 7 255 ResNet-34 7
ResNet (reported by [13]) 110 1.7M 13.63 6.41 44.74 27.22 201 -
ResNet with Stochastic Depth [13] | 110 1.7M 1166 523 | 3780 2458 175 5% ommenarz 52 sverboter iz

1202 10.2M - 491 - - - g 245 € 245 ResNot-50
Wide ResNet [42] 16 11.0M - 4.81 - 22.07 - £, DenseNe(-169 £ s

28 36.5M - 4.17 - 20.50 - i DenseNet>2Q1 ResNet-101 g ResNet-101

with DrOpOut 16 2.7M _ _ _ _ 164 225 DenseNet_264ResNet—152 225 o, ResNet-152 1
ResNet (pre-activation) [12] 164 1.7M 11.26* 5.46 35.58* 24.33 - A s 4 s & 7 B A8 e T 155 15 175 2 2m5 a2s

1001 10.2M 10.56* 4.62 33.47* 22.71 - #iparameters x 10’ #iops x10°
DenseNet (k = 12) 40 1.0M 7.00 5.24 27.55 24.42 1.79 Figure 3 of paper "Densely Connected Convolutional Networks",
DenseNet (k = 12) 100 70M | 577 410 | 2379 2020 | 167 https://arxiv.org/abs/1606.06993
DenseNet (k = 24) 100 27.2M 5.83 3.74 23.42 19.25 1.59
DenseNet-BC (k = 12) 100 0.8M 5.92 4.51 24.15 22.27 1.76
DenseNet-BC (k = 24) 250 15.3M 5.19 3.62 19.64 17.60 1.74
DenseNet-BC (k = 40) 190 25.6M - 3.46 - 17.18 -

Table 2 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993
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Figure 1 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915
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PyramidNet — Growth Rate U=t

/ conv \ .y
/ conv \ ”
Y4 N pd

Y conv \1 r ,’.

| Output |

(b) (c)

Figure 2 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

In architectures up until now, number of filters doubled when spacial resolution was halved.
Such exponential growth would suggest gradual widening rule Dy, = |Dj_1 - o/ .

However, the authors employ a linear widening rule Dy, = | Dy_1 + o/ N |, where Dy, is
number of filters in the k-th out of N convolutional block and & is number of filters to add in

total.
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PyramidNet — Residual Connections U=t

No residual connection can be a real identity — the authors propose to zero-pad missing
channels, where the zero-pad channels correspond to newly computed features.

Input

/ \ ;- |
5 l :
conv y | :
. Identity 0 : v Identity :
conv l :
I I I
: |
: [
L I TS A [

Outiput Out?put

(a) (b)

Figure 5 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915
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PyramidNet — CIFAR Results

