Some good development
practices (not only in NLP)

Zden&k Zabokrtsky, Jan Stépdnek

N B aeE

Contents:

- testing

- bug reporting
- benchmarking
- profiling

- code reviewing

Testing

" AHHHHHHHIIT NOT TESTING! Anything but testing!
Beat me, whip me, send me to Detroit, but don't make me
Wr'/.fe 7"65'1'5‘/ (CPAN, Test::Tutorial)

" most developers hate testing...
® .. but the better tests, the less need for debugging
® debugging

— twice as hard as writing the code

— usually more painful than writing tests in advance

Testing, cont.

Ideally, you should write the test cases first.
There should be tests for each module
Automatize your tests

Standardize your tests

Testing in Perl

B Read Test::Tutorial at CPAN, use Test::More
5 Example:

my @Qwords = gw(John loves Mary);
ok (MyTagger::tag() == 0, "survives empty sentence");
ok (
scalar (MyTagger::tag(@words)) == scalar(@words),
"one tag per word"
)i
ok (
join(" ",MyTagger::tag(@words)) eq "NNP VBZ NNP",
"simple sentence tagged correctly"

) ;

. use Test::More tests => 3;
use MyTagger;

Bug reporting

" As a programmer, sooner or later you start sending and
receiving bug reports.

" Try to avoid the following scenario:
— Module user: “Hi, your module ABC does not work. Jim"
— Module author: “&rrrrr!

:
:

Bad bug reports

T just clicked on ABC and it crashes.
ABC completely fails.

ABC is really slow.

ABC used to work.

ABC happens sometimes.

The error message is stupid.

:
:

Bug reproducibility

" The main aim of your bug report: it should allow
the programmer to reproduce the failure and
to see it with his/her own eyes

" Before sending the bug report, make sure you
can reproduce it several times

" Try to isolate the bug to minimize the
requirements needed for reproducing the bug
(i.e., find the minimal failing test case)

!
i

Writing bug reports

be precise, be clear, be specific

describe steps to reproduce the failure (ideally on a
fresh system)

provide details: complete error logs, test case, test data,
module versions, platform, OS...

try to diagnhose the failure yourself (but clearly
distinguish your speculations from the observations)

if you find a solution, offer a patch
be polite

Read more e.g. at
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

Bug reports in Perl

" provide the version of your Perl
— perl -v

" perlbug

Benchmarking

benchmarking (in CS) = performance evaluation

"Premature optimization is the root of all evil"

unless you are familiar with Perl internals, your intuitions
about the relative performance of two solutions might be
unreliable

® _->don't optimize code - benchmark it!

® Rough benchmarking on command line: use time
time perl -e '@a=map{$ **2}(1..1000000)"
time perl -e 'for(1..1000000){push @a,$ **2}'

Benchmarking in Per|

use Benchmark gw(:all);

my @myarray;
my %smyhash;

my $size = 100000;

. foreach my $i (0..S$Ssize-1) {
Smyarray[$i] = $i;

smyhash{$i} = $1i;
}

my Scount = 10000000;

cmpthese($Scount, {
'hash write' => 'Smyarray[int(rand($size))] = 10',
10",

'array write' => 'Smyhash{int(rand($size))}

)i

Benchmarking in Perl,
learn more

" http://www252.pair.com/~comdog/ Talks/benchmarking_pe
rl.pdf

" http://www252.pair.com/comdog/mastering_perl/Chapters
/06 .benchmarking.html

:
:

Profiling

My program is slow. What should I focus on to make it
faster?

Don't speculate - measurelll

profiling = analysis of a program's behavior using
information gathered as the program executes

profiler = a performance analysis tool that measures the
frequency and duration of function calls (or other
characteristics)

Profiling in Per!

® yse Devel::DProf module

— gather the runtime info:
perl -d:DProf mytestscript.pl

. — view it
dprofpp tmon.out

I " yse Devel::NYTProf module
.

— gather the runtime info:
perl -d:NYTProf some perl.pl

— convert it o himl
nytprofhtml
— view it (by any browser)
konqueror nytprof/index.html

!
i

Code reviewing

code review = systematic examination of a source code
written by someone else

both formal and informal
code reviewing
— improves code quality

— improves your own programming skills! (learn from
masterpieces to become a master)

learn to criticize constructively, learn to accept (and
profit from) the criticism

"Always code as if the guy who ends up maintaining your
code will be a violent psychopath who knows where you
live." (Martin Golding)

Code reviewing

" You should look at
— functionality (does it work as expected)

— design quality (modularity, balanced APIs,
algorithmization)

— maintainability (coding style, readability)
— coverage by tests

— documentation coverage

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

