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Convergence

The training process might or might not converge. Even if it does, it might converge slowly or
quickly.

We have already discussed two factors influencing it on the previous lecture:

saturating non-linearities,
parameter initialization strategies.

Another prominent method for dealing with slow or diverging training is gradient clipping.
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Convergence – Gradient Clipping

 

Figure 8.3, page 289 of Deep Learning Book, http://deeplearningbook.org
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Convergence – Gradient Clipping

 

Figure 10.17, page 414 of Deep Learning Book, http://deeplearningbook.org

Using a given maximum norm, we may clip the gradient.

The clipping can be per weight (clipvalue of tf.keras.optimizers.Optimizer), per
variable or for the gradient as a whole (clipnorm of tf.keras.optimizers.Optimizer).

g ←   {
g

c  ∣∣g∣∣
g

 if ∣∣g∣∣ ≤ c

 if ∣∣g∣∣ > c
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Going Deeper

Going Deeper
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Convolutional Networks

Consider data with some structure (temporal data, speech, images, …).

Unlike densely connected layers, we might want:

local interactions;
parameter sharing (equal response everywhere);
shift invariance.
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Convolution Operation

For a functions  and , convolution  is defined as

For vectors, we have

Convolution operation can be generalized to two dimensions by

Closely related is cross-corellation, where  is flipped:

x w x ∗ w

(x ∗ w)(t) = x(a)w(t −∫ a) da.

(x ∗ w)  =t  x  w  .∑
i

i t−i

(I ∗ K)  =i,j  I K  .∑
m,n

m,n i−m,j−n

K

S  =i,j  I  K  .∑
m,n

i+m,j+n m,n
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Convolution

 

Figure 9.1, page 334 of Deep Learning Book, http://deeplearningbook.org
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Convolutional Networks

 

Image from https://i.stack.imgur.com/YDusp.png.
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Convolution Layer

The  is usually called a kernel or a filter, and we generally apply several of them at the same

time.

Consider an input image with  channels. The convolution layer with  filters of width ,

height  and stride  produces an output with  channels, is parametrized by a kernel  of

total size  and is computed as

We can consider the kernel to be composed of  independent kernels, one for every output

channel.

Note that while only local interactions are performed in the image spacial dimensions (width
and height), we combine input channels in a fully connected manner.

K

C F W

H S F K

W × H × C × F

(I ∗ K)  =i,j,k  I  K  .
m,n,o

∑ i⋅S+m,j⋅S+n,o m,n,o,k

F
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Convolution Layer

There are multiple padding schemes, most common are:

valid: Only use valid pixels, which causes the result to be smaller than the input.
same: Pad original image with zero pixels so that the result is exactly the size of the input.

There are two prevalent image formats (called data_format in TensorFlow):

channels_last: The dimensions of the 4-dimensional image tensor are batch, height,
width, and channels.

The original TensorFlow format, faster on CPU.

channels_first: The dimensions of the 4-dimensional image tensor are batch, channel,
height, and width.

Usual GPU format (used by CUDA and nearly all frameworks); on TensorFlow, not all CPU
kernels are available with this layout.

TensorFlow has been implementing an approach that will convert data format to
channels_first automatically depending on the backend.
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Pooling

Pooling is an operation similar to convolution, but we perform a fixed operation instead of
multiplying by a kernel.

