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Depfix

 input: target sentence (+ source sentence)

1. analysis
 tokenization, lemmatization, tagging,

word-alignment, parsing, deep-syntax induction

2. correction
 a set of rules, e.g. noun-adjective agreement

3. generation
 morphological generator

 output: corrected target sentence

APE
system
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Analysis

 most important:
 lemma + Czech fine-grained morphological tag

 gender, number, case, person, tense, negation...
 e.g. pivem (beer in instrumentative case)
 → pivo NNNS7-----A----

 dependency tree
 tells us e.g. that

the modifier českým (Czech)
belongs to pivem (beer)

 we use MST parser adapted
for parsing SMT outputs

českým

pivem
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Correction

 usually edge-local
 morphological agreement of noun and adjective:

 set gender, number and case of the adjective
to gender, number and case of the noun

čeští     
český AAMP1----1A----

pivem
pivo NNMS7-----A----

českým     
český AAMS7----1A----

pivem
pivo NNMS7-----A----
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Generation

 morphological generator
 lemma & tag → word form
 e.g. český AAMS7----1A---- → českým

 Czech morphology is far from trivial
 2 numbers, 4 genders, 7 cases, various paradigms...
 homonymous forms

 piva = sg gen / pl nom / pl acc / pl voc
 variants

 sg loc = pivu / pivě
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Correction types (I)

 agreement
 preposition – noun (case)
 noun – adjective (gender, number, case)
 subject – predicate (gender, number, person)
 antecedent – relative pronoun (gender, number, case)

 minor errors
 projection of tokenization
 source-aware truecasing
 vocalization of prepositions
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Correction types (II)

 transfer of meaning to morphology
 translation of possessives and “of” (genitive)
 translation of passive voice and “by” (instrumentative)
 subject (nominative)
 verb tense
 negation

 coarse translation of missing items
 missing reflexive verbs

 analysis corrections (alignment, tags, trees)
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Automatic evaluation (BLEU)

WMT10 (devel) WMT11 WMT12 WMT13
0

5

10

15

20

25

15.66 16.39

13.81

20.08

16.08 16.61

13.85

20.02
Moses output
after Depfix
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Automatic evaluation (Δ BLEU)

data/system CU Bojar CU TectoMT CU Zeman UEdin

WMT10 (dev) +0.33 -0.07 +0.61 +0.78

WMT11 +0.47 -0.10 +0.73 +0.64

WMT12 +0.07 -0.02 +0.34 +0.23

data/system SFU EuroTrans Bing Google Tr.

WMT10 (dev) +1.05 +0.35 +0.78 +0.59

WMT11 – +0.21 – +0.23

WMT12 +0.41 +0.15 +0.37   0.00
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Manual evaluation (WMT12)

ImprovementImprovement
430430
58%58%

DegradationDegradation
152152
21%21%

IndefiniteIndefinite
157157
21%21%

 changed sentences  all sentences

Impr.Impr.
430430
32%32%

Degr.Degr.
152152
11%11%

Ind.Ind.
157157
12%12%

No changeNo change
611611
45%45%

IAA:
71% all
93% impr./degr.
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Negation

AuxV Children

Verb-En Subj Agr.

AuxT
Present Continuous

Of Passive-Aux Be Agr.

Subj-Past Participle Agr.

Drop Subj Pers Pron

Subj-Predicate Agr.

Casing

POS
By Tense

Retokenizing

Subject Case

Noun-Adjective Agr.

Subject-Pnom Agr.

Valency

Project Noun Number

Preposition-Noun Agr.

Prepositional Case

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Precision of rules (part of WMT12)

precision=
∣improved∣

∣improved∣∣worsened∣

50% precision



Rudolf Rosa – Depfix: Automatic post-editing of phrase-based machine translation outputs 14/72

Impact of rules (part of WMT12)

Negation

AuxV Children

Verb-En Subj Agr.

AuxT
Present Continuous

Of Passive-Aux Be Agr.

Subj-Past Participle Agr.

Drop Subj Pers Pron

Subj-Predicate Agr.

