

Some good development
practices (not only in NLP)

Zdeněk Žabokrtský, Jan Štěpánek

Contents:
- testing
- bug reporting
- benchmarking
- profiling
- code reviewing

Testing
 AHHHHHHH!!!! NOT TESTING! Anything but testing!

Beat me, whip me, send me to Detroit, but don't make me
write tests! (CPAN, Test::Tutorial)

 most developers hate testing...
 ... but the better tests, the less need for debugging
 debugging

– twice as hard as writing the code
– usually more painful than writing tests in advance

Testing, cont.
 Ideally, you should write the test cases first.
 There should be tests for each module
 Automatize your tests
 Standardize your tests

Testing in Perl
 Read Test::Tutorial at CPAN, use Test::More
 Example:

use Test::More tests => 3;
use MyTagger;
my @words = qw(John loves Mary);
ok (MyTagger::tag() == 0, "survives empty sentence");
ok(
 scalar(MyTagger::tag(@words)) == scalar(@words),
 "one tag per word"
);
ok(
 join(" ",MyTagger::tag(@words)) eq "NNP VBZ NNP",
 "simple sentence tagged correctly"
);

Bug reporting

 As a programmer, sooner or later you start sending and
receiving bug reports.

 Try to avoid the following scenario:
– Module user: ”Hi, your module ABC does not work. Jim“
– Module author: “Grrrrr!“

Bad bug reports

 I just clicked on ABC and it crashes.
 ABC completely fails.
 ABC is really slow.
 ABC used to work.
 ABC happens sometimes.
 The error message is stupid.

Bug reproducibility
 The main aim of your bug report: it should allow

the programmer to reproduce the failure and
to see it with his/her own eyes

 Before sending the bug report, make sure you
can reproduce it several times

 Try to isolate the bug to minimize the
requirements needed for reproducing the bug
(i.e., find the minimal failing test case)

Writing bug reports
 be precise, be clear, be specific
 describe steps to reproduce the failure (ideally on a

fresh system)
 provide details: complete error logs, test case, test data,

module versions, platform, OS...
 try to diagnose the failure yourself (but clearly

distinguish your speculations from the observations)
 if you find a solution, offer a patch
 be polite

 Read more e.g. at
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

Bug reports in Perl
 provide the version of your Perl

– perl -v
 perlbug

Benchmarking
 benchmarking (in CS) = performance evaluation
 "Premature optimization is the root of all evil"
 unless you are familiar with Perl internals, your intuitions

about the relative performance of two solutions might be
unreliable

 --> don't optimize code – benchmark it!
 Rough benchmarking on command line: use time
time perl ­e '@a=map{$_**2}(1..1000000)'

time perl ­e 'for(1..1000000){push @a,$_**2}'

Benchmarking in Perl
use Benchmark qw(:all);

my @myarray;
my %myhash;

my $size = 100000;

foreach my $i (0..$size­1) {
 $myarray[$i] = $i;
 $myhash{$i} = $i;
}

my $count = 10000000;

cmpthese($count, {
 'hash write' => '$myarray[int(rand($size))] = 10',
 'array write' => '$myhash{int(rand($size))} = 10',
});

Benchmarking in Perl,
 learn more

 http://www252.pair.com/~comdog/Talks/benchmarking_pe
rl.pdf

 http://www252.pair.com/comdog/mastering_perl/Chapters
/06.benchmarking.html

Profiling
 My program is slow. What should I focus on to make it

faster?

 Don't speculate – measure!!!

 profiling = analysis of a program's behavior using
information gathered as the program executes

 profiler = a performance analysis tool that measures the
frequency and duration of function calls (or other
characteristics)

Profiling in Perl
 use Devel::DProf module

– gather the runtime info:
perl ­d:DProf mytestscript.pl

– view it
dprofpp tmon.out

 use Devel::NYTProf module
– gather the runtime info:

perl ­d:NYTProf some_perl.pl

– convert it to html
nytprofhtml

– view it (by any browser)
konqueror nytprof/index.html

Code reviewing
 code review = systematic examination of a source code

written by someone else
 both formal and informal
 code reviewing

– improves code quality
– improves your own programming skills! (learn from

masterpieces to become a master)
 learn to criticize constructively, learn to accept (and

profit from) the criticism
 "Always code as if the guy who ends up maintaining your

code will be a violent psychopath who knows where you
live." (Martin Golding)

Code reviewing
 You should look at

– functionality (does it work as expected)
– design quality (modularity, balanced APIs,

algorithmization)
– maintainability (coding style, readability)
– coverage by tests
– documentation coverage

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