Max pooling (minor translation invariance)
Average pooling

 

Figure 9.10, page 344 of Deep Learning Book, http://deeplearningbook.org
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High-level CNN Architecture

We repeatedly use the following block:

1. Convolution operation
2. Non-linear activation (usually ReLU)
3. Pooling

 

Image from https://cdn-images-1.medium.com/max/1200/0*QyXSpqpm1wc_Dt6V. .
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AlexNet – 2012 (16.4% error)

 

Figure 2 of paper "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.
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AlexNet – 2012 (16.4% error)

Training details:

2 GPUs for 5-6 days

SGD with batch size 128, momentum 0.9, weight decay 0.0005

initial learning rate 0.01, manually divided by 10 when validation error rate stopped
improving

ReLU non-linearities

dropout with rate 0.5 on fully-connected layers

data augmentation using translations and horizontal reflections (choosing random 

 patches from  images)
during inference, 10 patches are used (four corner patches and a center patch, as well as
their reflections)

224 ×
224 256 × 256
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AlexNet – ReLU vs tanh

 

Figure 1 of paper "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.
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LeNet – 1998

AlexNet built on already existing CNN architectures, mostly on LeNet, which achieved 0.8% test
error on MNIST.

 

Figure 2 of paper "Gradient-Based Learning Applied to Document Recognition", http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf.
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Similarities in V1 and CNNs

 

Figure 9.18, page 370 of Deep Learning Book, http://deeplearningbook.org

The primary visual cortex recognizes Gabor functions.
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Similarities in V1 and CNNs

 

Figure 9.19, page 371 of Deep Learning Book, http://deeplearningbook.org

Similar functions are recognized in the first layer of a CNN.
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CNNs as Regularizers – Deep Prior

 

Figure 1 of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers – Deep Prior

 

Figure 7 of paper "Deep Prior", https://arxiv.org/abs/1712.05016

21/46NPFL114, Lecture 4 Gradient Clipping Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet



CNNs as Regularizers – Deep Prior

 

Figure 5 of supplementary materials of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers – Deep Prior

 

Figure 8 of paper "Deep Prior", https://arxiv.org/abs/1712.05016

Deep Prior paper website with supplementary material
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https://dmitryulyanov.github.io/deep_image_prior


VGG – 2014 (6.8% error)

 

Figure 1 of paper "Very Deep Convolutional Networks For Large-Scale Image Recognition",
https://arxiv.org/abs/1409.1556.

 

Figure 1 of paper "Rethinking the Inception Architecture for Computer Vision",
https://arxiv.org/abs/1512.00567.

 

 

Figure 2 of paper "Very Deep Convolutional Networks For Large-Scale Image Recognition",
https://arxiv.org/abs/1409.1556.
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VGG – 2014 (6.8% error)

Method top-1 val. error (%) top-5 val. error (%) top-5 test error (%)

VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8

VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0

VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3

GoogLeNet (Szegedy et al., 2014) (1 net) - 7.9

GoogLeNet (Szegedy et al., 2014) (7 nets) - 6.7

MSRA (He et al., 2014) (11 nets) - - 8.1

MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1

Clarifai (Russakovsky et al., 2014) (multiple nets) - - 11.7

Clarifai (Russakovsky et al., 2014) (1 net) - - 12.5

Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8

Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1

OverFeat (Sermanet et al., 2014) (7 nets) 34.0 13.2 13.6

OverFeat (Sermanet et al., 2014) (1 net) 35.7 14.2 -

Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4

Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -

 

Figure 2 of paper "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556.
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Inception (GoogLeNet) – 2014 (6.7% error)

 

Figure 2 of paper "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842.
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Inception (GoogLeNet) – 2014 (6.7% error)

 

Figure 2 of paper "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842.
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Inception (GoogLeNet) – 2014 (6.7% error)

 

Table 1 of paper "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842.
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Inception (GoogLeNet) – 2014 (6.7% error)

 

Figure 3 of paper "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842.

Also note the two auxiliary classifiers (they have weight 0.3).
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Batch Normalization

Internal covariate shift refers to the change in the distributions of hidden node activations due
to the updates of network parameters during training.

Let  be -dimensional input. We would like to normalize each dimension as

Furthermore, it may be advantageous to learn suitable scale  and shift  to produce

normalized value

x = (x  , … ,x  )1 d d

 =x̂i  .
 Var[x  ]i

x  − E[x  ]i i

γ  i β  i

y  =i γ   +ix̂i β  .i
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Batch Normalization

Consider a mini-batch of  examples .

