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Chapter 1

Introduction

For every kind of beasts, and of birds,
and of serpents, and of things in the sea,

is tamed, and hath been tamed of mankind:
But the tongue can no man tame;

it is an unruly evil, full of deadly poison.
James 3:7–8

1.1 Motivation
When I started my PhD studies I was fascinated by the intersection of linguistics,
mathematics, machine learning and computer science, that is, by the broad area
of computational linguistics and natural language processing (NLP). I chose
machine translation (MT) as the main topic of my research for several reasons:

• MT is one of the most useful NLP applications in practice. Considerable
efforts have been invested in its research in the past decades, including
MT systems focusing on the English-Czech pair [e.g. Kirschner, 1974, 1982,
Kirschner and Rosen, 1989, Čmejrek et al., 2003, Bojar, 2007, Žabokrtský
et al., 2008]. However, due to the fascinating complexity of the task, there
was still a lot of room for improvement in 2009.

• I already had some experience with TectoMT, a deep-syntactic MT system
utilizing the tectogrammatical layer. Within my Master’s thesis, I improved
TectoMT’s quality significantly using Hidden Markov Tree Model trans-
fer [Popel, 2009]. My intuition was that the state of the art in 2009 – a
phrase-based statistical machine translation (SMT) – is ignoring important
properties of language and will eventually reach its limits even if trained
on huge data sets unless it is complemented with methods that handle the
hierarchical syntactic sentence structure. My hope was that improving
TectoMT is the right way to go, as its architecture already models the
source-language and target-language syntax and only needs to improve
its three main phases – analysis, transfer and synthesis – with modern
machine learning.

• I believed (and still believe) that developing high-quality MT will help us
understand better how the language works. TectoMT as a linguistically
motivated system seemed to be a great testbed for exploring the effect
of individual components (taggers, parsers, translation models,. . . ) and

13



1.1. MOTIVATION

various dependency-tree attributes used as machine-learning features on
the final translation quality. I enjoyed the opportunity to test linguistic the-
ories and my intuition in practice (see a case study about clitics reordering
in Section 3.2).

During my (rather long) research I’ve encountered several successes in im-
provements of the TectoMT system’s quality (see Sections 3.3–3.5), as well as
many attempts that seemed promising in restricted intrinsic evaluation, but
proved unsuccessful when evaluated extrinsically in the complete translation
task. I encountered also several unexpected challenges which in the end resulted
in positive outcomes:

• In 2013–2016, I was involved in an European project called QTLeap,1 the
goal of which was a high-quality MT using deep language engineering
approaches and its real-usage scenario was a multilingual helpdesk in-
terface for IT troubleshooting. It has been decided that TectoMT will be
adopted for English ↔ Czech, Spanish, Portuguese, Dutch and Basque,
which meant 9 new translation directions in addition to the existing
English→Czech. Many researchers were involved in QTLeap and there
were several work packages, e.g. for lexical semantics modules, named
entity linking, evaluation and web services. I was the main person respon-
sible for the TectoMT translation in all language pairs and I implemented
a draft version for English↔Spanish and English↔Portuguese. For this
purpose, I redesigned TectoMT to be more easy to adopt for a new lan-
guage pair and to follow guidelines suitable for a modern open-source
software with many contributing developers (via GitHub2). QTLeap was
very successful in several evaluations, automatic and manual, intrinsic and
extrinsic, for all the mentioned language pairs except for English↔Basque
[Gaudio et al., 2016].

• In addition to new language pairs, we had to deal with domain adaptation
for the IT terminology and genre adaptation for the helpdesk questions
and answers (our initial systems were lacking in translating questions and
imperatives). Handling this properly was one of the keys to the success of
QTLeap. This way (and also thanks to my involvement in the Khresmoi
project [Pecina et al., 2014]), I became familiar with domain adaptation
techniques and found this experience useful later on when working on
Neural MT.

• I became interested in the manual evaluation of MT and co-authored an
influential paper [Bojar et al., 2011] (with over 40 citations), which resulted
in changes to the official evaluation method of WMT (Workshop on Sta-
tistical Machine Translation). I implemented a prototype of a toolkit for
comparison and evaluation of machine translations, which was later reim-
plemented under name MT-ComparEval [Klejch et al., 2015, Sudarikov

1 http://qtleap.eu
2 https://github.com/ufal/treex
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1.1. MOTIVATION

et al., 2016] by Ondřej Klejch within his bachelor’s thesis under my su-
pervision. MT-ComparEval and the related web services3 were further
improved within the QTLeap project and are popular among the users. I
found the toolkit quite helpful myself when analyzing outputs of different
versions of my MT systems as well as other systems.

• I become the main developer not only of TectoMT, but also of Treex – a
Perl-based NLP framework in which TectoMT is implemented. Together
with my supervisor Zdeněk Žabokrtský, I decided to redesign and reim-
plement the framework in Python and using Universal Dependencies4 as
the native representation and native file format (CoNLL-U). After thor-
ough optimization, the new framework, called Udapi,5 is about 60 times
faster than Treex according to a benchmark [Popel et al., 2017]. In the
end, I gave up the original plan to port TectoMT to Udapi, and instead
provided tools for treebank developers, which were used in at least 20
treebanks from the Universal Dependencies and the number of users is
still growing. While this achievement is not directly related to the thesis
topic, it may be useful for syntax-based MT in future because Udapi is
well-suited for exploring multi-lingual syntactically annotated data includ-
ing parallel treebanks and for extracting features from treebanks (e.g. for
NMT multitask learning).

• In 2011 and 2012, TectoMT was one of the winners of the constrained
track of the WMT English→Czech news translation shared task (see Sec-
tion 6.1). However, other systems improved much faster in the following
years and the gap between the quality of TectoMT and the best system sub-
mitted to WMT became larger and larger, so in 2015–2016, TectoMT was
one of the worst systems. My own attempts at combining TectoMT with
phrase-based techniques were not successful. At the same time, my col-
leagues developed a system called Chimera combining phrase-based MT
(Moses) with TectoMT and winning WMT in 2013–2015, outperforming
even unconstrained systems such as Google Translate.

• Perhaps the biggest challenge in my research was the boom of Neural
MT, which became the new state of the art in MT since 2016 (according to
WMT results). I had to decide whether to finish my PhD thesis with the
research I had done so far, but which was getting outdated, or whether
to jump in to the new and fascinating area of deep learning and Neural
MT, but starting almost from scratch. The final decision came in June
2017, shortly after a novel neural architecture called Transformer has
been published [Vaswani et al., 2017]. I was impressed by the reported
translation quality and even more by the (latent) structures emerging in

3 https://github.com/choko/MT-ComparEval,
web services: http://mt-compareval.ufal.cz/ and http://wmt.ufal.cz/

4 http://universaldependencies.org/
5 http://udapi.github.io/
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self-attention layers, which had clear relations to syntax and semantics (see
Section 2.5.3). Although the model was trained only on parallel sentences
without any linguistic annotations, it learned to detect syntax-resembling
sentence structures in a completely unsupervised way. I realized that
it fits my thesis topic and that building my research on top of such a
strong baseline would give the results much bigger impact and relevance.
Within one year of very intensive experiments and research, I succeeded
to improve the Transformer baseline significantly and surpass the state of
the art according to the WMT 2018 shared task results.

In this preface about the genesis and motivations of this thesis, I use “I” to
emphasize its subjective nature. In the rest of the thesis, I use authorial “we” for
consistency as is usual in our field, but Appendix A explicitly distinguishes my
own contributions.

1.2 Goals
The three main goals of this thesis are:

• Improve English↔Czech machine translation (MT) in such a way that
could be easily applicable also to other language pairs.

• Explore the effect of syntactic structures in MT, both in a linguistically
motivated system (TectoMT) with transfer on a deep-syntactic layer and
in an end-to-end Neural MT system (Transformer) with latent syntactic
structures.

• Explore domain adaptation techniques.

1.3 Outline
Chapter 2 reviews the related work in several areas related to the thesis. Chap-
ter 3 presents our improvements of the TectoMT system. Chapter 4 reports our
experiments with NMT training using the Transformer sequence-to-sequence
model implemented in the Tensor2Tensor framework. Chapter 5 describes our
research on the synergy of backtranslation and checkpoint averaging in NMT,
including experiments which outperformed the state of the art. Chapter 6 pro-
vides a final evaluation and discussion. Finally, Chapter 7 summarizes the
contribution of this thesis.
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Chapter 2

Data and Related Work

Machine learning will be a phenomenal failure. . .
except in certain places, where its role will be crucial.

Martin Kay

In this chapter, we present first the English-Czech data sets (Section 2.1)
and MT evaluation methods (Section 2.2) used in this thesis. Afterwards, we
summarize different categories of MT system (Section 2.3) and describe two
of the categories in more detail: tectogrammatical MT (Section 2.4) and neu-
ral MT (Section 2.5). Finally, we introduce the phenomenon of translationese
(Section 2.6).

2.1 English-Czech Datasets
This section summarizes all the datasets we use for training, development
evaluation (dev sets) and final evaluation (test sets) within the whole thesis.

2.1.1 Training Data

sentence words (k)data set pairs (k) EN CS

CzEng 1.0 14 833 194 207 168 184
CzEng 1.7 57 065 618 424 543 184
Europarl v7 647 15 625 13 000
News Commentary v12 211 4 544 4 057
Common Crawl 162 3 349 2 927
QTLeap Batch1a 1 18 16

Table 2.1: Parallel training data sizes (in thousands).

Our primary training data comes from the training part of the CzEng parallel
treebank.1 CzEng is a collection of sentence-aligned English-Czech texts from
European legislation, movie subtitles, fiction, parallel web pages, technical
documentation and several smaller sources. All sentences are automatically
parsed and analyzed up to the tectogrammatical layer using the Treex framework

1 http://ufal.mff.cuni.cz/czeng
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2.1. ENGLISH-CZECH DATASETS

(see Section 2.4.1).2 The word alignment induced using GIZA++ [Och and
Ney, 2003] is projected up to the tectogrammatical layer. The English→Czech
TectoMT results presented in this thesis (Chapter 3) were obtained by training
on CzEng 1.0 [Bojar et al., 2012] and in case of domain-adaptation experiments
(Section 3.7) also on the QTLeap Batch1a data set. Our NMT system (Chapters 4–
5) was trained on CzEng 1.7 and three additional smaller sources of parallel
data (Europarl, News Commentary, Common Crawl) downloaded from the
WMT (Workshop on Statistical Machine Translation) website.3 CzEng 1.7 is a
subset of CzEng 1.6 [Bojar et al., 2016a] created by improved filtering.4 In our
NMT experiments, we use only the raw sentences from CzEng, without any
annotation.