A
| Network | #of Params | Output Feat. Dim. | Depth | Training Mem. | CIFAR-10 | CIFAR-100 |
NiN [18] - - - - 8.81 35.68
All-CNN [27] - - - - 7.25 33.71
DSN [17] - - - - 7.97 34.57
FitNet [21] - - - - 8.39 35.04
Highway [29] - - - - 7.72 32.39
Fractional Max-pooling [4] - - - - 4.50 27.62
ELU [29] ; ; ; - 6.55 24.28
ResNet [7] 1.7M 64 110 547MB 6.43 25.16
ResNet [7] 10.2M 64 1001 2,921MB - 27.82
ResNet [7] 19.4M 64 1202 2,060OMB 7.93 - Group | Outputsize | Building Block |
Pre-activation ResNet [8] 1.7M 64 164 841MB 5.46 24.33
Pre-activation ResNet [8] 10.2M 64 1001 | 2921MB 4.62 2271 e s o
Stochastic Depth [10] 1.7M 64 110 547MB 5.23 24.58 conv 2 32x32 3x3 [16+a(k—1)/N] | <N
Stochastic Depth [10] 10.2M 64 1202 2,06OMB 491 - 1 enie 33,06t alk—D/N] |~
FractalNet [14] 38.6M 1,024 21 - 4.60 23.73 3x3,[16+a(k—1)/N| °
SwapOut v2 (widthx4) [26] 7.4M 256 32 - 476 22.72 conv 4 8x8 g x g Hg i zgz - 3% % Ny
Wide ResNet (widthx4) [31] 8™ 256 40 775MB 497 289 oo T s 6]
Wide ResNet (widthx 10) [37] 36.5M 640 28 1,383MB 417 20.50 N T S ey S TR——
Weighted ResNet [24] 19.1M 64 1192 - 5.10 - . ; :
DenseNet (k = 24) [0] 272M 2352 100 438TMB 374 19.25 https://arxiv.org/abs/1610.02915
DenseNet-BC (k = 40) [9] 25.6M 2,190 190 7,247TMB 3.46 17.18
PyramidNet (o« = 48) 1.7M 64 110 655MB 4.58+0.06 | 23.124+0.04
PyramidNet (o« = 84) 3.8M 100 110 781MB 4.26+0.23 | 20.664+0.40
PyramidNet (o« = 270) 28.3M 286 110 1,437MB 3.73£0.04 | 18.25+0.10
PyramidNet (bottleneck, o = 270) 27.0M 1,144 164 4,169MB 3.48+0.20 | 17.01+0.39
PyramidNet (bottleneck, o = 240) 26.6M 1,024 200 4,451MB 3.4440.11 | 16.51£0.13
PyramidNet (bottleneck, o = 220) 26.8M 944 236 4,76TMB 3.40+0.07 | 16.37£0.29
PyramidNet (bottleneck, o = 200) 26.0M 864 272 5,005MB 3.31+0.08 | 16.354+0.24
Table 4 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915
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i 256-d in ¢ 256-d in

256, 1x1, 64 256, 1x1,4 256, 1x1, 4 total 32 256, 1x1, 4
A 4 4 k4 paths v

64, 3x3, 64 4,3x3,4 4,3x3,4 soee 4,3x3,4
v v v 4

64, 1x1, 256 4,1x1, 256 4,1x1, 256 4, 1x1, 256

256-d out

256-d out

Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer 1s shown as (# in channels, filter size, # out channels).

Howto ResNet ResNet Modifications CNN Regularization Image Detection Segmentation
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stage | output ResNet-50 ResNeXt-50 (32 x4d)
convl| 112x112 7x7, 64, stride 2 7x7, 64, stride 2
3% 3 max pool, stride 2 3% 3 max pool, stride 2
comal sexse || <164 ] [ 1x1, 128 |
3x3, 64 X3 3x3,128,C=32 | X3
| 1x1,256 | 1x1,256 |
[ 1x1,128 | [ 1x1,256 |
conv3| 28x28 3x3,128 | x4 3x3,256,C=32 | x4
| Ix1,512 | 1x1,512 |
[ 1x1,256 | [ 1x1,512 |
conv4d| 14x14 3x3, 256 X6 3%x3,512,C=32 | x6
| 1x1,1024 | | 1x1,1024 |
[ 1x1,512 ] 1x1, 1024
convS| 7x7 3x3,5 2 X3 3x3,1024, C=32 | X3
| 1x1,2048 | 1x1, 2048
Ix1 global average pool global average pool
1000-d fc, softmax 1000-d fc, softmax
# params. 25.5x10° 25.0x10°
FLOPs 4.1x10° 4.2x10°

Howto ResNet ResNet Modifications CNN Regularization Image Detection Segmentation 26/51



ResNeXt =

50 |- —-—-ResNet-50 (1 x 64d) train 50 - —-—-ResNet-101 (1 x 64d) train
——ResNet-50 (1 x 64d) val —— ResNet-101 (1 x 64d) val
—-—-ResNeXt-50 (32 x 4d) train —-—-ResNeXt-101 (32 x 4d) trai
451 —— ResNeXt-50 (32 x 4d) val a5l — ResNeXt-101 (32 x 4d) val
40 - 40 -
=é 35 § 35
o} o
a a
230 230
25 25
20 - 20 -
15 | | | | | | | | | 15 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
epochs epochs

Figure 5. Training curves on ImageNet-1K. (Left): ResNet/ResNeXt-50 with preserved complexity (~4.1 billion FLOPs, ~25 million
parameters); (Right): ResNet/ResNeXt-101 with preserved complexity (~7.8 billion FLOPs, ~44 million parameters).
Figure 5 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431
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Deep Networks with Stochastic Depth UsL

Figure 2 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

We drop a whole block (but not the residual connection) with probability 1 — p;. During
inference, we multiply the block output by p; to compensate.

