
NPFL114, Lecture 1

Introduction to Deep Learning

Milan Straka

March 04, 2019

Charles University in Prague 
Faculty of Mathematics and Physics 
Institute of Formal and Applied Linguistics

unless otherwise stated



Deep Learning Highlights

Image recognition

Object detection

Image segmentation,

Human pose estimation

Image labeling

Visual question answering

Speech recognition and generation

Lip reading

Machine translation

Machine translation without parallel data

Chess, Go and Shogi

Multiplayer Capture the flag

2/29NPFL114, Lecture 1 Notation Random Variables Information Theory Machine Learning Neural Nets '80s



Notation

, , , : scalar (integer or real), vector, matrix, tensor

, , : scalar, vector, matrix random variable

: derivative of  with respect to 

: partial derivative of  with respect to 

: gradient of  with respect to , i.e., 

a a A A

a a A

 

dx
df f x

 ∂x
∂f f x

∇  fx f x  ,  , … ,  ( ∂x  1

∂f (x)
∂x  2

∂f (x)
∂x  n

∂f (x))
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Random Variables

A random variable  is a result of a random process. It can be discrete or continuous.

Probability Distribution
A probability distribution describes how likely are individual values a random variable can take.

The notation  stands for a random variable  having a distribution .

For discrete variables, the probability that  takes a value  is denoted as  or explicitly as 

.

For continuous variables, the probability that the value of  lies in the interval  is given by 

.

x

x ∼ P x P

x x P (x)
P (x = x)

x [a, b]
 p(x) dx∫

a

b
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Random Variables

Expectation
The expectation of a function  with respect to discrete probability distribution  is

defined as:

For continuous variables it is computed as:

If the random variable is obvious from context, we can write only  of even .

Expectation is linear, i.e.,

f(x) P (x)

E  [f(x)]x∼P =def
 P (x)f(x)

x

∑

E  [f(x)]x∼p =
def

 p(x)f(x) dx∫
x

E  [x]P E[x]

E  [αf(x) +x βg(x)] = αE  [f(x)] +x βE  [g(x)]x
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Random Variables

Variance
Variance measures how much the values of a random variable differ from its mean .

It is easy to see that

Variance is connected to , a second moment of a random variable – it is in fact a

centered second moment.

μ = E[x]

  

Var(x)

Var(f(x))

E (x − E[x]) , or more generally=def
[

2
]

E (f(x) − E[f(x)])=def
[

2
]

Var(x) = E x − 2xE[x] + (E[x]) =[ 2 2
] E x −[ 2] (E[x]) .

2

E[x ]2
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Common Probability Distributions

Bernoulli Distribution
The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter , which specifies the probability of the random variable being equal to 1.

Categorical Distribution
Extension of the Bernoulli distribution to random variables taking one of  different discrete

outcomes. It is parametrized by  such that .

φ ∈ [0, 1]

  

P (x)

E[x]

Var(x)

= φ (1 − φ)x 1−x

= φ

= φ(1 − φ)

k

p ∈ [0, 1]k  p  =∑i=1
k

i 1

  

P (x)

E[x  ]i

=  p  ∏
i

k

i
x  i

= p  , Var(x  ) = p  (1 − p  )i i i i
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Information Theory

Self Information
Amount of surprise when a random variable is sampled.

Should be zero for events with probability 1.
Less likely events are more surprising.
Independent events should have additive information.

Entropy
Amount of surprise in the whole distribution.

for discrete : 

for continuous : 

I(x) =def − log P (x) = log  

P (x)
1

H(P ) =def E  [I(x)] =x∼P −E  [log P (x)]x∼P

P H(P ) = −  P (x) log P (x)∑x

P H(P ) = − P (x) log P (x) dx∫
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Information Theory

Cross-Entropy

Gibbs inequality

Proof: Using Jensen's inequality, we get

Corollary: For a categorical distribution with  outcomes, , because for 

 we get 

generally 

H(P ,Q) =def −E  [log Q(x)]x∼P

H(P ,Q) ≥ H(P )
H(P ) = H(P ,Q) ⇔ P = Q

 P (x) log  ≤
x

∑
P (x)
Q(x)

log  P (x)  =
x

∑
P (x)
Q(x)

log  Q(x) =
x

∑ 0.

n H(P ) ≤ log n

Q(x) = 1/n H(P ) ≤ H(P ,Q) = −  P (x) log Q(x) =∑x log n.

H(P ,Q)  = H(Q,P )
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Information Theory

Kullback-Leibler Divergence (KL Divergence)
Sometimes also called relative entropy.

consequence of Gibbs inequality: 

generally 

D  (P ∣∣Q)KL =def
H(P ,Q) − H(P ) = E  [log P (x) −x∼P log Q(x)]

D  (P ∣∣Q) ≥KL 0
D  (P ∣∣Q)  =KL  D  (Q∣∣P )KL
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Nonsymmetry of KL Divergence

 

Figure 3.6, page 76 of Deep Learning Book, http://deeplearningbook.org
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Common Probability Distributions

Normal (or Gaussian) Distribution
Distribution over real numbers, parametrized by a mean  and variance :

For standard values  and  we get .

 

Figure 3.1, page 64 of Deep Learning Book, http://deeplearningbook.org.