Casing

POS
By Tense

Retokenizing

Subject Case

Noun-Adjective Agr.

Subject-Pnom Agr.

Valency

Project Noun Number

Preposition-Noun Agr.

Prepositional Case

0

20

40

60

80

100

120

140

160

180

|m
o

d
ifi

e
d

|

impact=
∣modified∣

∣all∣

50% precision75% precision 60% precision

5% impact



Rudolf Rosa – Depfix: Automatic post-editing of phrase-based machine translation outputs 15/72

Current & future work

 if we can write the rules manually...
 …can we also machine-learn them?

 currently running experiments
 predict: gender, number, case (of modifier)
 data: parallel corpus & its translation by Moses
 decision trees / maximum entropy classifier
 features (modifier, head & their source counterparts)

 tag (split by category), dependency relation label, 
edge direction, number of modifiers, lemma

 preliminary positive results
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Delving deeper...

 more corrections
 an example of a cascade of corrections
 correction of negation
 correction of verb tense translation

 MSTperl parser
 reimplementation of MST parser
 adapted for parsing SMT outputs
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Delving deeper...

 more corrections
 an example of a cascade of corrections
 correction of negation
 correction of verb tense translation

 MSTperl parser
 reimplementation of MST parser
 adapted for parsing SMT outputs
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A cascade of corrections

 Source:
 All the winners received a diploma.

 Moses:
 Všem výhercům obdržel diplom.
 To all the winners he received a diploma.

 Depfix:
 Všichni výherci obdrželi diplom.
 All the winners received a diploma.
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Všem výhercům obdržel diplom.

a-tree
zone=en

All
Atr
PDT

the
AuxA
DT

winners
Sb
NNS

received
Pred
VBD

a
AuxA
DT

diploma
Obj
NN

.
AuxK
.

a-tree
zone=cs

Všem
Atr
PLXP3

výhercům

NNMP3

obdržel
Pred
VpYSXRA

diplom
Obj
NNIS1

.
AuxK
Z:

Obj
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Transfer of meaning: subject

a-tree
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Transfer of meaning: subject

a-tree
zone=en

All
Atr
PDT

the
AuxA
DT

winners
Sb
NNS

received
Pred
VBD

a
AuxA
DT

diploma
Obj
NN

.
AuxK
.

a-tree
zone=cs

Všem
Atr
PLXP3

výhercům
Obj
NNMP3

obdržel
Pred
VpYSXRA

diplom
Obj
NNIS1

.
AuxK
Z:



Rudolf Rosa – Depfix: Automatic post-editing of phrase-based machine translation outputs 22/72

Subject → nominative

a-tree
zone=en

All
Atr
PDT
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winners
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Noun-adjective agreement
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Agreement: gender, case (number)
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Subject-predicate agreement
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Všichni výherci obdrželi diplom.
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Delving deeper...

 more corrections
 an example of a cascade

of corrections
 translation of negation
 correction of verb tense

translation

 MSTperl parser
 reimplementation of MST parser
 adapted for parsing SMT outputs

http://thedrivenclass.com/blog-detail/32876
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Motivation

 These are not actually errors.
 Moses: Jsou to vlastně chyby.
 Gloss: These are actually errors.
 Reference: Nejsou to vlastně chyby.

 I would not cheat on you.
 Moses: Já bych tě podváděl.
 Gloss: I would cheat on you.
 Reference: Já bych tě nepodváděl.
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Expressing negation

 default way in English: not token
 These are not actually errors.

 default way in Czech: ne- prefix
 Nejsou to vlastně chyby.

 hard for word-alignment
 hard for PB SMT

are are not

jsou nejsou

are not

jsou NULL
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Actually, much more complex

 many ways to express negation (CS, EN)
 negative particle (not), negative affix (mis-, -less), 

negative preposition (without)...
 lexical means (not happy ~ sad)
 differences between Czech and English

 techniques based on word-alignment do badly

 the negation can be placed differently
 usually it is the predicate heading the clause

 but which part of it if it is multiword?
 but not always
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Detecting the problem

