NPFL092 Technology for Natural Language Processing

Character Encoding

Zdenék Zabokrtsky, Rudolf Rosa

& November 28, 2018

- Charles Univeristy in Prague @ 0 @ @
L Faculty of Mathematics and Physics By NG SA
EUROPEAN UNION

European Siucural and invesiment Fnd Institute of Formal and Applied Linguistics niltes Gl e

A LANGTECH semeciene

eXtensible Markup Language

<?7xml version="1.0" encoding="UTF-8"7>
<my_courses>

<course id="NPFL092">
<name>NLP Technology</name>
<semester>winter</semester><hours_per_week>1/2</hours_per_week>
<department>Institute of Formal and Applied Linguistics</department>
<teachers>
<teacher>Rudolf Rosa</teacher>
<teacher>Zden&k Zabokrtskj</teacher>
</teachers>
</course>

</my_courses>

Character Encoding Introduction 2/23

Outline

= basic properties of XML
= syntactic requirements
= well-formedness and validity

= pros and cons

Character Encoding Introduction 3/23

markup used since 1960s

= markup = inserted marks into a plain-text document
= e.g. for formatting purposes (e.g. TeXin (1977

1969 — GML — Generalized Markup Language
= Goldfarb, Mosher and Lorie, legal texts for IBM

1986 — SGML - Standard Generalized Markup Language, 1SO 8879

= too complicated!

1992 — HTML (Hypertext Markup Language)

= only basics from SGML, very simple

1996 — W3C new directions for a new markup language specified, major design decisions
1998 — XML 1.0
2004 — XML 1.1, only tiny changes, XML 2.0 not under serious consideration now

Introduction 4/23

open file format, specification for free from W3C (as opposed to some proprietary file
formats of database engines or text editors)

easily understandable, self-documented files
text-oriented — no specialized tools required, abundance of text editors

possibly more semantic information content (compared e.g. to formatting markups -
e.g. “use a 14pt font for this” vs “this is a subsection heading")

easily convertable to other formats
easy and efficient parsing / structure checking

support for referencing

Introduction

5/23

Relational Databases vs. XML

Databazova tabulka
Prijmeni Jméno E-mail Telefon
Novak Jan n@seznamcz | 0603123456 —
[Karel > {Rarel@post co{ 0502987654) Stejna data v podobs XML dokumentu
<adregar>
<osoha>
<prijmeni>Novaks:/ptijmeni>

Pmchézkz-b

<Jwéno>Jan</ jméno>
<email>inBseznam. o</ emails

<telefon=0603123456</telefon>

</oscha>
<ozobaz
? <prijmeni>Prochizka</priimenis
P oqwEnosFare 1</ Jméno s
» <ewail>karelfpost.cz</emails
» <telefon=0602987654</ telefons
</ogchax
<fadvesai Credit: kosek.cz

6/23

Character Encodi Introduction

Relational databases
= basic data unit — a table consisting of tuples of values for pre-defined “fields”
= tables could be interlinked
= binary file format highly dependent on particular software
= emphasis on computational efficiency (indexing)
XML
= hierarchical (tree-shaped) data structure
= inherent linear ordering

= self-documented file format independent of implementation of software

= no big concerns with efficiency (however, given the tree-shaped prior, some solutions are

better than others)

Introduction

7/23

Basic notions:
= XML document is a text file in the XML format.
= Documents consists of nested elements.
= Boundaries of an element given by a start tag and an end tags.

= Another information associated with an element can be stored in element attributes.

<?7xml version="1.0" encoding="UTF-8"7>
<my_courses>
<course id="NPFL092">
<name>NLP Technology</name>
<semester>winter</semester><hours_per_week>1/2</hours_per_week>
<department>Institute of Formal and Applied Linguistics</department>
<teachers>
<teacher>Rudolf Rosa</teacher>
<teacher>Zden&k Zabokrtskj</teacher>
</teachers>
</course>
</my_courses>

Introduction

8/23

Tags:
= Start tag <element_name>
= End tag </element_name>
= Empty element <element_name/>

Elements can be embeded, but they cannot cross — XML document = tree of elements
There must be exactly one root element.