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x − μ)2

)

μ = 0 σ =2 1 N (x; 0, 1) =  e 2π
1 −  2

x2
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Why Normal Distribution

Central Limit Theorem
The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy
Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions with a given mean and variance, it can be proven (using variational
inference) that such a distribution with maximal entropy is exactly the normal distribution.

13/29NPFL114, Lecture 1 Notation Random Variables Information Theory Machine Learning Neural Nets '80s



Machine Learning

A possible definition of learning from Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

Task T
classification: assigning one of  categories to a given input

regression: producing a number  for a given input

structured prediction, denoising, density estimation, …

Experience E
supervised: usually a dataset with desired outcomes (labels or targets)
unsupervised: usually data without any annotation (raw text, raw images, …)
reinforcement learning, semi-supervised learning, …

Measure P
accuracy, error rate, F-score, …

k

x ∈ R
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Well-known Datasets

Name Description Instances

MNIST Images (28x28, grayscale) of handwritten digits. 60k

CIFAR-10 Images (32x32, color) of 10 classes of objects. 50k

CIFAR-

100

Images (32x32, color) of 100 classes of objects (with 20 defined

superclasses).
50k

ImageNet
Labeled object image database (labeled objects, some with bounding

boxes).
14.2M

ImageNet-

ILSVRC

Subset of ImageNet for Large Scale Visual Recognition Challenge,

annotated with 1000 object classes and their bounding boxes.
1.2M

COCO
Common Objects in Context: Complex everyday scenes with

descriptions (5) and highlighting of objects (91 types).
2.5M
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http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/
http://image-net.org/challenges/LSVRC/
http://cocodataset.org/


Well-known Datasets

ImageNet-ILSVRC

 

Image from "ImageNet Classification with Deep Convolutional Neural Networks" paper by Alex
Krizhevsky et al.

 

Image from http://image-net.org/challenges/LSVRC/2014/.
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Well-known Datasets

COCO
 

Image from http://mscoco.org/dataset/\#detections-challenge2016.
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Well-known Datasets

Name Description Instances

IAM-OnDB Pen tip movements of handwritten English from 221 writers. 86k words

TIMIT Recordings of 630 speakers of 8 dialects of American English. 6.3k sents

CommonVoice 400k recordings from 20k people, around 500 hours of speech. 400k

PTB
Penn Treebank: 2500 stories from Wall Street Journal, with POS

tags and parsed into trees.
1M words

PDT
Prague Dependency Treebank: Czech sentences annotated on 4

layers (word, morphological, analytical, tectogrammatical).

1.9M

words

UD
Universal Dependencies: Treebanks of 76 languages with consistent

annotation of lemmas, POS tags, morphology and syntax.

129

treebanks

WMT Aligned parallel sentences for machine translation. gigawords
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http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database
https://catalog.ldc.upenn.edu/LDC93S1
https://voice.mozilla.org/data
https://catalog.ldc.upenn.edu/LDC99T42
https://ufal.mff.cuni.cz/prague-dependency-treebank
http://universaldependencies.org/
http://statmt.org/


ILSVRC Image Recognition Error Rates
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ILSVRC Image Recognition Error Rates

In summer 2017, a paper came out describing automatic generation of neural architectures
using reinforcement learning.

 

Figure 5 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.
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Introduction to Machine Learning History

 

https://www.slideshare.net/deview/251-implementing-deep-learning-using-cu-dnn/4
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Curse of Dimensionality

 

Figure 5.9, page 156 of Deep Learning Book, http://deeplearningbook.org.
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Machine and Representation Learning

 

Figure 1.5, page 10 of Deep Learning Book, http://deeplearningbook.org.
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Neural Network Architecture à la '80s

x3 h3

h4

h1

h2

x4

x1

x2 o1

o2

Input
layer

Hidden
layer

Output
layer
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Neural Network Architecture

There is a weight on each edge, and an activation function  is performed on the hidden layers,

and optionally also on the output layer.

If the network is composed of layers, we can use matrix notation and write:

f

h  =i f  w  x  (
j

∑ i,j j)

h = f Wx( )
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Neural Network Activation Functions

Output Layers
none (linear regression if there are no hidden layers)

 (sigmoid; logistic regression if there are no hidden layers)

 (maximum entropy model if there are no hidden layers)

σ

σ(x) =def
 

1 + e−x

1

softmax

softmax(x) ∝ ex

softmax(x)  i =def
 

 e∑j
x  j

ex  i
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Neural Network Activation Functions

Hidden Layers
none (does not help, composition of linear mapping is a linear mapping)

 (but works badly – nonsymmetrical, )

result of making  symmetrical and making derivation in zero 1

ReLU

σ  (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)
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Universal Approximation Theorem '89

Let  be a nonconstant, bounded and monotonically-increasing continuous function.

Then for any  and any continuous function  on  there exists an 

 and , such that if we denote

then for all 

φ(x)

ε > 0 f [0, 1]m N ∈ N, v  ∈i

R, b  ∈i R w  ∈i Rm

F (x) =  v  φ(w  ⋅
i=1

∑
N

i i x + b  )i

x ∈ [0, 1]m

∣F (x) − f(x)∣ < ε.
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Evolving ReLU Approximation
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