 English clause seems to be negative
 Czech clause seems to be positive
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Fixing the problem

 find a place to put the negation (clause head)
 negate it (using tag & morpho generator)
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Deep syntactic analysis

 auxiliary nodes collapsed into values of 
attributes on parent nodes

 abstract from various ways of expressing 
negation (not, no, un-, in-,...)

are

not

be, neg=1

unpleasant pleasant, neg=1
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Delving deeper...

 more corrections
 an example of a cascade of corrections
 correction of negation
 correction of verb tense translation

 MSTperl parser
 reimplementation of MST parser
 adapted for parsing SMT outputs
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Verb tense translation

 analyze the source (English) verb
 analyze the target (Czech) verb
 if they do not seem to match, change CS tense:

 EN future * → CS future
 EN past *; present perfect → CS past
 EN present * → CS present

 avoid hard cases
 conditionals, reported speech...
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English verbs analysis

 parsing the verb form
 all VB* and MD modifiers of the main verb
 occasionally checking other modifiers (to)

 normalize to forms of have, be and love
 other words mark something

 modality (modals, have to, be (un)able to...)
 future (will, going to – careful: was going to)
 conditionality (would, should)
 past (did)
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English verbs analysis
(present is the default – can be overidden by markers such as did or will)
 'love' => [ ],
 'loved' => [ 'past' ],
 'have loved' => [ 'perf' ],
 'be loving' => [ 'cont' ],
 'be loved' => [ 'pass' ],
 'had loved' => [ 'past', 'perf' ],
 'were loving' => [ 'past', 'cont' ],
 'were loved' => [ 'past', 'pass' ],
 'have been loving' => [ 'perf', 'cont' ],
 'have been loved' => [ 'perf', 'pass' ],
 'be being loved' => [ 'cont', 'pass' ],
 'had been loving' => [ 'past', 'perf', 'cont' ],
 'were being loved' => [ 'past', 'cont', 'pass' ],
 'had been loved' => [ 'past', 'perf', 'pass' ],
 'have been being loved' => [ 'perf', 'cont', 'pass' ],
 'had been being loved' => [ 'past', 'perf', 'cont', 'pass' ]



Rudolf Rosa – Depfix: Automatic post-editing of phrase-based machine translation outputs 41/72

Delving deeper...

 more corrections
 an example of a cascade of corrections
 correction of negation
 correction of verb tense translation

 MSTperl parser
 reimplementation of MST parser
 adaptation for parsing SMT outputs
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MST parser

 Maximum Spanning Tree parser
 McDonald, Crammer, Pereira (2005)

 Online large-margin training
of dependency parsers

 McDonald, Pereira, Ribarov, Hajič (2006)
 Non-projective dependency parsing

using spanning tree algorithms

 discriminative, edge-local features
 MIRA learning algorithm
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(1) Words and Tags

Rudolph
NNP

relaxes
VBZ

abroad
RB

#
rootwords = nodes
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(2) (Nearly) Complete Graph

Rudolph
NNP

relaxes
VBZ

abroad
RB

#
rootall possible edges =

directed edges
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(3) Assign Edge Weights

Rudolph
NNP

relaxes
VBZ

abroad
RB

#
root

-7 -1659
325

1490 1154

-263 24

185

368

Margin Infused
Relaxed Algorithm

(MIRA)

edge weight =

sum of
edge features
weights
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(4) Maximum Spanning Tree

Rudolph
NNP

relaxes
VBZ

abroad
RB

#
root

-7 -1659
325

1490 1154

-263 24

185

368

non-projective trees:
Chu-Liu-Edmonds 
algorithm

(projective trees:

Eisner algorithm)
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(5) Unlabeled Dependency Tree

Rudolph
NNP

relaxes
VBZ

abroad
RB

#
rootdependency tree =

maximum
spanning tree
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(6) Labeled Dependency Tree

Rudolph
NNP

relaxes
VBZ

abroad
RB

#
root

Predicate

Subject Adverbial

labels asigned
by a second stage
labeler
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Parsing of SMT Outputs

 can be useful in many applications
 automatic classification of translation errors
 automatic correction of translation errors (Depfix)
 multilingual question answering...

