Measuring the degree of transparency of English derivational suffixes

Verginica Barbu Mititeluⁱ, Gianina Iordăchioaiaⁱⁱ, Svetlozara Lesevaⁱⁱⁱ, Ivelina Stoyanovaⁱⁱⁱ

Research Institute for Artificial Intelligence – Romanian Academyⁱ, University of Graz, Austriaⁱⁱ Institute for Bulgarian Language – Bulgarian Academy of Sciencesⁱⁱⁱ

Workshop 15: Data-based research in word formation Biennial of Czech Linguistics 2024, Charles University, Prague, Sept. 19, 2024

Interpretation of derived words

- Derivational suffixes (overt or zero) exhibit a high degree of polysemy
- Difficult to model theoretically and problematic for L1/L2 acquisition:

Nominalizing suffixes	Verbalizing suffixes (Plag 1999: 125-142)
Event: destruction, building	Locative 'put (in)to X': hospitalize, containerize
Result state: destruction, annihilation	Ornative 'provide with X': acidize, nuclearize
Product: construction, building, carving	Causative 'make (more) X': randomize, nuclearize
Instrument: adornment, protection	Resultative 'make into X': peasantize, anglicize
Location: parking, residence	Inchoative 'become X': aerosolize, grammaticalize
Cause: amusement	Performative 'perform X': anthropologize
Agent: administration	Similative 'act like/imitate X': stalinize, marxize

(see Grimshaw 1990, Lieber 2004, 2016, Bierwisch 2009, Melloni 2011, Bauer et al. 2013, Iordachioaia & Melloni 2023, Kawaletz 2023, Valera 2023)

Goal of our study

- Get insights on the semantic transparency of overt and zero derivational suffixes (N → V and V → N) in terms of the morphosemantic relation(s) they establish between base and derivative
- Lexical resources: Princeton WordNet (PWN) (+ directionality of zero derivation from Oxford English Dictionary)
 - N-V sense pairs found in a direct derivational relation
 - N and V semantic classes/primes (n.event, n.artifact, v.change, v.motion etc)
 - Morphosemantic relations (Event, Agent, Instrument, State etc)
- Train and test a machine learning classifier to predict the morphosemantic relation(s) from the suffix and the semantic classes of the base and the derivative

Roadmap

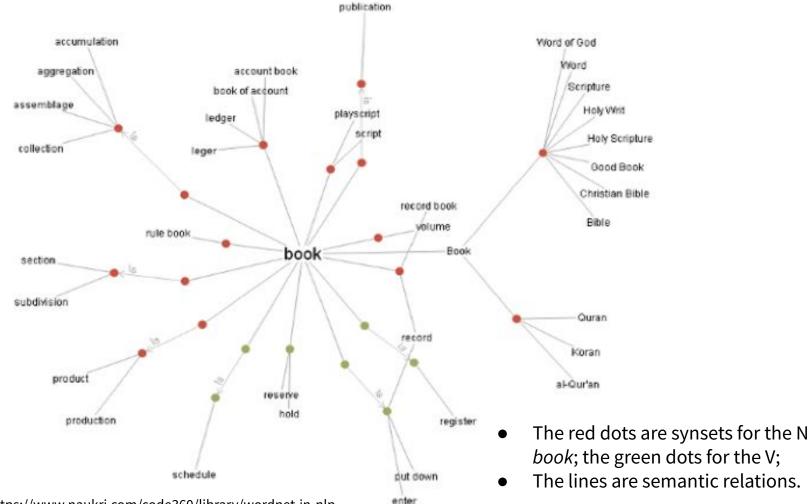
- 1. Resources
- 2. Data & methodology
- 3. Results & discussion
- 4. Conclusions and future work

Roadmap

1. Resources

- 2. Data & methodology
- 3. Results & discussion
- 4. Conclusions and future work

Princeton WordNet


PRINCETON UNIVERSITY

WordNet A Lexical Database for English

- <u>Princeton WordNet</u> (Fellbaum 1998) is a lexical database of 117,000+ synonym sets (synsets)
- Entries (synsets) correspond to distinct concepts (not lexemes), and contain cognitive synonyms.
- N and V synsets are organized in multiple hierarchies by means of semantic relations: hyponymy, troponymy, meronymy, etc.
- Additionally, N and V synsets are classified into distinct semantic fields by being assigned semantic primes (Miller et al. 1990).

Nouns: 25 semantic primes (~ noun classes), e.g. noun.person, noun.act, noun.artifact, etc.