Table 2.1 reports the number of sentences and words (as computed using
command wc -w) in our parallel training datasets. We use standard shortcuts M
(for million) and k (for thousand) throughout the thesis. In the case of parallel
data, we often use “sentences” as a shortcut for “sentence pairs”.

words (k)data set sentences (k) EN CS

EN News Crawl 2016–2017 47 483 934 981
CS News Crawl 2007–2017 65 383 927 348
– CS News Crawl 2007–2012 27 541 387 941
– CS News Crawl 2013–2015 25 054 357 855
– CS News Crawl 2016 5 636 79 809
– CS News Crawl 2017 7 152 101 743

Table 2.2: Monolingual training data sizes (in thousands).

In addition to the parallel training data, we also use monolingual News
Crawl articles downloaded from the WMT website. For TectoMT experiments,
we use Czech articles from years 2007–2012.5 For NMT experiments in Chapter 5,
we used different subsets of Czech articles from 2007–2017 and English articles
from 2016–2017. See Table 2.2 for data sizes.

2.1.2 Development and Test Data
WMT shared task on news translation (see Section 2.2) provides a new test set
(with approximately 3000 sentences) each year collected from recent news arti-

2 CzEng 1.6 is available also in the CoNLL-U format with Universal Dependencies annotation,
suitable for processing e.g. with the Udapi framework we developed [Popel et al., 2017].

3 http://www.statmt.org/wmt18 In 2016, WMT was renamed to Conference on Machine
Translation, but keeping the legacy abbreviation WMT.

4 http://ufal.mff.cuni.cz/czeng/czeng17
5 We parsed this data in Treex and extracted a TreeLM (Section 2.4.3). For TectoMT

Czech→English experiments, we extracted English TreeLM from the English side of
CzEng 1.0.

18

http://www.statmt.org/wmt18
http://ufal.mff.cuni.cz/czeng/czeng17


2.2. MT EVALUATION

sentence words (k)data set purpose pairs (k) EN CS

wmt08 dev 2.0 43 36
wmt13 dev/test 3.0 56 48
– wmt13-CZ dev 0.5 10 8
– wmt13-nonCZ dev 2.5 46 40
wmt08-16-CZ dev 7.4 139 111
wmt08-16-nonCZ dev 17.8 378 325
wmt17 test 3.0 55 47
wmt18 test 3.0 56 47
CzEng 1.0 dtest test 151.3 1 986 1 719
QTLeap Batch2a test 1.0 21 19
QTLeap Batch2q test 1.0 10 8

Table 2.3: Evaluation data sizes (in thousands).

cles. The reference translations are created by professional translation agencies.6
All of the translations are done directly, and not via an intermediate language.
Test sets from previous years are allowed to be use as development data in WMT
shared tasks.

For TectoMT (Chapter 3), we used wmt08 (short name for WMT newstest2008)
as our dev set and wmt13 as our test set. In one experiment in Section 3.5.2, we
used the “dtest” section of CzEng. In domain-adaptation experiments (Sec-
tion 3.7), we used the QTLeap Batch2a test set. For NMT experiments (Chap-
ters 4–5), we used wmt13 as our dev set and wmt17 as our test set. In an additional
analysis in Section 5.3.12, we concatenated WMT test sets from 2008–2016 and
divided them into wmt08-16-CZ and wmt08-16-nonCZ according to the country
of origin. The final manual evaluation was done on wmt18 (within the official
WMT 2018 news task; see Chapter 6).

2.2 MT Evaluation

2.2.1 Manual Evaluation in WMT
We focus here on the manual (i.e. carried out by human annotators) evaluation
done within the annual WMT shared tasks on news translation. To the best of
our knowledge, WMT is the only MT shared task including the English-Czech
pair. This pair is present in WMT each year since 2007. Both academic and
commercial systems are regularly taking part in WMT. WMT evaluations are
considered to be a benchmark for distinguishing state of the art in MT (as well
as in MT evaluation methods) each year [Bojar et al., 2016b]. Within WMT, all
submitted systems are evaluated both automatically and manually. However,

6 For English-Czech: CEET in 2010–2012; Capita in 2013–2015; and Translated.net in 2016–
2018.
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only the manual evaluation is defined as the official measure of translation
quality in WMT.7

WMT manual evaluation follows several general principles:

• The identity of systems is hidden to the annotators during evaluation.

• The final ranking of systems is accompanied by significance testing (see
below).

• A detailed meta-evaluation is published each year [e.g. Bojar et al., 2016b,
2017a]. It includes statistics of inter-annotator agreement and also the
number of human judgments per system (either pairwise comparisons or
direct assessments, see below).8

The type of manual evaluation in WMT has changed several times. In 2008–
2011 (with a pilot in 2007), the official manual evaluation was done by ranking up
to five systems and computing the percentage of pair-wise comparisons where
a given system was ranked as better or equal (≥ranking). In 2012–2013, after
showing drawbacks of this evaluation [Bojar et al., 2011], the official evaluation
was changed to the percentage of non-tie comparisons where a given system was
ranked as better (>ranking). In 2014–2016, the official evaluation was computed
using the TrueSkill algorithm [Sakaguchi et al., 2014], allowing also negative
scores.

In 2017, the evaluation was changed again, substituting the relative ranking
of five systems by direct assessment (DA) [Graham et al., 2016], i.e. rating a single
translation on a 0–100 scale [Bojar et al., 2017a]. Two types of final scores are
reported: “Avg %” and “Avg z”. “Avg %” is an average of all ratings from all
annotators for a given system. In “Avg z”, all ratings from each annotator are
standardized first, i.e. scaled to have zero mean and standard deviation equal to
one. Statistical significance is computed using Wilcoxon signed-rank (Mann-
Whitney) test at p-level p < 0.05.

In 2018, in addition to the reference-based direct assessment (refDA, where
the system translation is shown together with a reference translation), source-
based direct assessment was also performed (srcDA, where the source-language
sentence is shown instead of the reference). In srcDA, the human reference
translation can be presented to the annotators in the same way as the evaluated
MT systems. Thus, unlike refDA, the srcDA evaluation allows us to compare the
quality of MT relative to the quality of human translation. The disadvantage
of srcDA is that skilled bilingual annotators are required. For a discussion of
further srcDA disadvantages, see Section 6.3.

7 “While automatic measures are an invaluable tool for the day-to-day development of machine
translation systems, they are an imperfect substitute for human assessment of translation quality.
Manual evaluation is time consuming and expensive to perform, so comprehensive comparisons of
multiple systems are rare.” [Callison-Burch et al., 2007]

8 This number for English→Czech was 5590, 8554, 9624 and 2171 in WMT 2014–2017, respec-
tively.
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2.2.2 Automatic Evaluation
Most automatic metrics for MT evaluation are based on estimation of similarity
between system translations and reference translations. Perhaps the most widely
used metric is BLEU [Papineni et al., 2002]. BLEU is based on n-gram (unigrams
up to 4-grams) precision of the translation relative to the reference translation
and a brevity penalty to penalize too short translations [for details see Papineni
et al., 2002].

There are several implementations of BLEU differing especially in the tok-
enization details. We use mostly the official case-insensitive (i.e. not distinguish-
ing lowercase and uppercase letters) implementation mteval-v14.pl9 with the
--international-tokenization option because it has slightly better correlation
with humans than the default ASCII-only tokenization [Macháček and Bojar,
2013].10

We report BLEU scaled to 0–100 as usual in most papers (although BLEU was
originally defined as 0–1 by Papineni et al. [2002]); the higher BLEU value, the
better translation. We measure confidence intervals and statistical significance
using paired bootstrap resampling [Koehn, 2004] and consider a difference
between two systems significant if p < 0.05.

There are several studies on reliability of BLEU and other automatic metrics
[e.g. Callison-Burch et al., 2006, Macháček and Bojar, 2013, Bojar et al., 2017b].
The studies usually compute a correlation of the automatic metrics with various
manual evaluations of MT quality. For example, there is a shared task on metrics
evaluation within WMT (called evaluation task in 2008–2011 and metrics task in
2012–2018). On the one hand, BLEU is still the most popular MT metric and its
correlation on system level (i.e. when computing BLEU on the whole test set, not
on individual sentences) is relatively high, e.g. in English→Czech WMT2017,
the Pearson correlation was 0.956 [Bojar et al., 2017b]. On the other hand, there
are usually some better-correlating metrics (possibly different each year) and
there are well known examples when BLEU may not correlate well [e.g. Callison-
Burch et al., 2006], for example when the systems being compared are based on
different paradigms, such as RBMT and SMT.11 We evaluated all our results in
Chapters 4–5 also with a character-based metric chrF [Popović, 2015], but the
results were highly correlated with BLEU, so we omit these scores except for
the final evaluation.

The automatic evaluation of MT becomes even more problematic when the
quality of MT systems is similar to the quality of human references, or when
it is even better. This affects not only BLEU, but all automatic metrics based

9 ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v14.pl
10 In Chapters 4–5, we use also t2t-bleu and the recent SacreBLEU (https://github.

com/awslabs/sockeye/tree/master/contrib/sacrebleu) [Post, 2018] with options -lc
-tok intl. Both these evaluation scripts produce results identical to the official imple-
mentation, but they are easier to work with. SacreBLEU automatically downloads the
reference translation for a given WMT testset. It also reports a signature of the BLEU
variant used, e.g. for the wmt13 testset and options -lc -tok intl, the signature is
BLEU+case.lc+lang.en-cs+numrefs.1+smooth.exp+test.wmt13+tok.intl.

11 See e.g. Bojar et al. [2011] or footnote 4 on page 116.
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on similarity with reference translations, especially if only a single reference is
available (as is the case of WMT news translation task and several other shared
tasks). Even if a system translation is judged better than a human reference, it
does not mean that the system is better in all aspects (cf. Section 6.3). However, it
is very difficult to distinguish which aspects of similarity with human references
are the desired ones and which should be ignored instead.

For example, it seems that current state-of-the-art MT systems are (some-
times) better in specialized terminology (e.g. in economics, biology,. . . ), where
even fluent bilingual human translators may not choose the best translation
unless they are experts in a given area. On the other hand, we can still see
document-level inconsistencies caused by the fact that most MT systems trans-
late each sentence independently. However, it is difficult to design a metric,
which would take this into account; see e.g. Gong et al. [2015], Bawden et al.
[2017] and papers submitted to the DiscoMT workshop.12

In conclusion, we still use BLEU (sometimes accompanied by other automatic
metrics) within the development and evaluation of our systems. However, we
are aware of its possible disadvantages and consider the manual evaluation
more reliable.