All p; can be set to a constant, but more effective is to use a simple linear decay p; = 1 —
[/L(1 — pr) where py, is the final probability of the last layer, motivated by the intuition that

the initial blocks extract low-level features utilized by the later layers and should therefore be
present.
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Deep Networks with Stochastic Depth Us

1

110-layer F?\esNet on CIFAR-10 with Varying Survival Probabilities
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Figure 8 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382
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Deep Networks with Stochastic Depth U=

110-layer ResNet on CIFAR-10 110-layer ResNet on CIFAR-100

1
. 10
Test Error with Constant Depth 0 : Test Error w?th Constant_ Depth
Test Error with Stochastic Depth |3 10 451 Wl R Tes} !Error with $tochast|c Depth |
: — Training Loss with Constant Depth \ : Tra!n!ng Loss w!th Constant_ Depth
15E \ R | Training Loss with Stochastic Depth|] Training Loss with Stochastic Depth
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: L L 110°
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Figure 3 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382
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Cutout UL

Figure 1 of paper "Improved Regularization of Convolutional Neural Networks with Cutout”, https://arxiv.org/abs/1708.04552

Drop 16 X 16 square in the input image, with randomly chosen center. The pixels are replaced
by a their mean value from the dataset.
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(a) CIFAR-10 (b) CIFAR-100
Figure 3 of paper "Improved Regularization of Convolutional Neural Networks with Cutout”, https://arxiv.org/abs/1708.04552

Method C10 C10+ C100 C100+ SVHN
ResNetl18 [5] 10.63+0.26 4.72£0.21 | 36.68 £0.57  22.46 £0.31 -
ResNet18 + cutout 9.314+0.18 3.99+0.13 | 3498+£0.29 21.96+0.24 -
WideResNet [22] 6.97+0.22 3.87+£0.08 | 26.06 £ 0.22 18.8 £0.08 1.60 £ 0.05
WideResNet + cutout 554+0.08 3.08+0.16 | 23.94+0.15 1841+£0.27 | 1.30+0.03
Shake-shake regularization [4] - 2.86 - 15.85 -
Shake-shake regularization + cutout - 2.56 +0.07 - 15.20 +0.21 -
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Table 1 of paper "Improved Regularization of Convolutional Neural Networks with Cutout”, https://arxiv.org/abs/1708.04552
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DropBlock UL

X

X X
XX X XX

XXX
X
X
X

X

X | X

(b) (c)

Figure 1 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890
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DropBlock

Algorithm 1 DropBlock

1:

~

AR A

Input:output activations of a layer (A), block_size, vy, mode
if mode == Inference then
return A
end if
Randomly sample mask M: M; ; ~ Bernoulli(y)
For each zero position M; ;, create a spatial square mask with the center being M; ;, the width,
height being block_size and set all the values of M in the square to be zero (see Figure 2).
Apply the mask: A=A x M

: Normalize the features: A = A x count()/)/count_ones()M )

() (b)

Figure 2 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890
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Model top-1(%) top-3(%)
ResNet-50 76.51 4 0.07 93.20 £ 0.05
ResNet-50 + dropout (kp=0.7) [1] 76.80 4= 0.04 93.41 4+ 0.04
ResNet-50 + DropPath (kp=0.9) [17] 77.10 4 0.08 93.50 £ 0.05
ResNet-50 + SpatialDropout (kp=0.9) [20] 77.41 = 0.04 93.74 4 0.02
ResNet-50 + Cutout [23] 76.52 4= 0.07 93.21 £ 0.04
ResNet-50 + AutoAugment [27] 77.63 93.82
ResNet-50 + label smoothing (0.1) [28] 77.17 £0.05 93.45 £+0.03
ResNet-50 + DropBlock, (kp=0.9) 78.13 £ 0.05 94.02 4= 0.02
ResNet-50 + DropBlock (kp=0.9) + label smoothing (0.1) 78.35 £+ 0.05 94.15 £+ 0.03

CNN Regularization
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Beyond Image Classification
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Beyond Image Classification

® Object detection
(including location)

Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks",
https: //arxiv.org/abs/1506.01497

® |mage segmentation

® Human pose estimation

.
06870.
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® Start with a network pre-trained on ImageNet (VGG-16 is used in the original paper).