Verbs: 15 semantic primes (~ verb classes), e.g. verb.motion, verb.change, verb.contact, etc.

Source: https://www.naukri.com/code360/library/wordnet-in-nlp

7

25 Semantic primes of WordNet nouns

noun.act: acts or actions noun.animal: animals **noun.artifact**: man-made objects **noun.attribute**: attributes of people/objects **noun.body**: body parts **noun.cognition**: cognitive processes and contents **noun.communication**: communicative processes and **noun.process**: natural processes contents noun.event: natural events noun.feeling: feelings and emotions noun.food: foods and drinks **noun.group**: groupings of people or objects **noun.location**: spatial position

noun.motive: goals **noun.object**: natural objects (not man-made) noun.person: people noun.phenomenon: natural phenomena **noun.plant**: plants **noun.possession**: (transfer of) possession noun.quantity: quantities and units of measure **noun.relation**: relations b/n people/things/ideas **noun.shape:** two and three dimensional shapes noun.state: stable states of affairs noun.substance: substances **noun.time**: time and temporal relations

15 Semantic primes of WordNet verbs

verb.body: verbs of grooming, dressing and bodily care

verb.change: verbs of size, temperature change, intensifying, etc.

verb.cognition: verbs of thinking, judging, analyzing, doubting

verb.communication: verbs of telling, asking, ordering, singing

verb.competition: verbs of fighting, athletic activitiesverb.consumption: verbs of eating and drinkingverb.contact: verbs of touching, hitting, tying, digging

verb.creation: verbs of sewing, baking, painting, performing

verb.emotion: verbs of feeling
verb.motion: verbs of walking, flying, swimming
verb.perception: verbs of seeing, hearing, feeling
verb.possession: verbs of buying, selling, owning
verb.social: verbs of political and social activities and
events

verb.stative: verbs of being, having, spatial relations **verb.weather**: verbs of raining, snowing, thawing, thundering

Morphosemantic relations in WordNet

- Occur among derivationally related pairs of nouns and verbs.
- Capture the semantics of derivational relations.

net - v	201365945	instrument	net – n	103819994	catch with a net; "net a fish"	a trap made of netting to catch fish or
net - v	202291548	result	net – n		yield as a net profit; "This sale netted	the excess of revenues over outlays in a
net - v	201672168	result	net – n		construct or form a web, as if by weavin	an open fabric of string or rope or wire

(Fellbaum, C., Osherson, A., Clark, P.E. (2009). Putting Semantics into WordNet's "Morphosemantic" Links. In: Vetulani, Z., Uszkoreit, H. (eds) Human Language Technology. Challenges of the Information Society. LTC 2007. Lecture Notes in Computer Science(), vol 5603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04235-5_30)

14 Morphosemantic relations in WordNet

Relation	Description	(Koeva et al. 2016)	Example
Agent	a person, a social entity, such as organisations, an animal or capable of acting so as to bring about a result	a plant that is	appraise - appraiser
Instrument	either a concrete, usually man-made object, or something ab the volition of an Agent	stract, acting under	stem - stemmer
Body-part	an inalienable part of the body of an Agent expressed by Ns N.body (rarely N.animal or N.plant)	with the prime	flip - flipper
Material	a type of inanimate cause (substances that may bring about	a certain effect)	inhibit - inhibitor
Vehicle	means of transportation; as opposed to Instruments their sen behaviour is more similar to Agents	nantic and syntactic	cruise - cruiser
By- means-of	a kind of inanimate cause OR a less causative semantics, rat facilitating	ther enabling or	certify - certificate
Event	processual nominalization involving Ns such as N.act, N.ever N.process	nt, N.phenomenon,	approve - approval

14 Morphosemantic relations in WordNet

Relation	Description	(Koeva et al. 2016)	Example
State	abstract entities: feelings (N.feeling), cognitive (N.cogniti dynamic state-of-affairs, such as synsets with the prime		confuse - confusion
Undergoer	entities affected by the situation described and roughly c thematic role of Patient/Theme	orresponds to the	address - addressee
Result	entities that are produced or come into existence as a redescribed by the \ensuremath{V}	sult of the situation	esterify - ester
Property	various attributes and qualities. This relation involves print N.attribute and more rarely N.location	marily Ns with the prime	bitter - bitter
Location	a concrete (natural or man-made) or an abstract location place	where an event takes	barrel - barrel
Destination	associated with the primes N.person, N.location and N.a. two distinct interpretations in terms of the thematic role the (N.person) or as a Goal (N.artifact, N.location)		classify - class
Uses	a function or purpose of an entity; especially with Vs of p directly involved as the Theme of the V	outting, the entity is	lipstick - lipstick