2.3 Categories of MT Systems used in WMT
In this section, we provide a short overview of different MT system categories,
with a special focus on the systems available for English→Czech MT in the last
decade. Our selection is based on the systems submitted to the annual WMT
shared tasks, which is used to define the state of the art; see Section 2.2.

We describe seven categories of MT systems: tectogrammatical MT, rule-base
MT (RBMT), phrase-based statistical MT (SMT), syntax-based statistical MT,
commercial online systems, hybrid systems and neural MT (NMT). Note that
the categories are possibly overlapping (e.g. commercial online systems belong
usually either to SMT or NMT; hybrid systems are by definition combining
different categories). Our goal is not to define a perfect taxonomy of MT systems,
but to provide a brief description of the systems. We use the categories defined
here also in Section 6.1 when presenting paradigm shifts based on the WMT
evaluation results.

Tectogrammatical MT
The Functional Generative Description (FGD) theory [Sgall, 1967] defines a
so-called tectogrammatical layer of language description, where each sentence is
encoded as a deep-syntactic dependency tree, which is supposed to represent
the semantic structure of the sentence. See Section 2.4.1 for more details.

There were several MT prototype systems based on the tectogrammatical
layer. The MAGENTA Czech→English system [Hajič et al., 2004] with a non-

12 https://www.idiap.ch/workshop/DiscoMT/
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isomorphic tree-to-tree transfer was based on Synchronous Tree Substitution
Grammar [Eisner, 2003]. It was later improved by Čmejrek [2006] and Bojar
[2008], who extended it also to English→Czech. An alternative tectogrammatical
system of Čmejrek et al. [2003] used manually-written rules and automatically-
extracted dictionary for generating English output directly from the tectogram-
matical trees.

The most relevant for this thesis is a tectogrammatical system named Tec-
toMT [Žabokrtský et al., 2008], developed in our institute since 2005 and partici-
pating in WMT since 2008 (see Section 2.4 and Chapter 3).

Rule-Based MT
We define RBMT as a category of fully rule-based MT systems, i.e. systems
with manually written rules and no statistical training.13 It should be noted that
this category is very diverse – RBMT systems are based on various linguistic
theories and representations. Well-known examples of RBMT systems are
Systran [Toma, 1977] or Apertium [Forcada et al., 2011]. For English-Czech,
there were early attempts using dependency syntax [Kirschner, 1982, Kirschner
and Rosen, 1989], but the only two RBMT systems participating in English-
Czech WMT are PC-Translator14 and Eurotran XP.15 Both are (or rather were)
commercial closed-source software.

Phrase-Based Statistical MT
Almost all currently used MT systems (including Neural MT) are using statis-
tics trained from data, but the term SMT is usually reserved for phrase-based
systems, possibly including also “hierarchical phrase-based” systems [Chiang,
2005]. In this thesis, we follow the convention and define SMT as a category of
phrase-based statistical MT, although we mention hierarchical systems within
the category of Syntax-Based SMT.

Training of SMT systems consists of the following six steps:

• Preprocessing of the training data involves segmentation into sentences,
one-to-one sentence alignment (source and target language), normalization
(lowercasing or truecasing, simplifying typographical variants e.g. of
quotation symbols), and tokenization to words.

• Word alignment means aligning each word in the source sentence to zero
or more words in the target sentences. The standard approach (e.g. using
the popular tool GIZA++ [Och and Ney, 2000]) is to induce independently
source-to-target and target-to-source alignments (both one-to-many) using

13 The TectoMT system mentioned in the previous subsection also uses rule-based compo-
nents, but the most important parts of the translation pipeline (parsing and transfer models)
are trained from data using machine learning techniques.

14 http://www.langsoft.cz/translator.htm
15 Eurotran XP website www.eurotran.cz is permanently unavailable.
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IBM models [Brown et al., 1993], followed by symmetrization heuristics.
IBM models were the basis of word-based SMT – a predecessor of phrase-
based SMT.

• Phrase extraction means extraction of aligned phrase pairs (s, t) (source
and target phrase) from the training data based on the word alignment.
These phrases are overlapping (the maximal length of phrases is limited
e.g. to 7 words).

• A phrase table is built from all the extracted phrase pairs. Phrase table is
a list of unique phrase pairs, where each phrase pair is assigned several
scores. The most important scores are forward and backward translation
probabilities (P (s|t) and P (t|s)), estimated by relative frequencies (and
possibly smoothed). There are various methods for phrase-table filtering
[Koehn, 2010].

• A language model (LM) is created, predicting PLM(fi|f1, ..., fi−1), where
f1, ..., fi is a sequence of words in the target language. The LM is estimated
from target-language monolingual data, usually using an n-gram LM.

• A log-linear model is trained, usually using the MERT algorithm [Och,
2003].16 The log-linear model assigns a weight λi to each feature hi(e, f),
where e and f is the target- and source-language sentence, respectively.
The number of features is usually lower than ten (MERT is not suitable
for optimizing more features). The features include: a language-model
score (based on PLM for the whole target sentence); forward-translation
and backward-translation scores (based on P (t|s) and P (s|t) probabilities
stored in the phrase table); word and phrase penalty scores (number of
words and phrases in the target sentence); and a distortion penalty (a
measure penalizing reordering of phrases, i.e. changing the word order in
translation).

Each of these steps is usually optimized independently of the other steps (in
contrast to end-to-end training of NMT). During decoding, the target sentence is
built left-to-right, using beam search to find a translation e that maximizes the
log-linear model score

∑
i λihi(e, f).

Perhaps the most popular SMT framework is Moses [Koehn et al., 2007].
The best English→Czech SMT system in WMT 2007–2018 was always based on
Moses, although with different architectures and submitted by different teams
(cf. Table 6.1). Further information about SMT can be found in the “SMT book”
by Koehn [2010].

Syntax-Based Statistical MT
There is a subcategory of hierarchical phrased-based SMT systems [Chiang,
2005], where the phrases are allowed to contain “gaps”, which will be translated

16 The model is traditionally called log-linear, although its training in SMT does not involve
proper estimation of probabilities and it would be more appropriate to call it a linear model.
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by other phrases. Thus, each source sentence is represented as a phrase-structure
tree, but in contrast to linguistically-motivated phrase-structure (constituency)
trees, these trees have usually just a single non-terminal label. As in phrase-
based SMT, a beam search is used to find the best segmentation into “hierarchical”
phrases and the best-scoring translation.17

There are several other types of syntax-based SMT systems, generally divided
into string-to-tree [e.g. Galley et al., 2004], tree-to-string [e.g. Huang et al., 2006],
and tree-to-tree [e.g. Nesson et al., 2006, Eisner, 2003]. Some of these approaches
use trees induced from the training data in an unsupervised way, some use
dependency or constituency parsers trained on linguistically annotated data.
Although a few of these systems were submitted to WMT in some years, they had
always worse results than non-hierarchical SMT systems for English→Czech,
and thus the category of syntax-based SMT is missing in our summary of WMT
evaluations in Section 6.1.

Factored phrase-based SMT models [Koehn and Hoang, 2007] represent each
word as a list of so-called factors, such as word form, lemma, part-of-speech
tag or a word-class [Brown et al., 1992]. Including syntactic factors, e.g. a
dependency relation label, is yet another way how to utilize syntax in SMT.

Online MT Systems
The category of online systems, such as Google Translate18 or Bing Translator,19 is
special for several reasons: Many users are familiar with these systems and their
quality. They cover a wide range of language pairs. Their training data is not
constrained by the publicly available resources, so the systems are considered
unconstrained in WMT. The details of the systems are not publicly known except
for a small number of publications [e.g Wu et al., 2016] and press reports.20

Based on available information, we know only that Google Translate started in
2006 as a phrase-based system, gradually improving and exploiting syntax for
some language pairs, and since 2016 adopting end-to-end NMT.21 Note that the
names of online systems participating in WMT are traditionally anonymized
(since WMT2010) as Online-A, Online-B etc.

Hybrid MT Systems (Chimera)
The category of hybrid systems is usually vaguely defined as systems combin-
ing techniques from multiple paradigms, most often RBMT and SMT. In our
summary, we focus on a single hybrid system – Chimera [Bojar et al., 2013]. It
is a system combining phrase-based Moses with deep-syntactic TectoMT and

17 Due to search errors, the final translation found may not be the one with the highest score
assigned by the model.

18 https://translate.google.com/
19 https://www.bing.com/Translator
20 However, none of press reports describe any details about the Google Translate production

system architecture.
21 https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
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also Depfix [Rosa et al., 2012] – a rule-based post-editing system for correction
of grammatical errors.22 First, TectoMT is used to translate the test set. Second,
Moses is trained on both phrase tables – one with authentic translations from
the parallel training data, and one extracted from the output of TectoMT on the
test set. In an optional third step, Depfix is applied to the Moses translations.

Tamchyna and Bojar [2015] explore the impact of TectoMT on the transla-
tion quality of Chimera. They compare three systems: TectoMT, Moses and
a system termed CH1, which is Chimera without Depfix, i.e. combination of
Moses and TectoMT. In an experiment on the wmt14 test set, 4.5% of tokens from
the reference translation were present in CH1 and TectoMT, but not in Moses.
Further 3.5% of reference tokens were present only in TectoMT (but not selected
in the CH1 combination output). The CH1 combination was +1.65 BLEU better
than Moses on wmt14. Applying Depfix on top of CH1 (thus creating the final
Chimera configuration, which was the winner in WMT2014) gained further
+0.2 BLEU improvement. After several other experiments (including manual
evaluation), Tamchyna and Bojar [2015] conclude: “We have found that [TectoMT]
provides a mix of useful, correct translations and noise. Many of its translations are
unavailable to the statistical component, so its generalization power is in fact essential.
[...] Overall, we find that by adding [TectoMT] we obtain novel translations and im-
proved morphological coherence. The final translation quality is improved significantly
over both [Moses and TectoMT] alone, setting the state of the art for English→Czech
translation for several years in a row.”

Neural MT
NMT is a category of end-to-end encoder-decoder-based Neural MT systems.
See Section 2.5 for a description an overview of NMT.

The first NMT system [Jean et al., 2015] was submitted to WMT in 2015
by a team from the University of Montreal. In 2016–2017, the winning NMT
system (and overall winner, also for other language pairs) was submitted by
a team from the University of Edinburgh [Sennrich et al., 2017]. In 2018, the
best English→Czech (and Czech→English) system is our NMT described in
Chapters 4–5.