✔ we have the source sentence available 
 Can we use it to help parsing?

✗ SMT outputs noisy (errors in fluency, grammar...)
 parsers trained on gold standard treebanks
 Can we adapt parser to noisy sentences?
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MSTperl

 reimplementation of MST Parser in Perl
 http://ufal.mff.cuni.cz/tools/mstperl-parser
 first-order, non-projective

 adapted for SMT outputs parsing
 worsening the training data
 adding parallel information
 manually boosting feature weights
 exploiting large-scale data

http://ufal.mff.cuni.cz/tools/mstperl-parser
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MSTperl

 reimplementation of MST Parser in Perl
 http://ufal.mff.cuni.cz/tools/mstperl-parser
 first-order, non-projective

 adapted for SMT outputs parsing
 worsening the training data
 adding parallel information
 manually boosting feature weights
 exploiting large-scale data

http://ufal.mff.cuni.cz/tools/mstperl-parser
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Parser Training Data

 Prague Czech-English Dependency Treebank
 parallel treebank
 50k sentences, 1.2M words
 morphological tags, surface syntax, deep syntax
 word alignment
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Worsening the Treebank

 treebank used for training contains correct 
sentences

 SMT output is noisy
 grammatical errors
 incorrect word order
 missing/superfluous words
 …

 let's introduce similar errors into the treebank!
 so far, we have only tried inflection errors
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Worsen (1): Apply SMT

 translate English side of PCEDT to Czech
 by an SMT system (we used Moses)

 now we have e.g.:
 Gold English

 Rudolph's car is black.
 Gold Czech

 Rudolfovo
NEUT

 auto
NEUT

 je černé
NEUT

.

 SMT Czech
 Rudolfova

FEM
 auto

NEUT
 je černý

MASC
.
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Worsen (2): Align SMT to Gold

 align SMT Czech to Gold Czech
 Monolingual Greedy Aligner

 alignment link score = linear combination of:
 similarity of word forms (or lemmas)
 similarity of morphological tags (fine-grained)
 similarity of positions in the sentence
 indication whether preceding/following words aligned

 repeat: align best scoring pair until below threshold
 no training: weights and threshold set manually
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Worsen (3): Create Error Model

 for each tag:
 estimate probabilities of SMT system using an 

incorrect tag instead of the correct tag
(Maximum Likelihood Estimate)

 Czech tagset: fine-grained morphological tags
 part-of-speech, gender, number, case, person, 

tense, voice...
 1500 different tags in training data
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Worsen (3): Error Model

 Adjective, Masculine, Plural, Instrumental case
(AAMP7), e.g. lingvistickými (linguistic)
➔ 0.2 Adjective, Masculine, Singular, Nominative case

➔ e.g. lingvistický
➔ 0.1 Adjective, Masculine, Plural, Nominative case

➔ e.g. lingvističtí
➔ 0.1 Adjective, Neuter, Singular, Accusative case

➔ e.g. lingvistické

 … altogether 2000 such change rules
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Worsen (4): Apply Error Model

 take Gold Czech
 for each word:

 assign a new tag randomly sampled according to 
Tag Error Model

 generate a new word form
 rule-based generator, generates even unseen forms
 new_form = generate_form(lemma, tag) || old_form

 → get Worsened Czech
 use resulting Gold English-Worsened Czech 

parallel treebank to train the parser
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MSTperl

 reimplementation of MST Parser in Perl
 http://ufal.mff.cuni.cz/tools/mstperl-parser
 first-order, non-projective

 adapted for SMT outputs parsing
 worsening the training data
 adding parallel information
 manually boosting feature weights
 exploiting large-scale data

http://ufal.mff.cuni.cz/tools/mstperl-parser
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Parallel Features

 word alignment (using GIZA++)
 additional features (if aligned node exists):

 aligned tag (NNS, VBD...)
 aligned dependency label (Subject, Attribute...)
 aligned edge existence (0/1)
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Parallel Features Example