Roadmap

1. Resources

2. Data & methodology

- 3. Results & discussion
- 4. Conclusions and future work

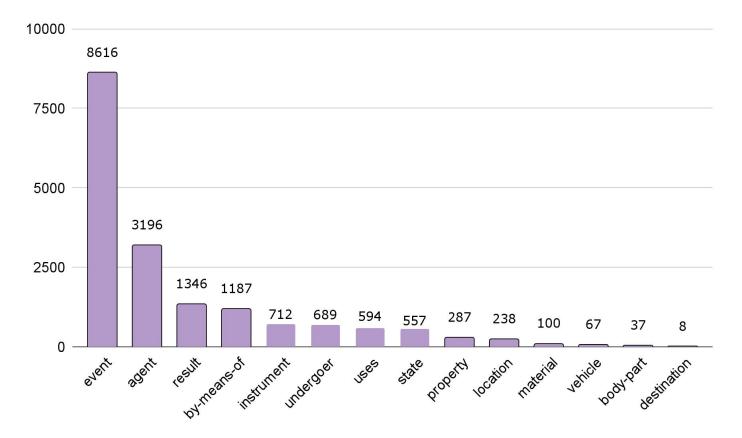
The Core Dataset

- → The Core Dataset used in the experiments consists of **17,634** V N literal pairs.
- → It was obtained from a larger dataset through applying filtering procedures so as to exclude: spelling (American/British) doublets, derivational pairs with unidentified direction of the relation, non-direct derivations.
- → We collected **11** V → N suffixes and **5** N → V suffixes.

The suffixes: $V \to N$

Total: **13,821 pairs 11 different suffixes**

(allomorphs are clustered together)


ion	(ation, tion) absorb - absorption	4330
er	(or) roll - roller	3442
ZeroN	<i>glide</i> 'fly in or as if in a glider plane' - <i>glide</i> 'the activity of flying a glider'	2366
ing	play - playing	1987
ment	replace - replacement	699
ance	(ence) occur - occurrence	367
ant	(ent) pollute - pollutant	159
age	parent - parentage	145
al	dispose - disposal	135
ure	press - pressure	108
ee	train - trainee	83

The suffixes: $N \rightarrow V$

Total: **3,813 pairs 5 different suffixes**

ZeroV	<i>fake</i> 'something that is a counterfeit; not what it seems to be' - <i>fake</i> 'make a copy of with the intent to deceive'	
ise	agony - agonise	463
ate	acetyl - acetylate	219
ify	acetum - acetify	151
en	threat - threaten	16

The morphosemantic relations

Experiments setup: Objective

- To examine the **transparency of the meaning of suffixes** by testing the potential to predict the morphosemantic relation they establish between V and N through basic machine learning algorithms using as features:
 - the semantic class/prime of the verb,
 - the semantic class/prime of the noun, and
 - the suffix.
- We compare the transparency of:
 - Overt vs. zero affixes;
 - Nominal vs. verbal affixes;
 - Individual affixes.

Experiments setup

We perform a set of experiments on the dataset:

- The dataset is presented in **.arff data format**.
- We use Weka Machine Learning library to run the experiments.
- We apply two different machine learning algorithms **OneR and RandomTree**.
- Evaluation is performed using **10-fold cross validation**.

Roadmap

- 1. Resources
- 2. Data & methodology
- 3. Results & discussion
- 4. Conclusions and future work

Test	Setup	ML Classifier	
		OneR	RandomTree
Baseline	Unified affixes (allomorphs clustered together); ZeroN / ZeroV	68.61	73.41
Affixal only	Unified affixes	71.67	74.94
Zero only	ZeroN and ZeroV	66.23	69.47

Test	Test Setup		lassifier
		OneR	RandomTree
Baseline	Unified affixes; both verbal and nominal; ZeroN / ZeroV	68.61	73.41
Verbal suffixes only	ZeroV, ise, ate, ify, en	45.15	53.87
Verbal suffixes – Zero	<mark>Zere∀</mark> , ise, ate, ify, en	34.88	45.2
Nominal suffixes only	ion, er, ZeroN, ing, ment, ance, ant, age, al, ure, ee	75.37	77.93
Nominal suffixes – Zero	ion, er, ZeroN , ing, ment, ance, ant, age, al, ure, ee	75.44	77.02