22 In 2013–2016, the system [Bojar et al., 2013, Tamchyna et al., 2014, Bojar and Tamchyna,
2015, Tamchyna et al., 2016b] used all three components (Moses, TectoMT, Depfix) and the
architecture was almost the same. In 2017, the system [Sudarikov et al., 2017] contained an
NMT system in the combination.
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2.4 TectoMT Overview
TectoMT is an MT system developed within a Perl-based NLP framework Treex
at the Institute of Formal and Applied Linguistics (ÚFAL) since 2005. TectoMT
is a very complex system and we cannot describe all its components in detail in
this section. Instead, we present only a brief overview of the Treex framework
and the three main translation phases – analysis, transfer and synthesis. More
detailed description of selected improved components will be presented in
Chapter 3.

2.4.1 Treex – NLP Framework
Originally, both the MT system and NLP framework were developed as one
project under the name TectoMT [Žabokrtský et al., 2008, Popel and Žabokrt-
ský, 2010]. In 2010–2011, the framework was redesigned, reimplemented and
renamed to Treex. This was motivated by the fact that although the primary
application of the framework was tectogrammatical MT, its general-purpose
modular design proved to be useful in many other applications, not necessarily
related to MT and tectogrammatics.23

Treex profits from the stratificational approach to the language, namely it
defines four layers of language description (listed in the order of increasing level
of abstraction): raw text (word layer), morphological layer, shallow-syntax layer
(analytical layer, a-layer) and deep-syntax layer (layer of linguistic meaning,
tectogrammatical layer, t-layer). The strategy is adopted from the Functional
Generative Description (FGD) theory [Sgall, 1967, Sgall et al., 1986], which has
been further elaborated and implemented in the Prague Dependency Treebank
(PDT) [Hajič et al., 2006]. For technical reasons, Treex stores morphological layer
and analytical layer together in a-trees – each a-node has both morphological at-
tributes (form, lemma, tag) and shallow-syntax attributes (dependency relation
to its parent).

Treex framework emphasizes modularity and reusability at various levels.
Following the fundamental assumption that every non-trivial NLP task can be
decomposed into a sequence of subsequent steps, these steps are implemented
as reusable components called blocks. Each block has a well defined input and

23 Treex/TectoMT has been used e.g. in machine translation based on Synchronous Tree
Substitution Grammars and factored translation [Bojar and Hajič, 2008], aligning tectogram-
matical structures of parallel Czech and English sentences [Mareček et al., 2008], building
a large, automatically annotated parallel English-Czech treebank CzEng 0.9, 1.0 and 1.6
[Bojar and Žabokrtský, 2009, Bojar et al., 2012, 2016a], evaluating metrics for measuring
translation quality [Kos and Bojar, 2009], complex pre-annotation of English tectogram-
matical trees within the Prague Czech English Dependency Treebank project [Hajič et al.,
2009], tagging the Czech data set for the CoNLL Shared Task [Hajič et al., 2009], gaining
syntax-based features for prosody prediction [Romportl, 2008], experiments on information
retrieval [Kravalová, 2009] and named entity recognition [Kravalová and Žabokrtský, 2009],
conversion between different deep-syntactic representations of Russian sentences [Mareček
and Kljueva, 2009] and a multi-lingual study on perplexity of n-gram and dependency
language models [Popel and Mareček, 2010].
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Figure 2.1: Source-language (English) representation of a sentence “The verdict
is not yet final: the court will hear Tymoshenko’s applea in December.” Left: a-tree
with with shallow dependencies and each node annotated with a word form,
dependency relation (“afun”) and PoS-tag (lemma is not shown). Middle: named
entity tree. Right: t-tree with tectogrammatical lemmas, functors and formemes;
word forms added only as a visual aid.

output specification and also a linguistically interpretable functionality in most
cases, but there can be blocks for purely technical tasks (such as for feature
extraction). This facilitates rapid development of new applications by simply
listing the names of existing blocks to be applied to the data. Moreover, blocks
in this sequence, which is called scenario, can be easily substituted with an
alternative solution (other blocks or sub-scenarios), which attempts at solving
the same subtask using a different approach. Scenarios and blocks can be
adjusted also with parameters, e.g. for specifying which toolkit and model
should be used for parsing.

For example, the whole English→Czech translation can be executed with
the following command: treex -Len -Ssrc Read::Sentences Scen::EN2CS
Write::Sentences < in.txt > out.txt,24 where the main translation scenario
is specified by Scen::EN2CS, which currently contains over 150 blocks (see Ap-
pendix B.2). In the following three sections, we summarize its three phases:
analysis (of English sentences into English t-trees), transfer (of English t-trees
into Czech t-trees) and synthesis (of Czech t-trees into Czech sentences).

2.4.2 TectoMT – Analysis
The input English text is segmented into sentences and tokenized into words.
The words are tagged with Penn Treebank tags [Marcus et al., 1994] using the

24 treex is the Treex command-line interface (executable). -Len -Ssrc specifies that the input
is English and should be stored in a src zone (while the translations will be stored in a zone
called tst). Read::Sentences is a so-called reader block, which specifies that the input is a
plain text format, one sentence per line. Similarly, writer block Write::Sentences specifies
the output format. For interactive translation with storing each sentence to a *.treex
file (which can be visualized with the TrEd software [Pajas and Štěpánek, 2008]), one
can use the following command treex -Len -Ssrc Read::Sentences lines_per_doc=1
Scen::EN2CS Write::Treex Write::Sentences.
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Figure 2.2: Target-language (Czech) representation of a translation of the sentence
from Figure 2.1: “Verdikt není ještě konečný: soud vyslechne Tymošenkové odvolání
v prosinci.” Left: t-tree. Right: a-tree. Dependency relation “afun” of some a-
nodes is missing as it is not needed for the translation; the last line in each node
shows a compact representation of Czech (PDT) morphological tags.

Morce tagger [Spoustová et al., 2007] and lemmatized using rules [Popel, 2009].
Subsequently, a dependency parser is applied (Maximum Spanning Tree parser
[McDonald et al., 2005]) to create a shallow-syntax dependency tree (a-tree),
where node corresponds to one word (see Figure 2.1 left).

We apply the NameTag named entity recognizer [Straková et al., 2014] and
store the detected entities and their types in a named-entity tree (Figure 2.1
middle25).

Finally, each a-tree is converted to a tectogrammatical tree (t-tree, Figure 2.1
right) in a sequence of rule-based blocks.26 Each content (autosemantic) word
with its associated functional words is collapsed into a single tectogrammatical
node (t-node), labeled with a lemma,27 functor, formeme and semantically in-
dispensable morphologically categories called grammatemes (e.g. number for
nouns; tense and modality for verbs; gender, number and person for pronouns;

25 Figure 2.1 originates from an older version of TectoMT, which used Stanford NER [Finkel
et al., 2005] instead of NameTag and misclassified Tymoshenko as a geographical named
entity (g_). NameTag detects it correctly as a personal name.

26 Treex contains also machine-learning based blocks for detection of functors and for coref-
erence resolution, but these are not used in the default translation scenario.

27 In general, lemmas on the t-layer are different from the morphological lemmas. In English,
we apply only two transformations: all personal pronouns are represented with a special
lemma #PersPron and phrasal verbs are represented with a single t-node with a lemma
joining the verb and particle, e.g. make_up. Tectogrammatical lemmas are usually called
t-lemmas, but we don’t consider the distinction important for our purposes and call them
simply lemmas.
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degree of comparison for adjectives and adverbs). Functors are semantic-role
labels playing an important role in FGD and PDT [Sgall et al., 1986, Hajič et al.,
2006], but less important in TectoMT (they distinguish coordination structures
and they are used as features in translation models, but neither is crucial for
the final quality). Formemes capture the morphosyntactic means which are
used for expressing the tectogrammatical node in the surface sentence shape.
Examples of formeme values are: v:that+fin – finite verb in a subordinated
clause with conjunction that, n:sb – semantic noun in a subject position, n:for+X
– semantic noun in a prepositional group with preposition for, adj:attr – se-
mantic adjective in an attributive position. See Dušek et al. [2012] for details.
Coreference links (both textual and grammatical) are introduced to connect
anaphors with their antecedents. For this purpose, new t-nodes with lemma
#Cor corresponding to unexpressed actors of infinitive verbs are created.28

2.4.3 TectoMT – Transfer
This section summarizes the baseline implementation of TectoMT transfer, while
our improvements are described separately in Sections 3.3–3.4.

Transfer on the t-layer means transforming source-language (English) t-trees
into target-language (Czech) t-trees and it is separated into five subtasks:

1. producing an n-best list of lemma translation variants,

2. producing an n-best list of formeme translation variants,

3. joint re-ranking of the n-best lists using Hidden Markov Tree Model
(HMTM),

4. various ad-hoc blocks for addition or deletion of t-nodes or context-based
correction of lemmas and formemes, and

5. translation of grammatemes and coreference.

Subtasks 1 and 2: Producing n-best lists of lemmas and formemes

A translation model is queried and the best-ranked (highest-probability) seven
translation options for a given lemma (or a formeme) are stored in each node.29

The baseline translation models are simple conditional probabilitiesP (trg_lemma|
src_lemma) and P (trg_formeme|src_formeme, src_parent_lemma) estimated from

28 We focus here mostly on the English→Czech translation direction, so we omit the descrip-
tion of Czech t-layer analysis (although it is needed for parsing of the parallel training data
– CzEng). The Czech t-analysis principles are similar to English, with a few exceptions,
e.g. new t-nodes need to be added also for dropped personal-pronoun subjects, which is
frequent in Czech, but rare in English (except for imperatives and passives).

29 We tried storing more than seven variants, but it didn’t result in substantially better results
and the decoding in subtask 3 was much slower. In addition, we limit the number of
variants by their cumulative probability: 0.5 for lemmas and 0.9 for formemes. Again, we
found these hyper-parameters as optimal on our development set.
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relative counts in our training data – t-node aligned parallel treebank CzEng 1.0
[Bojar et al., 2012].30 In Sections 3.3–3.4, we show more advanced and context-
sensitive models.