Rudolf
NN M S 1

relaxuje
VB S 3

v
RR 6

zahraničí
NN N S 6

Rudolph
NNP

relaxes
VBZ

abroad
RB

#
root

#
root

Pred

AuxP

Adv
Subj

Subj

Pred

Adv
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MSTperl

 reimplementation of MST Parser in Perl
 http://ufal.mff.cuni.cz/tools/mstperl-parser
 first-order, non-projective

 adapted for SMT outputs parsing
 worsening the training data
 adding parallel information
 manually boosting feature weights
 exploiting large-scale data

http://ufal.mff.cuni.cz/tools/mstperl-parser
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Manually boosting feature weights

 aligned edge existence is the key feature here
 observation: since the worsening is probably 

too mild, its weight is too low
 edge exists: -0.57
 edge does not exist: -0.83
 missing aligned node(s): -0.67
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Manually boosting feature weights

 aligned edge existence is the key feature here
 observation: since the worsening is probably 

too mild, its weight is too low
 edge exists: -0.57
 edge does not exist: -0.83
 missing aligned node(s): -0.67

 experiment: manually increase its weight
 edge exists: -0.25
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Manually boosting feature weights

 aligned edge existence is the key feature here
 observation: since the worsening is probably 

too mild, its weight is too low
 edge exists: -0.57
 edge does not exist: -0.83
 missing aligned node(s): -0.67

 experiment: manually increase its weight
 edge exists: -0.25

 success – manual changing of weights feasible
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MSTperl

 reimplementation of MST Parser in Perl
 http://ufal.mff.cuni.cz/tools/mstperl-parser
 first-order, non-projective

 adapted for SMT outputs parsing
 worsening the training data
 adding parallel information
 manually boosting feature weights
 exploiting large-scale data

http://ufal.mff.cuni.cz/tools/mstperl-parser
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Exploiting large-scale data

 exploiting large-scale parsed data (CzEng)
to provide additional lexical features

 lexical features are important for the parser
 CzEng has 10 times more word types (lemmas) 

than PCEDT (400k vs. 40k)
 training the parser on whole CzEng infeasible
 new feature: pointwise mutual information

PMI '  parent , child =log
count [ parent , child ]

count [ parent ,*] ⋅count [* , child ]
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Direct Evaluation: by Inspection

 manual inspection of several parse trees
 comparing baseline and adapted parser ouputs

 examples of improvements:
 subject identification even if not in nominative case
 adjective-noun dependence identification even if 

agreement violated (gender, number, case)

 hard to do reliably
 trying to find a correct parse tree for an (often) 

incorrect sentence – not well defined
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Indirect Evaluation: in Depfix

 run Depfix with
 baseline 1: the original McDonald's MST parser
 baseline 2: basic MSTperl (without the adaptations)
 adapted MSTperl

 manual evaluation of adapted MSTperl versus 
the two baseline parsers
 how many sentences come out better

from Depfix using adapted MSTperl
than from Depfix using a baseline parser
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 adapted MSTperl vs 
original McDonald's 
MST Parser

Indirect Evaluation: in Depfix

 improvements and deteriorations in Depfix:
 adapted MSTperl vs 

basic MSTperl

227227
121121

7474

235235 114114

7373
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Conclusion

 automatic post-editing of SMT is possible
 “easy” with using linguistic analysis and generation
 adapting the parser for SMT outputs also helps

 rule-based system for English→Czech
 achieves improvements across SMT systems

 machine-learned system (now English→Czech)
 could learn more fine-grained rules
 could be easily extended to other languages

(if we have analysis and generation)
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Thank you for your attention

For this presentation and other information, please visit:

http://ufal.mff.cuni.cz/rudolf-rosa

Charles University in Prague
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics

Depfix:

Automatic post-editing
of phrase-based machine translation outputs

Rudolf Rosa
rosa@ufal.mff.cuni.cz
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