Batch normalizing transform of the mini-batch is the following transformation.

Inputs: Mini-batch ,  

Outputs: Normalized batch 

Batch normalization is commonly added just before a nonlinearity. Therefore, we replace 

 by .

During inference,  and  are fixed. They are either precomputed after training on the whole

training data, or an exponential moving average is updated during training.

m (x , … ,x )(1) (m)

(x , … ,x )(1) (m) ε ∈ R
(y , … ,y )(1) (m)

μ ←   xm
1 ∑i=1

m (i)

σ ←2
  (x −m

1 ∑i=1
m (i) μ)2

←x̂
(i) (x −(i) μ)/  σ + ε2

y ←(i) γ +x̂
(i)

β

f(Wx + b) f(BN(Wx))

μ σ2
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Batch Normalization

When a batch normalization is used on a fully connected layer, each neuron is normalized
individually across the minibatch.

However, for convolutional networks we would like the normalization to honour their properties,
most notably the shift invariance. We therefore normalize each channel across not only the
minibatch, but also across all corresponding spacial/temporal locations.

 

Adapted from Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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Inception with BatchNorm (4.8% error)

 

Figures 2 and 3 of paper "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", https://arxiv.org/abs/1502.03167.
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Inception v2 and v3 – 2015 (3.6% error)

 

Figure 1 of paper "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567.

 

 

Figure 3 of paper "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.
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Inception v2 and v3 – 2015 (3.6% error)

 

Figure 5 of paper "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.

 

 

Figure 6 of paper "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.

 

 

Figure 7 of paper "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.
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Inception v2 and v3 – 2015 (3.6% error)

 

Table 1 of paper "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567.
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Inception v2 and v3 – 2015 (3.6% error)

 

Table 3 of paper "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567.
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ResNet – 2015 (3.6% error)

 

Figure 1 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet – 2015 (3.6% error)

 

Figure 2 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet – 2015 (3.6% error)

 

Figure 5 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet – 2015 (3.6% error)

 

Table 1 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet – 2015 (3.6% error)
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Figure 3 of paper "Deep Residual Learning for Image Recognition",
https://arxiv.org/abs/1512.03385.

The residual connections cannot be applied
directly when number of channels increase.

The authors considered several alternatives, and
chose the one where in case of channels
increase a  convolution is used on the

projections to match the required number of
channels.

1 × 1
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ResNet – 2015 (3.6% error)

 

Figure 4 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet – 2015 (3.6% error)

 

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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ResNet – 2015 (3.6% error)

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89

VGG [41] (v5) 24.4 7.1

PReLU-net [13] 21.59 5.71

BN-inception [16] 21.99 5.81

ResNet-34 B 21.84 5.71

ResNet-34 C 21.53 5.60

ResNet-50 20.74 5.25

ResNet-101 19.87 4.60

ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet

validation set (except † reported on the test set).

 

Table 4 of paper "Deep Residual Learning for Image Recognition",
https://arxiv.org/abs/1512.03385.

 

method top-5 err. (test)

VGG [41] (ILSVRC’14) 7.32

GoogLeNet [44] (ILSVRC’14) 6.66

VGG [41] (v5) 6.8

PReLU-net [13] 4.94

BN-inception [16] 4.82

ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the

test set of ImageNet and reported by the test server.

 

Table 5 of paper "Deep Residual Learning for Image Recognition",
https://arxiv.org/abs/1512.03385.
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Main Takeaways

Convolutions can provide
local interactions in spacial/temporal dimensions
shift invariance
much less parameters than a fully connected layer

Usually repeated  convolutions are enough, no need for larger filter sizes.

When pooling is performed, double number of channels.

Final fully connected layers are not needed, global average pooling is usually enough.

Batch normalization is a great regularization method for CNNs.

3 × 3
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