Subtask 3: TreeLM reranking using HMTM

A globally optimal combination of lemmas and formemes is selected using
HMTM [Popel and Žabokrtský, 2009] and a target-language tree model (TreeLM).
HMTM is similar to standard (chain) Hidden Markov Model, but operates on
trees instead of sequences. In HMTM, the transition probability defines how likely
a node v (with hidden state variable X(v)) occurs given its parent ρ(v) (with
hidden state variable X(ρ(v))). Emissions correspond to nodes (with hidden
states) emitting the observed output. The emission probability then describes how
likely a hidden state X(v) is to emit the observed output Y (v). HMTM is well
suited for describing generation/translation from syntactic trees – in particular,
dependency trees are captured quite naturally by HMTM. In the context of
deep MT transfer, observed variables correspond to labeled nodes in the source-
language t-tree. The task is then to find the most probable assignment of hidden
variables, which in turn correspond to labels of target-language t-nodes. A node
label is a lemma-formeme pair. Transition probability is modeled by the TreeLM
(P (X(v)|X(ρ(v)))), while emission probability is the probability of the particular
source-language node being a translation of the hidden target-language lemma-
formeme label (P (Y (v)|X(v))).31

This approach has an implicit assumption that the target-language t-tree
has the same number of nodes and the same shape (topology) as the source-
language t-tree, i.e. that the transfer is isomorphic. In practice, this assumption is
not always true, but according to a manual evaluation [Popel, 2009, p. 14], only
8% of translation errors in the baseline were caused by this assumption. This
supports the hypothesis that t-trees representing the same content in different
languages are very similar,32 while the amount of non-isomorphism in shallow-
syntax trees is much higher (most sentences cannot be translated word by word).

30 Even the baseline translation models were interpolated from several components, includ-
ing rule-based dictionary of regular word-formative derivations, which can be helpful
for translating some less frequent (but regularly derived) lemmas. For example, one of
the derivation-based models estimates the probability P (zajímavě|interestingly) (a possibly
unseen pair of deadjectival adverbs) by the value of P (zajímavý|interesting) (a frequent pair
of adjectives).

31 For example, the probability of the translation in Figure 2.2 according to HMTM is
Pe(be|být) ·Pt(být|ROOT ) ·Pe(verdict|verdikt) ·Pt(verdikt|být) and so on for all the nodes. For
simplicity, we focus only on lemmas and exclude formemes in this example, but in reality, an
important task of TreeLM is also to ensure the compatibility of lemma and formeme (within
one node). We observed that in practice, we can obtain better results by using a forward
translation model instead of the theoretically-correct backward model as the emission proba-
bility Pe, provided we tune a weight α in Pe(být|be)α · Pt(být|ROOT ) · Pe(verdikt|verdict)α ·
Pt(verdikt|být) etc. This way it is possible to exploit more source-language context in Pe, as
described in Section 3.3.

32 Or rather that the t-trees can be very similar, i.e. one of the acceptable translations has a
t-tree with the same topology as the source t-tree.
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It should be noted that the baseline system included several rule-based blocks
to fix specific common types of non-isomorphism (and excluding these blocks
would make the amount of errors caused by non-isomorphism higher than 8%).

Subtask 4: Lemma and formeme transfer postprocessing

Such correction blocks are included in subtask 4. For example, a t-node rok
(year) is added when translating in 1990 as v roce 1990. Some of these blocks are
applied before subtask 3. For example, make use of can be translated as použít,
využít, používat or využívat, and in all these cases two t-nodes (make and use)
must be translated as one t-node. There is a special block with a list of such
non-isomorphic translations. The advantage of applying this block first is that
multiple translation variants can be specified and subtask 3 performs the final
disambiguation, while considering the selected variant also for translation of
the neighboring t-nodes. The disadvantage of this approach is that there is no
way how a two-node translation could compete with a one-node translation (e.g.
prime minister can be translated either as předseda vlády or premiér). Also, the list
of non-isomorphic translations is collected manually and it is not integrated
with the context-sensitive translation models discussed in Sections 3.3–3.4.33

Subtask 5: Transfer of grammatemes and coreference

Translation of grammatemes (e.g. tense and number) is much simpler than
the translation of t-lemmas and formemes because these abstract linguistic
categories are usually kept without any changes in the translation. Therefore,
a set of relatively simple rules (with a list of exceptions) is sufficient for this
task. For example, when translating staff as zaměstanec or pracovník, we change
the grammateme number from singular to plural. Similarly to grammatemes,
coreference links are usually kept unchanged, with a few exceptions when
modifications are necessary. For example, we need to change textual coreference
to grammatical (or create the links if they were missing) in case of possessive
personal pronouns referring to a subject.34

33 In addition to the discussed block (T2T::EN2CS::TrLFPhrases), there is another block
(T2T::EN2CS::OverridePpWithPhraseTr) with a similar purpose, but it focuses on prepo-
sitional phrases only (most of which could be translated isomorphically, except for e.g.
“for Christ’s sake” → “proboha”), its list of translations was extracted automatically from the
training data and only one translation option is provided (so the block is applied after
subtask 3 and overrides its result).

34 For example, “He saw his house” can be translated either as “Viděl svůj dům” or “Viděl jeho
dům” depending on whether He and his refer to the same person or not. In English, the
sentence is ambiguous and needs to be resolved based on context, thus the coreference is
(by definition) textual. In Czech, the coreference of svůj is grammatical because svůj always
refers to the subject (of a possibly non-finite verb) and the coreference can be resolved
purely on the basis of grammatical rules.
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2.4.4 TectoMT – Synthesis
In the synthesis phase, surface sentence is synthesized from the t-tree, which is
basically the reverse operation of the tectogrammatical analysis. Figure 2.2 on
page 29 shows a t-tree and a corresponding a-tree, which uniquely defines the
surface sentence. The Czech synthesis consists of deleting personal pronoun
subjects, adding punctuation and functional words (prepositions, subordinating
conjunctions, auxiliary verbs, reflexive particles, expletive pronouns), spreading
morphological categories according to grammatical agreement, arranging word
order (see Section 3.2) and performing inflection. By inflection, we mean generat-
ing a word form for a given lemma and (possibly underspecified) morphological
tag. We use an unigram morphological language model [Popel and Žabokrtský,
2009, p. 121] and Czech morphology database [Hajič, 2004] for this task.
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2.5 Neural MT Overview
There were several early attempts to exploit neural networks (at that time also
known as connectionist models or continuous-space models, in some contexts) in MT
[e.g. Chrisman, 1991, Waibel et al., 1991, Forcada and Ñeco, 1997, Castaño et al.,
1997]. However, the era of (modern) end-to-end NMT systems [Kalchbrenner
and Blunsom, 2013, Sutskever et al., 2014, Bahdanau et al., 2014] started about
two decades later, when the computational resources (GPU) became capable
of training large models. NMT systems became competitive in well-known
shared tasks: WMT 2015 [Jean et al., 2015], IWSLT 2015 [Luong and Manning,
2015] and WMT 2016 [Sennrich et al., 2016c] (cf. Section 6.1). Most of these
systems use recurrent (RNN) layers (e.g. LSTM [Hochreiter and Schmidhuber,
1997] or GRU [Cho et al., 2014]), though some use convolutional layers as well
[Kalchbrenner and Blunsom, 2013, Gehring et al., 2017]. Vaswani et al. [2017]
introduced a novel model called Transformer, which uses self-attention instead
of the recurrent or convolutional layers.

Transformer outperformed all the above-mentioned models [Vaswani et al.,
2017] and it is used as our baseline system in Chapters 4–5. We thus describe the
model in more detail (Section 2.5.2), after summarizing the basics principles of
NMT architectures (Section 2.5.1). Finally, we explain what do we mean by the
latent structures emerging in Transformer self-attention layers (Section 2.5.3).

2.5.1 General NMT Architecture
Token representation

In NMT, each input sentence is first tokenized into a sequence of tokens. The early
NMT systems used words as the tokens [Sutskever et al., 2014], which resulted
in large vocabularies and a necessity to handle unknown words. An alternative
is to use characters as the tokens [Lee et al., 2016] or to use a hybrid word-
character approach [Luong and Manning, 2016]. However, the most popular
approach today is to split words into subword units (subwords)35 and use these
as the tokens for NMT [Sennrich et al., 2016b]. The subword vocabulary is
trained so that frequent words are represented with a single subword, while
rarer words are encoded into multiple subwords. There are several algorithms
for training subword vocabularies [Schuster and Nakajima, 2012, Sennrich et al.,
2016b, Macháček et al., 2018, Kudo, 2018].

Each token is represented as a real-valued vector, called embedding (word
embedding, subword embedding or character embedding). These embeddings
can be pre-trained on monolingual texts (e.g. with word2vec [Mikolov et al.,
2013]), but most NMT systems initialize them randomly and train them jointly
with the whole translation.

35 For example, German word Forschungsinstituten (research institutes) is encoded with three
subwords: Forsch + ungsinstitu + ten_.
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Encoder-decoder architecture

Most NMT systems are based on an encoder-decoder architecture. The encoder
maps the input sequence to a vector of hidden states (sometimes called continuous
representation or sentence embedding). The decoder maps the hidden states into
the output sequence (of target-language tokens). Each hidden state usually
corresponds to one position (token) in the input sequence, so in general, the
vector of hidden states has a variable length.36 The early NMT systems [Sutskever
et al., 2014] used only the last hidden vector as an input for the decoder. Thus, the
training was forced to encode all the information about the input sentence into a
fixed-length vector. Bahdanau et al. [2014] suggested to use a bidirectional GRU
in the encoder. More importantly, they introduced an encoder-decoder attention
mechanism, where the decoder has access to all encoder’s hidden states. This
way, when generating each output token, the decoder can attend to different parts
of the input sentence. The encoder-decoder attention mechanism circumvents
the fixed-length sentence-representation restriction and improves the translation
quality, especially on longer sentences [Bahdanau et al., 2014].

Inference

The process of translating sentences (at test time) with a trained NMT model,
is usually called inference.37 Most NMT systems use auto-regressive inference.38

This means that the output sentence is generated token by token and after each
token is generated, its embedding is used as an input for generating the next
token. In case of an RNN decoder, the decoding time grows linearly with the
sentence length. The decoding finishes once the decoder generates a special
end-of-sentence token.

Training

The advantage of NMT systems is that all their components can be trained in
an end-to-end fashion. This is in contrast with SMT and TectoMT, where most
components had to be trained separately. NMT is usually trained using back-
propagation optimizing the cross-entropy loss of the last decoder’s softmax layer,
which predicts output token probabilities,39 but there are also NMT systems

36 For practical reasons of (mini-)batch training on GPU, sentences within one batch are usually
padded to a fixed length according to the longest sentence in the batch (see Sections 4.3.4–
4.3.5).

37 In SMT, it is usually called decoding, but this is slightly ambiguous term in NMT because it
can mean either the inference or only using the decoder (possibly in training time).

38 There are also experimental systems with non-autoregressive inference [e.g. Gu et al., 2017,
Zhang et al., 2018, Roy et al., 2018]. Their inference is faster, but the translation quality has
not achieved the level of autoregressive models yet.