Special symbols < and > must be encoded using entities (“escape sequences”) &It; and
> , & — &

Attribute values must be enclosed in quotes or apostrophes; (another needed entities:
" and ')

Introduction 9/23

XML document can (should) contain instructions for xml processor
the most frequent instruction — a declaration header:
<?xml version="1.0" encoding="utf-8" 7>
document type declaration:
<IDOCTYPE MojeKniha SYSTEM "MojeKniha.DTD">
Comments (not allowed inside tags, cannot contain —)
<!-- bla bla bla -->
If the document conforms to all syntactic requirements: a well-formed XML document

Well-formedness does not say anything about the content (element and attribute
names, the way how elements are embedded...)

Checking the well-formedness using the Unix command line:

> xmllint --noout my-xml-file.xml

Introduction 10/23

Time for an exercise

= Use a text editor for creating an XML file, then check whether it is well formed.

Character Encoding Introduction 11/23

Need to describe the content formally too?

well-formedness — only conforming the basic XML syntactic rules, nothing about the
content structure

but what if you need to specify the structure

= several solutions available

= DTD - Document Type Definition

= other XML schema languages such as RELAX NG (REgular LAnguage for XML Next
Generation) or XSD (XML Schema Definition)

Character Encoding Introduction

12/23

DTD
= Came from SGML
= Formal set of rules for describing document structure
= Declares element names, their embeding, attribute names and values...

= example: a document consisting of a sequence of chapters, each chapter contains a title
and a sequence of sections, sections contain paragraphs...

DTD location
= external DTD - a stand-off file
= internal DTD - inside the XML document

Introduction 13/23

the process of checking whether a document fulfills the DTD requirements
if OK: the document is valid with respect to the given DTD

of couse, only a well-formed document can be valid

checking the validity from the command line:

> xmllint --noout --dtdvalid my-dtd-file.dtd my-xml-file.xml

Introduction 14/23

DTD structure

= Four types of declarations

= Declaration of elements <!ELEMENT ..>
= Declaration of attributes <!ATTLIST ..>
= Declaration of entities

= Declaration of notations

Character Encoding Introduction 15/23

Declaration of elements

= Syntax: <!ELEMENT name content>

= A name must start with a letter, can contain numbers and some special symbols .-_:
= Empty element: <IELEMENT nazev EMPTY >
= Element without content limitations: <![ELEMENT nazev ANY>

Character Encoding Introduction 16/23

Declaration of elements (2)

= Text containing elements

= Reserved name PCDATA (Parseable Character DATA)
= Example: <!ELEMENT title (#PCDATA)>

= Element content description — regular expressions

= Sequence connector ,

= Alternative connector |

= Quantity 7 + *

= Mixed content example: <!IELEMENT emph (#PCDATA|sub|super)* >

Character Encoding Introduction 17/23

Declaration of attributes

= Syntax: <!ATTLIST element_name declaration_of_attributes>
= declaration of an attribute

= attribute name
= attribute type
= default value (optional)

= example: <!ATTLIST author firstname CDATA surname CDATA>

Character Encoding Introduction 18/23

Declaration of attributes (2)

= Selected types of attribute content:
= CDATA - the value is character data
= |ID - the value is a unique id
= IDREF - the value is the id of another element
» |IDREFS - the value is a list of other ids
= NMTOKEN - the value is a valid XML name

= Some optional information can be given after the type:
= #REQUIRED - the attribute is required

Character Encoding Introduction 19/23

Time for an exercise

= What can go wrong with an XML file if you check its well-formedness and validity. How
would you check whether the requirements are fulfilled?

Character Encoding Introduction 20/23

= quite verbose (you can always compress the xml files, but still)

= computationally demanding when it comes to huge data or limited hardware capacity
= relatively complex, simpler and less lenghty alternatives exist now

= JSON - suitable for interchange of structure data
= markdown — for textual documents with simple structure

Introduction 21/23

Character Encoding

Summary

. XML = an easy-to-process file format

2. open specification, no specialized software needed

. tree-shaped self-documented structure, thus excellent for data
interchange

. a bit too verbose, not optimized if speed is an issue

https://ufal.cz/courses/npf1092

https://ufal.cz/courses/npfl092

References |

Character Encoding Introduction 23/23

	Introduction