Test	Setup	ML Classifier	
		OneR	RandomTree
Baseline	Unified affixes; both verbal and nominal; ZeroN / ZeroV	68.61	73.41
Verbal suffixes only	ZeroV, ise, ate, ify, en	45.15	53.87
Verbal suffixes – Zero	<mark>∠cro√</mark> , ise, ate, ify, en	34.88	45.2
Nominal suffixes only	ion, er, ZeroN, ing, ment, ance, ant, age, al, ure, ee	75.37	77.93
Nominal suffixes – Zero	ion, er, ZeroN , ing, ment, ance, an <mark>t, age, al,</mark> ure, ee	75.44	77.02

For verbal suffixes, the zero suffix is more transparent. For only overt suffixes, the method performs worse.

Test	Setup ML Classifier		lassifier
		OneR	RandomTree
Baseline	Unified affixes; both verbal and nominal; ZeroN / ZeroV	68.61	73.41
Verbal suffixes only	ZeroV, ise, ate, ify, en	45.15	53.87
Verbal suffixes – Zero	<mark>Zero√</mark> , ise, ate, ify, en	34.88	45.2
Nominal suffixes only	ion, er, ZeroN, ing, ment, ance, ant, age, al, ure, ee	75.37	77.93
Nominal suffixes – Zero	ion, er, ZeroN , ing, ment, anc e, ant, ag e, al, ure, ee	75.44	77.02

For nominal suffixes, there is no sensible difference when including / excluding the zero suffix.

Verbal Suffix	ML Classifier		
	OneR	RandomTree	
ise	44.34	48.43	
ate	46.34	52.44	
ify	53.10	61.38	
en	38.46	38.46	
ZeroV	51.86	56.61	

Nominal Suffix	ML Classifier		
	OneR	RandomTree	
ion	81.86	81.65	
er	91.19	91.10	
ing	81.96	83.31	
ment	77.63	76.90	
ance	74.58	74.58	
ant	69.75	73.11	
age	72.84	67.90	
al	87.88	86.36	
ure	51.09	55.43	
ee	60.24	60.24	
ZeroN	78.57	81.36	

Error analysis

Most frequent errors

Correct relation	Assigned relation	Number of errors
by-means-of	event	346
result	event	314
undergoer	event	162
by-means-of	instrument	155
state	event	104
uses	event	98
by-means-of	result	98
undergoer	result	86
event	result	79
event	state	74
uses	instrument	74
uses	result	66
property	event	63

26

Error analysis: examples

(1) **by-means-of**: -ment, argue (verb.communication) 'give evidence of' – argument (noun.communication) 'a fact or assertion offered as evidence that something is true' Wrong prediction: **event**

(2) **by-means-of**: -ise, allegorise (verb.change) 'make into an allegory' – allegory (noun.communication) 'a visible symbol representing an abstract idea' Wrong prediction: **result**

(3) **by-means-of**: -ing, bind (verb.contact) 'provide with a binding' – binding (noun.artifact) 'the protective covering on the front, back, and spine of a book' Wrong prediction: **uses**

(4) **by-means-of**: ZeroN, clinch (verb.contact) 'secure or fasten by flattening the ends of nails or bolts' – clinch (noun.artifact) 'a small slip noose made with seizing' Wrong prediction: **instrument**

Error analysis: examples

(5) **result**: ZeroV, bundle (verb.contact) 'gather or cause to gather into a cluster' – bundle (noun.artifact) 'a package of several things tied together for carrying or storing' Wrong prediction: **instrument**

(6) **result**: -ion, conclude (verb.stative) 'come to a close' – conclusion (noun.communication) 'the last section of a communication' Wrong prediction: **event**

(7) **result**: -ing, cross (verb.motion) 'meet at a point' – crossing (noun.artifact) 'a junction where one street or road crosses another' Wrong prediction: **location**

(8) **result**: -ify, classify (verb.cognition) 'arrange or order by classes or categories' – class (noun.group) 'a league ranked by quality' Wrong prediction: **undergoer**

Roadmap

- 1. Resources
- 2. Data & methodology
- 3. Results & discussion
- 4. Conclusions and future work

Conclusion and future work

- The dataset shows rich polysemy and the overall prediction is not very high: 68-73%;
 - Overt suffixes together show slightly better prediction: 71-74%;
 - Zero suffixes alone (ZeroN + ZeroV) yield slightly worse results: 66-69%;
- Verbalizing suffixes are much less transparent (44-53%), and ZeroV seems to be more transparent than the overt ones; in the absence of ZeroV suffix: only 34-45%;
- Nominalizing suffixes are the most transparent (75-78%), and ZeroN behaves similarly to the overt ones; in its absence: 75-77%;
 - This confirms previous observations that ZeroN is semantically more transparent/compositional than ZeroV (Kisselew et al. 2016, Barbu Mititelu et al. 2023);
 - ZeroN seems to be similar to the overt nominalizing suffixes (Iordachioaia & Melloni 2023; contra Grimshaw 1990, Borer 2013).