Rol Pooling

® (rucial for fast performance.
® The last max-pool layer (14 x 14 — 7 x 7 in VGG) is replaced by a Rol pooling layer,

producing output of the same size. For each output sub-window we max-pool the
corresponding values in the output layer.
® Two sibling layers are added, one predicting K + 1 categories and the other one predicting

4 bounding box parameters for each of K categories.
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Fast R-CNN
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Figure 1 of paper "Fast R-CNN", https://arxiv.org/abs/1504.08083.
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The bounding box is parametrized as follows. Let z,, y,, w., h, be center coordinates and

width and height of the Rol, and let x, y, w, h be parameters of the bounding box. We
represent them as follows:

=(z —z)/wr, ty=(y—y)/hr
=lo (w/wr)a th = log(h/hr)

Usually a smoothj, loss, or Huber loss, is employed for bounding box parameters

0.5z if |x| < 1

lz| — 0.5 otherwise

smoothy, () = {

The complete loss is then

L(¢,%,¢,t) = Las(é,¢) + Ale >1] > smoothy, (£ — t;).
ZE{X7Y7W7h}
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Intersection over union

For two bounding boxes (or two masks) the intersection over union (loU) is a ration of the
intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing Rols for training

During training, we use 2 images with 64 Rols each. The Rols are selected so that 25% have

intersection over union (loU) overlap with ground-truth boxes at least 0.5; the others are
chosen to have the loU in range [0.1,0.5).

Choosing Rols during inference

Single object can be found in multiple Rols. To choose the most salient one, we perform non-
maximum suppression -- we ignore Rols which have an overlap with a higher scoring Rol of the
same type, where the loU is larger than a given threshold (usually, 0.3 is used). Higher scoring
Rol is the one with higher probability from the classification head.
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Average Precision
Evaluation is performed using Average Precision (AP).

We assume all bounding boxes (or masks) produced by a system have confidence values which
can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order
of the ranks and generate precision/recall curve, considering a bounding box correct if it has
loU at least 0.5 with any ground-truth box. We define AP as an average of precisions for recall

levels 0,0.1,0.2,...,1.

person

precision
precision

; ; ; ; ; ; ; ; ; ; 0 ; ; ; ; ; ; ; ; ; H
0 0.1 020304 0506070809 1 0 010203040506070809 1
recall recall
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For Fast R-CNN, the most time consuming part is generating the Rols.

Therefore, Faster R-CNN jointly generates regions of interest using a region proposal network

and performs object detection.

classifier

BHGPO V /

Region Proposal Network

feature maps

conv layers I

4
Vo 27 4 e 4

e

Image Detection
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Faster R-CNN

The region proposals are generated using a 3 X 3 sliding window, with 3 different scales (128,
2562 and 5122) and 3 aspect ratios (1:1, 1:2, 2:1). For every anchor, there is a Fast-R-
CNN-like object detection head — a classification into two classes (background, object) and a

boundary regressor.

2k scores

4k coordinates

cls layer ‘

t reg layer

256-d

' intermediate layer

sliding window

conv feature map

Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497
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During training, we generate

® positive training examples for every anchor that has highest loU with a ground-truth box;
® furthermore, a positive example is also any anchor with loU at least 0.7 for any ground-

trugh box;
® negative training examples for every anchor that has loU at most 0.3 with all ground-truth

boxes.

