
  

Some good development 
practices (not only in NLP)

Zdeněk Žabokrtský, Jan Štěpánek

Contents:
- testing
- bug reporting
- benchmarking
- profiling
- code reviewing



  

Testing
 AHHHHHHH!!!! NOT TESTING! Anything but testing! 

Beat me, whip me, send me to Detroit, but don't make me 
write tests! (CPAN, Test::Tutorial)

 most developers hate testing...
 ... but the better tests, the less need for debugging
 debugging 

– twice as hard as writing the code
– usually more painful than writing tests in advance



  

Testing, cont.
 Ideally, you should write the test cases first.
 There should be tests for each module
 Automatize your tests
 Standardize your tests



  

Testing in Perl
 Read Test::Tutorial at CPAN, use Test::More
 Example:

use Test::More tests => 3;
use MyTagger;
my @words = qw(John loves Mary);
ok (MyTagger::tag() == 0, "survives empty sentence");
ok(
    scalar(MyTagger::tag(@words)) == scalar(@words),
    "one tag per word"
);
ok(
    join(" ",MyTagger::tag(@words)) eq "NNP VBZ NNP",
    "simple sentence tagged correctly"
);



  

Bug reporting

 As a programmer, sooner or later you start sending and 
receiving bug reports.

 Try to avoid the following scenario:
– Module user:  ”Hi, your module ABC does not work. Jim“
– Module author: “Grrrrr!“



  

Bad bug reports

 I just clicked on ABC and it crashes.
 ABC completely fails.
 ABC is really slow.
 ABC used to work.
 ABC happens sometimes.
 The error message is stupid.



  

Bug reproducibility
 The main aim of your bug report: it should allow 

the programmer to reproduce the failure and 
to see it with his/her own eyes

 Before sending the bug report, make sure you 
can reproduce it several times

 Try to isolate  the bug  to minimize the 
requirements needed for reproducing the bug 
(i.e., find the minimal failing test case)



  

Writing bug reports
 be precise, be clear, be specific
 describe steps to reproduce the failure (ideally on a 

fresh system)
 provide details: complete error logs, test case, test data, 

module versions, platform, OS...
 try to diagnose the failure yourself (but clearly 

distinguish your speculations from the observations)
 if you find a solution, offer a patch
 be polite

 Read more e.g. at 
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html



  

Bug reports in Perl
 provide the version of your Perl

– perl -v
 perlbug



  

Benchmarking
 benchmarking (in CS) = performance evaluation
 "Premature optimization is the root of all evil"
 unless you are familiar with Perl internals, your intuitions 

about the relative performance of two solutions might be 
unreliable

 --> don't optimize code – benchmark it!
 Rough benchmarking on command line: use time 
time perl e '@a=map{$_**2}(1..1000000)'

time perl e 'for(1..1000000){push @a,$_**2}'



  

Benchmarking in Perl
use Benchmark qw(:all);

my @myarray;
my %myhash;

my $size = 100000;

foreach my $i (0..$size1) {
    $myarray[$i] = $i;
    $myhash{$i} = $i;
}

my $count = 10000000;

cmpthese($count, {
    'hash write' => '$myarray[int(rand($size))] = 10',
    'array write' => '$myhash{int(rand($size))} = 10',
});



  

Benchmarking in Perl,
 learn more

 http://www252.pair.com/~comdog/Talks/benchmarking_pe
rl.pdf

 http://www252.pair.com/comdog/mastering_perl/Chapters
/06.benchmarking.html



  

Profiling
 My program is slow. What should I focus on to make it 

faster?

 Don't speculate – measure!!!

 profiling = analysis of a program's behavior using 
information gathered as the program executes

 profiler = a performance analysis tool that measures the 
frequency and duration of function calls (or other 
characteristics)



  

Profiling in Perl
 use Devel::DProf module

– gather the runtime info:
perl d:DProf mytestscript.pl

– view it
dprofpp tmon.out

 use Devel::NYTProf module
– gather the runtime info:

perl d:NYTProf some_perl.pl

– convert it to html
nytprofhtml

– view it (by any browser)
konqueror nytprof/index.html



  

Code reviewing
 code review = systematic examination of a source code 

written by someone else
 both formal and informal
 code reviewing

– improves code quality
– improves your own programming skills! (learn from 

masterpieces to become a master)
 learn to criticize constructively, learn to accept (and 

profit from) the criticism
 "Always code as if the guy who ends up maintaining your 

code will be a violent psychopath who knows where you 
live." (Martin Golding)



  

Code reviewing
 You should look at

– functionality (does it work as expected)
– design quality (modularity, balanced APIs, 

algorithmization)
– maintainability (coding style, readability)
– coverage by tests
– documentation coverage


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