Future work

- Check if the number of entries per suffix has an impact (fewer entries, worse prediction) => try to balance the numbers.
- Further analyze the individual suffixes with lower predictability as to whether they are indeed more polysemous and get an insight into the meanings of different suffixes.
- Use machine learning to collect information on which relations often co-occur to possibly cluster them together for the future (e.g. By-means-of and Uses).

References

- Barbu Mititelu, Verginica, Gianina Iordachioaia, Svetlozara Leseva & Ivelina Stoxanova. 2023. The meaning of zero nouns and zero verbs. In S. Kotowski & I. Plag (eds.), *The Semantics of Derivational Morphology*. De Gruyter, Berlin, 63-102.
- Bauer, Laurie, Rochelle Lieber & Ingo Plag. 2013. Oxford reference guide to English morphology. Oxford: Oxford University Press. DOI: 10.1093/acprof:oso/9780198747062.001.0001.
- Bierwisch, Manfred. 2009. Nominalization lexical and syntactic aspects. In Anastasia Giannakidou & Monika Rathert (eds.), Quantification, definiteness, and nominalization, 281–320. Oxford: Oxford University Press.
- Borer, Hagit. 2013. Taking form. Oxford: Oxford University Press.
- Fellbaum, Christiane (ed.). 1998. WordNet: An electronic lexical database. Cambridge, MA: MIT Press.
- Fellbaum, C., Osherson, A., Clark, P.E. (2009). Putting Semantics into WordNet's "Morphosemantic" Links. In: Vetulani, Z., Uszkoreit, H. (eds) Human Language Technology. Challenges of the Information Society. LTC 2007. Lecture Notes in Computer Science(), vol 5603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04235-5_30
- Grimshaw, Jane. 1990. Argument Structure. Cambridge, MA: MIT Press.
- Iordachioaia, Gianina & Chiara Melloni. 2023. The zero suffix in English and Italian deverbal nouns. Zeitschrift für Sprachwissenschaft 42(1): 109–132. DOI: <u>https://doi.org/10.1515/zfs-2022-2014</u>.
- Kawaletz, Lea. 2023. The semantics of English -ment nominalizations (Empirically Oriented Theoretical Morphology and Syntax 12). Berlin: Language Science Press.

References

- Kisselew, Max, Laura Rimell, Alexis Palmer & Sebastian Padó. 2016. Predicting the direction of derivation in English conversion. In Proceedings of the ACL SIG-MORPHON workshop, 93–98. Berlin: Association for Computational Linguistics. https://aclanthology.org/W16-2015.
- Koeva, Svetla, Svetlozara Leseva, Ivelina Stoyanova, Tsvetana Dimitrova & Maria Todorova. 2016. Automatic prediction of morphosemantic relations. In Proceedings of the 8th global WordNet conference (gwc), 169–177. Bucharest, Romania: Global Wordnet Association. https://aclanthology.org/2016.gwc-1.26.
- Lieber, Rochelle. 2004. Morphology and lexical semantics. Cambridge: Cambridge University Press.
- Lieber, Rochelle. 2016. English nouns. The ecology of nominalization. Cambridge: Cambridge University Press.
- Melloni, Chiara. 2011. Event and result nominals. A morpho-semantic approach. Bern: Peter Lang.
- Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross & Katherine Miller. 1990. Introduction to WordNet: An online lexical database. International Journal of Lexicography 3(4). 235–244.
- Valera, Salvador. 2023. The semantics of noun-to-verb zero-derivation in English and Spanish. Zeitschrift für Sprachwissenschaft 42(1): 153-180. DOI: <u>https://doi.org/10.1515/zfs-2022-2016</u>

Thank you!

vergi@racai.ro gianina.iordachioaia@uni-graz.at zarka@dcl.bas.bg iva@dcl.bas.bg