During inference, we consider all predicted non-background regions, run non-maximum
suppresion on them using a 0.7 loU threshold, and then take IV top-scored regions (i.e., the

ones with highest probability from the classification head) — the paper uses 300 proposals,
compared to 2000 in the Fast R-CNN.
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Table 3: Detection results on PASCAL VOC 2007 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07+12”: union set of VOC 2007 trainval and VOC 2012 trainval. For RPN,
the train-time proposals for Fast R-CNN are 2000. : this number was reported in [2]; using the repository
provided by this paper, this result is higher (68.1).

method # proposals | data | mAP (%)
SS 2000 07 66.9"
SS 2000 07+12 70.0
RPN+VGG, unshared 300 07 68.5
RPN+VGG, shared 300 07 69.9
RPN+VGG, shared 300 07+12 73.2
RPN+VGG, shared 300 COCO+07+12 78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07++12”: union set of VOC 2007 trainval+test and VOC 2012 trainval. For
RPN, the train-time proposals for Fast R-CNN are 2000. f: http:/ /host.robots.ox.ac.uk:8080/anonymous/HZJTQA html. *:
http:/ /host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. §: http:/ /host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method # proposals | data | mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4
RPN+VGG, shared' 300 12 67.0
RPN+VGG, shared? 300 07++12 70.4
RPN+VGG, shared® 300 COCO+07++12 75.9
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Mask R-CNN ez

"Straightforward" extension of Faster R-CNN able to produce image segmentation (i.e., masks
for every object).
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Figure 1 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN UL
RolAlign

More precise alignment is required for the Rol in order to predict the masks. Therefore, instead
of max-pooling used in the Rol pooling, RolAlign with bilinear interpolation is used.

Figure 3 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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Mask R-CNN

Masks are predicted in a third branch of the object detector.

® Usually higher resolution is needed (14 X 14 instead of 7 X 7).

® The masks are predicted for each class separately.
® The masks are predicted using convolutions instead of fully connected layers.

—>
Rol
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Figure 4 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.
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net-depth-features | AP APsg APr7s AP APs50 APr75 align? | bilinear? | agg. | AP  APsg APrs

ResNet-50-C4 30.3 51.2 31.5 softmax 24.8 44.1 25.1 RolPool [12] max| 269 488 264

ResNet-101-C4 32.7 54.2 34.3 sigmoid 30.3 51.2 31.5 v max| 27.2 492 27.1
RolWarp [10]

ResNet-50-FPN 33.6 55.2 35.3 +5.5 +7.1 +6.4 v ave | 27.1 489  27.1

ResNet-101-FPN | 354 57.3 37.5 RolAli v v max| 30.2 51.0 31.8

ResNeXt-101-FPN | 367  59.5  38.9 s sl v lave| 303 512 315

(a) Backbone Architecture: Better back-
bones bring expected gains: deeper networks
do better, FPN outperforms C4 features, and
ResNeXt improves on ResNet.

(b) Multinomial vs. Independent Masks

(ResNet-50-C4):

Decoupling via per-

class binary masks (sigmoid) gives large
gains over multinomial masks (softmax).

(c) RolAlign (ResNet-50-C4): Mask results with various Rol
layers. Our RolAlign layer improves AP by ~3 points and
AP75 by ~5 points. Using proper alignment is the only fac-

tor that contributes to the large gap between Rol layers.

AP AP59 AP;5 | AP®  APYY AP mask branch AP AP5y APy
RolPool | 23.6 465 216 | 282 527 269 MLP fc: 1024—1024—80-282 3.5 537 328
RolAlign | 309  51.8 321 | 340 553 364 MLP fc: 1024—1024—1024—80-282 3.5 540 326
+7.3  +53 4105 | +58 426  +9.5 FCN | conv: 256—256—256—256—256—80 | 33.6 552  35.3

(d) RoIAlign (ResNet-50-CS, stride 32): Mask-level and box-level
AP using large-stride features. Misalignments are more severe than
with stride-16 features (Table 2c¢), resulting in big accuracy gaps.

(e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs.
multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs im-

prove results as they take advantage of explicitly encoding spatial layout.

Table 2. Ablations. We train on t rainval35k, test on minival, and report mask AP unless otherwise noted.

Howto

ResNet

ResNet Modifications

CNN Regularization

Image Detection

Segmentation

51/51