39 softmax(x)j = exp(xj)/
∑

i exp(xi) and the cross-entropy loss is H(y,p) =
∑

i yilog(pi),
where p = softmax(x) is the predicted probability distribution of output tokens and y is
the training-data “distribution”, which is usually a one-hot vector (yk = 1 for the token k on
a given position in the reference translation, all other tokens i ̸= k have yi = 0).

35



2.5. NEURAL MT OVERVIEW

optimizing sentence-level metrics (e.g. BLEU or simulated human feedback)
with reinforcement learning techniques [e.g. Nguyen et al., 2017].

Importantly, NMT usually uses the teacher-forcing technique: when generat-
ing the next word during training, it uses the previous word from the reference
translation as the input instead of using the previously predicted word.

2.5.2 Transformer
Transformer [Vaswani et al., 2017] follows the general encoder-decoder archi-
tecture as described above, but instead of RNN layers it uses self-attention and
feed-forward layers. This allows to speed up the training and partially also the
decoding thanks to better usage of parallelism.40

Attention

In general form, attention can be defined as a function mapping three vectors of
queries (Q), keys (K) and values (V ) to an output vector, which is a weighted sum
of the values V . The weight is computed as a compatibility of the corresponding
key and query. In particular, Transformer uses a scaled dot-product attention:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (2.1)

where Q ∈ Rn×dk , K ∈ Rn×dk , V ∈ Rn×dv , n is the sentence length, dv is the
dimension of values, and dk is the dimension of the queries and keys.

In the encoder-decoder attention, keys and values come from the encoder’s
topmost layer and queries come from the decoder’s previous layer.

In self-attention, all queries, keys and values come from the output of the
previous layer. Self-attention is used both in encoder and decoder, but in decoder
it is masked, so each position attends only to preceding positions because the
following positions will not be known in inference time due to the autoregressive
property of the decoder.

Multi-head attention

It is possible to use a single self-attention function in each layer, but the transla-
tion quality is improved [Vaswani et al., 2017] when combining multiple attention
heads:

MultiHead(Q̂, K̂, V̂ ) =
[
head1(Q̂, K̂, V̂ ), . . . , headh(Q̂, K̂, V̂ )

]
WO,

headi(Q̂, K̂, V̂ ) = Attention(Q̂WQ
i , K̂WK

i , V̂ W V
i ),

40 During training both encoder and decoder work in a non-autoregressive mode, that is
all positions are encoded/decoded in parallel. During inference, only the encoder works
non-autoregressively.

36



2.5. NEURAL MT OVERVIEW

where h is the number of heads; WQ
i ,WK

i ,W V
i are parameter matrices which

project original-size (dmodel) queries, keys and values (Q̂, K̂, V̂ ) into smaller-size
vectors Q,K, V ; and WO ∈ Rhdv×dmodel is a matrix which projects the concate-
nation of attention heads back to the original dimension dmodel. Usually, the
“smaller” dimensions dv and dk are set both to dmodel

h
, but other configurations

are possible as well.

Encoder and decoder

The encoder of Transformer consists of 6 stacked layers of identical form:

layer(x) = LN
(
x+ PFFN

(
LN(x+MultiHead(x, x, x))

))
,

where x ∈ Rn×dmodel is the input matrix; n is the input sequence length; LN
is the layer normalization [Lei Ba et al., 2016]; MultiHead is the multi-head self-
attention sublayer described above; and PFFN is a position-wise feed-forward
network (applied on each position independently, thus easy to parallelize):

PFFN([x1, . . . , xn]) = [FFN(x1), . . . , FFN(xn)]

FFN(xi) = max(0, xiW1 + b1)W2 + b2

The decoder is similar to the encoder, but in addition to the self-attention and
feed-forward sublayers, each of the 6 layers includes also the encoder-decoder
attention sublayer.

In the Transformer “BASE” model, dmodel = 512, h = 8 and dk = dv =
512/8 = 64. In the “BIG” model, dmodel = 1024, h = 16 and dk = dv = 64.

Positional encoding

Transformer contains no recurrence nor convolution and thus the information
about position of the tokens in the sentence must be supplied by other means.
Transformer encodes the absolute position (pos ∈ {1 . . . n}) in the sequence into
positional encoding vector PE ∈ Rn×dmodel , which is subsequently summed with
subword embeddings and provided as the input to the first layer of the encoder.

PE(pos,2i) = sin
( pos

100002i/dmodel

)
PE(pos,2i+1) = cos

( pos

100002i/dmodel

)
An alternative solution is to extend the self-attention formula with a term

which depends on the relative distance of the key and query [Shaw et al., 2018].

Further reading

For more details on Transformer, see the original paper [Vaswani et al., 2017].
There is also a blog explaining Transformer with many illustrations, showing
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e.g. a visualization of the positional encoding.41 Finally, Chapter 4 provides
more information about training Transformer models.

2.5.3 Latent Structures in Transformer
The attention (Equation 2.1) is based on a “compatibility” function

softmax

(
QKT

√
dk

)
,

which assigns a weight wi,j ∈ ⟨0, 1⟩ to each query-key pair (Qi, Kj). In the
case of the multi-head self-attention in the encoder, the queries and keys are
different projections of the vectors representing each token on a given layer. For
a given sentence, encoder’s layer and head, it is thus possible to visualize this
self-attention as a weighted bipartite graph, where the weight of each edge is
defined by wi,j .

Figure 2.3: Visualization of self-attention in a Transformer model trained on
English→German translation. Each of the three subfigures shows another at-
tention head in encoder layer 5 (out of 6). The right-most subfigure shows two
attention heads, but focusing only on the word ‘its’ and illustrating coreference
resolution. Incidentally, all words in the example sentence are frequent enough
to be encoded with a single subword. Adapted from Vaswani et al. [2017].

Figure 2.3 shows an example of such visualization for different heads. Each
head is visualized in a different color and edge weight is indicated by thickness.
The words in the left column in each of the three visualizations represent vectors
corresponding to these words on the input to the fifth layer of the encoder. By
copying these vectors multiplied by the wi,j weights, Transformer starts building

41 https://jalammar.github.io/illustrated-transformer/
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the input for the sixth (and last) layer of the encoder. Thus we can imagine the
words in the left column represent the sixth layer.42

We can see several interesting phenomena in Figure 2.3:

• The self-attention has a relatively sharp distribution – each position (in the
right column) attends to a small number of positions (in the left column).
Often, most of the attention focuses on a single position.

• Each head obviously specializes to a different task. The red-marked head
in Figure 2.3 focuses mostly on short-distance dependencies and short
phrases. The green-marked head focuses on longer-distance dependen-
cies and longer phrases. The violet-marked head resolves the its–Law
coreference link. Intuitively, this makes sense – by copying the vector
representation of “Law” to the position of “its”, we allow the further layers
(in encoder and decoder) to “understand” the meaning of “its application
should be just” and translate it correctly within a given context.

• The visualized self-attention structures resemble syntactic and seman-
tic structures that are present in manually annotated treebanks. How-
ever, the self-attention structures emerged in the end-to-end training of
English→German translations, where no linguistic annotations were pro-
vided in the training data. We call these structures latent because they
correspond to latent variables of the Transformer model, i.e. variables
which are not (explicitly) visible in the data, but need to be inferred.

42 As described in Section 2.5.2, self-attention is followed by the PFFN sublayer and both
sublayers are wrapped by residual skip connections and layer normalization. However,
self-attention is the only component, which combines representations on different positions.
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2.6 Translationese
Translationese is a term used in translation studies (translatology). A text trans-
lated from language X into Y has different properties (lexical choice, syntactic
structure, etc.) than a text originally written in language Y [Gellerstam, 1986,
Koppel and Ordan, 2011]. Some scholars [e.g. Toury, 1995] consider the former
(X-specific translationese of Y) a dialect of the latter (original Y). Some [e.g. Baker
et al., 1993] emphasize general properties of translationese, which are indepen-
dent of the source language X.

The main characteristics of translationese are:

• Simplification, which is “the idea that translators subconsciously simplify the
language or message or both.” [Baker et al., 1993]

• Normalization, which is “the tendency to conform to patterns and practices
which are typical of the target language, even to the point of exaggerating them.”
[Baker et al., 1993]

• Explicitation, which is “the process of introducing information into the target
language which is present only implicitly in the source language, but which can
be derived from the context or the situation.” [Vinay and Darbelnet, 1958] (as
cited by Baker [1998]) Explicitation is related to the localization, which in-
cludes cultural adaptation of the translation, e.g. explaining abbreviations
or proper names which are common in the source language, but rare in
the target language.

Explicitation is usually manifested by using more words in the translation,
while simplification may result in using less words, although this interferes
with the differing average number of words per sentence in different languages.

Translationese sometimes denotes rather negative aspects of translations
which should be avoided by professional translators. Sometimes it denotes
neutral or even positive aspects of translated language, for example localization
or preserving ambiguities of the source language also in the target language if
there is not enough context to resolve the ambiguity. Such ambiguity is usually a
consequence of the source-language grammar, which may require (or prefer) to
keep a given grammatical category unspecified (e.g. number of Chinese nouns,
tense of Chinese or Indonesian verbs, definiteness of Czech nouns), while in the
target language it would be more natural to express the grammatical category.

There are several works studying the effect of translationese on MT or utiliz-
ing it for tuning better MT systems; see Stymne [2017] for an overview.
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Chapter 3

Improvements of TectoMT

Language data without trees is almost as arid as a desert.
Linguistic trees and grammars without data are decorative plants.

Data is the soil on which we should grow our trees.
But if we can’t see the wood for the trees, it could be better to stay in the desert.

Khalil Sima’an

The baseline TectoMT system is described in Section 2.4. In this chapter, we
describe selected improved components in greater depth.1

We start with a short evaluation of the influence of the dependency parser
used in TectoMT on the final translation quality (Section 3.1). The second
component is a rule-based block for reordering Czech clitics in the synthesis
phase (Section 3.2). We selected this block as a case study, which should be
representative also for other improved rule-based components, which are not
discussed here. The other two selected components are alternative machine-
learning-based context-sensitive translation models: MaxEnt (Section 3.3) and
VowpalWabbit (Section 3.4). After evaluating these two models (Section 3.5),
we describe how TectoMT has been adapted to new language pairs (Section 3.6)
and domains (Section 3.7). We conclude with summarizing advantages and
disadvantages of TectoMT (Section 3.8).

