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introduction



sample dialogue

(food: ?, area: ?, price: ?)
System: What type of restaurant are you looking for?

request(food)
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sample dialogue

(food: ?, area: ?, price: ?)
System: What type of restaurant are you looking for?

request(food)

User: I am looking for a japanese restaurant in the city center.
inform(food:japanese), inform(area:center)

(food: japanese, area: center, price: ?)
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sample dialogue

(food: japanese, area: center, price: ?)
System: What price range do you prefer?

request(price)
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sample dialogue

(food: japanese, area: center, price: ?)
System: What price range do you prefer?

request(price)

User: I want something cheap.
inform(price:cheap)
(food: japanese, area: center, price: cheap)
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why track a dialogue

• Dialogue agent tracks the progress compactly
• Easy update

• Expresses user’s goals and restrictions as well as history
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what is the dialogue state

• Set of pairs (slot, value)
• State space of possible combinations

• Each state described e.g. by Dialog Act Items
(food: japanese, area: center, price: cheap)

• Handcrafted ontology - relevant slots
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dstc2 dataset[1]

• Challenge organized by University of Cambridge
• Each dialogue composed of turns

• pair of user and system utterances

• Annotated dialogues - true dialogue state after each turn.
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dstc2 dataset

• Train set contains 1612, development 506 and test 1117 dialogues
• Dialogues were obtained by user-computer interaction
• Mix of Dialogue Systems and ASR1 engines was used.

• Different setting used for each set

1Automatic Speech Recognition
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our model



rnn model

• Recurrent neural network composed of
sequentially ordered cells
(Žilka and Jurčíček [2])

• Capable to process variable length input
• Maintains (encodes) hidden state and
emits observation after each turn

• Improved with LSTM cells
(Henderson et al. [3])

• Sequence to sequence models
adaptation
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model details

• Supervised learning
• TensorFlow framework [4] - prepared
RNN, seq2seq

• Data separated into buckets of similar
lengths
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feature details

• INPUT FEATURES
• feeding input on the world level
• one-hot encoding (Bag of Words)
• vector embeddings of words [5]
• indicator, whether the word belong to particular slot

• We use just 1 best ASR hypothesis
• No SLU2 employed

2Spoken Language Understanding
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training and evaluation

• During training, each turn is predicted based on whole dialogue
history

• Metric: Accuracy on DS after each turn
• Schedule 2 - only turns where some information is gained

15



results



results

• Seqeunce-to-sequence model achieved better results -
0.73 vs. 0.727

• Comparable to models that use whole list of ASR hypotheses
(Žilka and Jurčíček [2])

• Some systems that use SLU gain better results, up to 0.745
( Henderson et al. [6], Vodolán et al. [7])

• Much better performance of both models on the reshuffled data
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conclusion

• We successfully used the sequence-to-sequence model for DST
task

• reasonable performance
• DSTC2 task is much easier on re-shuffled data
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future work

• Investigate which features contribute to better performance
• World-level annotated dataset would help to evaluate the
incremental models
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The End
Thank you!
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