1 This chapter is based on content published in Popel et al. [2011], Popel and Žabokrtský
[2010], Mareček et al. [2010], Popel et al. [2015], Dušek et al. [2016].
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3.1 Influence of Parsers
TectoMT allows to evaluate different NLP components in an extrinsic way. In
Popel et al. [2011], we have analyzed the effect of five different parsers on the
final translation quality. We observed that the correlation between intrinsic
(parsing accuracy as measured by Unlabeled Attachment Score) and extrinsic
(translation quality as measured by BLEU) evaluation is weak. This confirmed
our hypothesis that what matters is not only the overall parsing accuracy, but
also the parser-specific distribution of errors. We also observed that BLEU
grows with the increasing amount of training dependency trees, but only at a
sublogarithmic pace.

Finally, we developed SentChunk – a simple technique of dividing sentences
into smaller chunks using parenthesis boundaries and parsing each chunk
independently. This technique has almost no effect on the parsing accuracy, but
improves the translation quality significantly (see Table 3.1).

with SentChunk
parser UAS (%) BLEU ∆UAS (%) ∆BLEU

MST [McDonald et al., 2005] 79.4 12.36 −0.1 +0.44
Malt [Nivre et al., 2007] 76.1 12.14 −0.1 +0.39
Zpar [Zhang and Nivre, 2011] 79.2 11.27 +0.1 +0.52
CJ [Charniak and Johnson, 2005] 90.4 12.84 – –
Stanford [Klein and Manning, 2003] 82.5 12.77 – –

Table 3.1: Influence of different English parsers on the final TectoMT transla-
tion quality. BLEU was evaluated on wmt08. UAS (unlabeled attachment score)
was evaluated on Penn Treebank section 23. Dependency parsers (MST, Malt,
Zpar) were trained on Penn Treebank (sections 2–21) converted to dependencies.
Constituency parsers (CJ, Stanford) were trained directly on Penn Treebank and
their output was converted to dependencies. All the reported ∆BLEU improve-
ments caused by enhancing parsing with SentChunk are statistically significant
(p < 0.05) according to paired bootstrap resampling [Koehn, 2004].
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3.2 Reordering of Clitics
We choose the topic of reordering of Czech clitics as a case study to illustrate the
abilities and dis/advantages of TectoMT relative to other MT approaches. There
is a number of works describing the topic from the linguistic point of view, but
we are not aware of any practical implementation apart from TectoMT.2

3.2.1 Czech Clitics Overview
A clitic is a morpheme that has syntactic characteristics of a word, but phono-
logical characteristics of an affix.3 While the word order of Czech is relatively
free (encoding the Information Structure / Topic-Focus Articulation [Sgall et al.,
1986]), the placement of clitics is usually restricted to the so-called second position
in a clause, following the Wackernagel’s Law [Wackernagel, 1892]. Similar rules
hold for many other Indo-European (especially Slavic) languages.

For example, all the word orders in Example 1 are grammatical and the
meaning is always the same except for the topic-focus differences. However,
when we substitute the objects with pronoun clitics in Example 2, only word
order 2a is grammatical. In 2c–2e, the clitics are not placed correctly on the
second position. In 2b, the relative word order of the clitics is wrong.

(1) a. Dal
gave

Petrovi
PeterDAT

psa
dogACC

k
for

Vánocům.
Christmas

‘He gave Peter a dog for Christmas.‘
b. Dal psa Petrovi k Vánocům.
c. Dal Petrovi k Vánocům psa.
d. Dal k Vánocům Petrovi psa.
e. Petrovi dal psa k Vánocům.

2 Hana [2007] presents a formal description within Higher Order Grammar (HOG), but warns
that “HOG is not a programming language. The formalism is intended for linguists to describe and
understand the problem, not for actually doing parsing, generation or assist in writing sms on a cell
phone.” He also points out: “Although any six-year old native speaker [can use sentences as
Example 3] without any problems, linguists have struggled for decades to uncover the principles
that determine which orderings are possible.” Admittedly, our goal in TectoMT is a bit easier –
we need to find a single word order which is acceptable.

3 Our linguistic description of clitics is very simplified for the purpose of brevity. We refer
readers to Hana [2007, Chapter 4] and Rosen [2001, Chapter 7], who provide a detailed
description with many examples (most examples in this section are taken from these two
sources) and references to a number of other relevant works on clitics. Zwicky [1977]
distinguishes special and simple clitics, where the example of the latter would be e.g. Czech
monosyllabic prepositions, which have no accent of their own in the official Czech pronun-
ciation, but their word-order position is fixed before the noun phrase, so the Wackernagel’s
Law does not apply on them. In this section, we focus only on the special clitics and call
them for simplicity “clitics” as usual in other works.
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(2) a. Dal
gave

mu
himDAT

ho
himACC

k
for

Vánocům.
Christmas

‘He gave it to him for Christmas.‘
b. * Dal ho mu k Vánocům.
c. * Dal mu k Vánocům ho.
d. * Dal k Vánocům mu ho.
e. * Mu dal ho k Vánocům.

The sentence in Example 3 (visualized with its dependency tree) contains
a complex verb phrase, where opravit is contextually bound and precedes the
main verb snažil with a contextually unbound (in-focus) adverbial marně. The
sentence contains a clitic cluster with four clitics (jsem se mu to), whose word
order (one of the grammatical and common ones) results in a non-projectivity.4

(3) Opravit jsem se mu to včera snažil marně .
to-repair aux1sg refl himDAT itACC yesterday tried fruitlessly .

‘I tried to repair it for him yesterday without success.‘

ccompauxexpl:pv

iobj obj

advmod advmodpunct

Non-projectivities are known to be difficult to analyze by parsers. When
translating into Czech, we need to be able to generate non-projectivities, which
causes problems to syntax-based MT (esp. when using constituency trees) and
phrase-based SMT. A clitic may be placed far away from the verb it depends on
(imagine včera is substituted by a long adverbial clause in Example 3). Also, this
reordering is not optional but required by the grammar. Both these properties
make the MT task even more difficult.

3.2.2 TectoMT Algorithm for Reordering Clitics
While some of the problems (e.g. wrong word order ho mu in Example 2b) can be
prevented by an n-gram language model, this is not true in general and we have
seen many cases of clitics-related errors in the SMT output (cf. evaluation results
in Subsection 3.2.3). For example, note that all trigrams in 2d are grammatical,
i.e. could be seen in grammatical Czech sentences, and should obtain high
language-model scores. We need to use 4-grams to detect the ungrammatical5

4 Words jsem and se are within the word-order span of the subtree governed by Opravit, but
they do not belong to this subtree. As a result the edges (including the vertical dashed
segments, highlighted in red) in the visualization are crossing.

5 For some clitics and word orders, there is an unclear boundary between ungrammatical
and grammatical but uncommon, as well as between what is acceptable by different native
speakers [e.g. Hana, 2007, pp. 71, 117, 119, 132]. This boundary is not the focus of our work
because TectoMT’s task is to prevent both ungrammatical and uncommon word orders and
ideally, select the most natural word order.
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phrase Dal k Vánocům mu, but sometimes much longer n-grams may be needed
(e.g. if substituting the adverbial k Vánocům by a longer phrase or clause).

Unlike SMT systems, TectoMT has access to the sentence dependency struc-
ture and morphological attributes of each word and can thus use explicit im-
plementation of the linguistic rules underlying the clitics placement. There are
four main steps of our implementation:6

1. Detect boundaries of clauses and process each clause independently.
2. Detect which words are clitics and should be moved.
3. Find the “second” position in a clause.
4. Move all clitics to that position in a correct relative order.
The first step is done in a separate TectoMT block as the clause segmentation

is useful also for other purposes, e.g. insertion of commas. By clauses, we mean
finite clauses governed by a finite verb. This is needed for the so-called clitic
climbing shown in Example 4,7 where clitics mu and to governed by non-finite
verbs (pomoct and najít, respectively) are moved to the second position within
the whole finite clause, not only within the respective non-finite verb phrase.

(4)
Všichni se mu to snažili pomoct najít .

all refl himDAT itACC tried helpinf findinf .

‘Everybody tried to help him to find it.‘

We need to restrict clitic climbing to verbal groups. In Example 5, only the
word order 5a is correct – the clitic reordering is restricted to the non-finite
clause se vrátit and cannot “climb over” the governing noun důvod, as shown in
the ungrammatical word order 5b.

(5) a.

Nemá důvod se vrátit .
has-no3sg reason refl to-returninf .

‘He has no reason for returning.‘

b.

*Nemá se důvod vrátit .
has-no3sg refl reason to-returninf .

‘He has no reason for returning.‘

6 https://github.com/ufal/treex/blob/master/lib/Treex/Block/T2A/CS/MoveCliticsToWackernagel.pm
7 A projective word order with clitics moving only within their (possibly non-finite) verb

phrases is acceptable here as well: Všichni se snažili mu pomoct to najít. However, forbidding
the clitic climbing in all sentences results in unnatural word order and lower BLEU score.
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The second step, detection of clitics to be moved, is relatively simple,8 but we
need to handle several exceptions. For example, Hana [2007, p. 123] discusses
cases when a clitic cluster cannot contain two morphologically identical (constant)
clitics, e.g. “*Kamila mi mi to slíbila vrátit” (Kamila promised me to return it to me),
where the first mi depends on slíbila (promised) and the second on vrátit (to return).
In such cases, we need either to forbid clitic climbing, resulting in “Kamila mi
slíbila mi to vrátit”, or apply so-called haplology where only one of the identical
words is retained, resulting in “Kamila mi to slíbila vrátit”. We have observed
also cases where only one of the two (possibly neighboring) identical words is a
(constant) clitic. For example, in sentence “Vláda je může snížit” (The government
can lower them) the clitic je (them) is moved to the second position. However, if
we substitute může (can) with je ochotna (is willing to), where je is an auxiliary
verb,9 we would end up with “*Vláda je je ochotna snížit”, which is not acceptable
in Czech. In this case, we cannot apply haplology and the only option is to forbid
clitic climbing, resulting in “Vláda je ochotna je snížit”. We have implemented
this rule within the second step, by excluding such clitics from reordering.

The third step, finding the “second” position, basically means placing all
the clitics after the last word of the first-position constituent (i.e. a dependency
subtree). Again, there are several special cases to be handled. The first position
may be a subordinating conjunction, which governs the verb in the Prague-style
dependencies used in TectoMT. The first position may be the clause head (verb)
itself. Heads of subordinate clauses and punctuation tokens have to be ignored
when detecting the first position. Also some coordinating conjunctions (e.g.
a and ale) have to be ignored [Rosen, 2001, p. 214], for example “Přijď nebo si
to najdi” (Come or find it yourself ) versus “Přijď a najdi si to” (Come and find it
yourself ).

Finally, in the fourth step, we sort the clitics and move them to the second
position. Our sorting is similar to Hana [2007, p. 121]: auxiliaries < reflexives
< dative pronouns < accusative pronouns < rest < fringe (tam, sem). We take
the clitics one by one in reversed order10 and move them after the first-position

8 We handle all constant clitics and some of the inconstant clitics [Rosen, 2001, p. 207] and fringe
clitics [Hana, 2007, p. 90] (e.g. tam), where the reordering is optional – we cover the cases
where reordering is more probable according to our wmt08 development set. Depending
on context, we include some instances of pronoun to, although it is not considered a clitic
according to Rosen [2001, p. 212]. We exclude coordinated clitics, e.g. when substituting
mu (him) in Example 2a with nám i vám (to us and to you), the correct word order is “Dal
ho k Vánocům nám i vám” or “Dal ho nám i vám k Vánocům.”, but not “*Dal nám i vám ho k
Vánocům.”.

9 Such auxiliary verb in periphrastic passive constructions is an inconstant clitic according to
Rosen [2001, p. 210].

10 Treex has an API support for moving one node (optionally with its subtree) to a given word-
order position. However, it does not have any support for moving multiple nodes (which
do not form a subtree) in one step. Thus, taking the clitics in reversed order was motivated
by the following idea. E.g. when moving clitics A and B after the first-position subtree F,
we first move B after F and then A after F (and thus before B). This works correctly, only if
the clitics A and B are not part of the subtree F, in which case they end up in a reversed
order. We realized this flaw only when writing this text and observing that instead of
Example 2a, TectoMT produces incorrect 2b (Dal ho mu k Vánocům) because clitics A=mu and
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Moses TectoMT

correct 56% 82%
not correct:
– extra 22% 6%
– wrong word order 7% 4%
– other error 15% 8%

Table 3.2: Translation precision of the Czech clitic se for Moses and TectoMT.

subtree or after the clause-head node if it occupies the first position, or before
the clause subtree if the first position is occupied by a subordinate conjunction
(which governs the verb and is formally part of the preceding clause).

3.2.3 Manual Evaluation

Table 3.2 shows results of our manual evaluation focused on the clitic se, compar-
ing phrase-based SMT system Moses and TectoMT translations. The evaluation
was done (by the author of this thesis) on 200 sentences containing the clitic
se selected from the wmt14 test set. Each occurrence of the clitic se in the trans-
lation was classified either as correct or belonging to one of three categories
of errors. “Extra” means that deleting the clitic would improve the translation
(the governing verb was not a reflexivum tantum and did not need a reflexive
pronoun). “Wrong word order” means that changing the position of the clitic
in a sentence would improve the translation. “Other error” means that the
governing verb was missing or the translation (only the part involving the clitic)
was incomprehensible.

To complement this evaluation focused on precision, we carried out also
a recall-focused evaluation. We selected 200 sentences where the reference
contained word se and annotated the respective Moses and TectoMT translations.
For each system, we counted cases when the clitic se was incorrectly missing
and when it was used correctly. We ignored cases in which a given system
chose an alternative translation with a verb not requiring the clitic (so the clitic
was missing in the translation but it was not an error). Also in this recall-
focused evaluation, TectoMT (15% incorrectly missing clitics) outperformed
Moses (25%).

For other clitics than se, we have seen similar results (TectoMT better than
Moses both in precision and recall), but our annotation was focused on sentences
containing se and thus did not contain enough occurrences of other clitics for a
proper evaluation.

B=ho depend on F=Dal. This could be easily fixed, by taking the clitics in non-reversed order
and moving each clitic except the first one after the previously moved clitic. However, rather
than fixing the error we document it as an example of a flaw which remained unnoticed
over 7 years because it affects only a limited number of sentences.
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3.2.4 Discussion
The goal of this case study was to show that TectoMT can handle intricate
clitic word orders correctly, with which SMT struggles. The manual evaluation
confirms that TectoMT is actually better in this aspect than SMT (Moses). Our
implementation of the rules in TectoMT is mostly data-driven, i.e. we focus on
fixing errors which are frequent in the translation output. Our implementation
is missing treatment of several phenomena described in the literature,11 but it
handles also phenomena we have not found in the literature.12

We consider our rule-based linguistically-motivated approach as suitable
and beneficial for a given goal.13 The implementation is compact, consisting
of about 250 lines of Perl code and comments. We were able to quickly test
many hypotheses on real-world sentences – after each change of the rules, we
translated the development set of 3000 sentences and checked the differences
within few minutes (without any need to re-train machine learning models etc.).
This allowed for fast development, prevention of regressions and also better
understanding of the problematics.

Despite the advantages of the TectoMT approach and its good performance
in the area of clitic reordering, it nevertheless has several limitations. First, the
code is growing more complex and difficult to maintain over the years. Second,
the code still does not handle correctly all edge cases (cf. footnote 10). Third,
the rules can make more harm than good if the syntactic structure is wrong.
For example, if we fail to recognize clause boundaries, a clitic may be moved
too far away from its correct position. Keeping a clitic next to its governing
verb (which is the initial position before applying the reordering block) may
be ungrammatical, but it usually results in a comprehensible translation, while
moving a clitic too far, possibly to a different clause may render the translation
very difficult to understand.

11 For example, we don’t have any special rules for treatment of ethical dative [Hana, 2007,
p. 116], where e.g. in “On se ti vůbec nebál” (You know, he wasn’t scared at all.) the clitic ti
(youDAT ) roughly corresponds to English phrase you know. However, even if a sentence
with such a phrase is given as input to TectoMT, its (mostly isomorphic) transfer phase
cannot currently produce such translation, so the absence of rules for ethical dative is not a
limiting factor.

12 For example, exclusion of coordinated clitics from the reordering and prevention of a je je
phrase caused by clitic climbing.

13 What we consider beneficial is the fact that TectoMT has access to the linguistically in-
terpretable structures and that also the rules (reordering algorithm) is interpretable by
humans. We can imagine an alternative implementation in TectoMT, where the reordering
rules would be automatically learned from data using the linguistically-motivated features
and structures we are using in our manually-written rules. Most of our conclusions would
still apply.

48



3.3. MAXENT TRANSLATION MODEL

3.3 MaxEnt Translation Model
Our lemma (and similarly for formemes14) translation models can be treated
as probabilistic classifiers modeling P (y|x), where y (output label or class) is
the target-language lemma and x is a vector of input features from the source-
language dependency tree. The most important feature is the lemma of the
node being translated, but in this section and the following section (3.4), we
describe two discriminative models, which use a much wider set of features.

The baseline translation models (subtasks 1–2 in Section 2.4.3) take only a very
limited context x into account (and could be thus called probabilistic dictionaries).
When translating a formeme, the probability predicted by the baseline TM is
conditioned only by the formeme itself and its parent node’s lemma (in the
source tree). When translating a lemma, the probability is conditioned only
by the lemma itself.15 The translation probability is estimated simply based
on a relative frequency. The baseline TM is generative because it could model
also the joint probability P (y,x). Adding more source-side features into such
models is problematic because of data sparsity and because the features may be
overlapping. However, high-quality translation is not possible when ignoring
the context.16

In this section and the following section (3.4), we present two alternative
approaches for building better translation models with more source-side context:
a Maximum Entropy classifier and a VowpalWabbit classifier. We evaluate both
in Section 3.5.

3.3.1 Rich-Context Source-Side Features
In this section, we use the following feature templates:

• lemma, formeme and selected morphological categories (grammatemes)
of the given node,

• lemma, formeme and morphological categories of the governing node,

• lemmas and formemes of all child nodes,

• lemmas and formemes of the nearest linearly preceding and following
nodes.

Figure 3.1 shows an example of these features in a sample sentence. Verb cut
can be translated into Czech e.g. as krájet, řezat, stříhat, zkrátit, kácet, sekat, snížit,
smazat, oříznout, odstranit, zrušit – English glosses are provided in the figure.

14 See Section 2.4 for an overview of TectoMT, formemes, grammatemes and tectogrammatics.
15 In the baseline models, lemmas include also PoS tags, e.g. cut#V for cut as a verb.
16 In the baseline TectoMT translation, a limited target-side context was considered through

HMTM (Section 2.4.3). However, sometimes a correct translation cannot be deduced from
the neighboring words in the target tree (lemmas and formemes of the parent and children
nodes) even if these are correctly translated. Moreover, a correct/acceptable translation
may be missing in the 7 variants selected for HMTM reranking.
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cut / v:inf,
has_left_child=0, sempos=v,
has_right_child=1, tag=VB,
position=right, named_entity=0

ANALYSIS

TRANSFER

SYNTHESIS

He agreed with the unions to cut all overtime. Dohodl se s odbory na zrušení všech přesčasů.

agree / v:fin
tense=past, voice=active
negation=0, sempos=v

he / n:subj union /
n:with+X

overtime / n:obj

all / adj:attr

chop, saw, trim,
  shorten, lumber, hew,

lower, delete, crop
abolish, cancel,...

Figure 3.1: Illustration of our MaxEnt TM translating lemma cut. The features
used in the model are marked in blue and bold font.

3.3.2 Implementation
A standard approach to probabilistic classification is a multinomial logistic re-
gression also known as maximum entropy classifier (MaxEnt),17 which has the
following form

PMaxEnt(y|x) =
1

Z(x)
exp

∑
i

λifi(x, y),

where fi is a feature function, λi is its weight, and Z(x) is the normalizing factor

Z(x) =
∑
y

exp
∑
i

λifi(x, y).

We use a Perl implementation AI::MaxEntropy18 trained using the L-BFGS
algorithm [Liu and Nocedal, 1989] batch training. We train a separate model for
each source lemma which has at least 50 occurrences in our training data (there
are 16 thousand such lemmas) and for time reasons we sample at most 10,000
occurrences (training examples). During translation, we interpolate the MaxEnt
model with our baseline model 2:1 (P (y|x) = 2

3
PMaxEnt(y|x) + 1

3
PBase(y|x)),

which was found on our development data as the optimal ratio. For lemmas
with less than 50 occurrences, only the baseline model is used.

17 In neural networks, it is known as a softmax layer (cf. Section 2.5.1). The term maximum
entropy classifier is common especially in NLP [Berger et al., 1996, Ratnaparkhi, 1996], even
when using regularization in the classifier and thus, strictly speaking, not optimizing to-
wards a probabilistic distribution with the largest entropy (while satisfying given constraints).
We use “MaxEnt” as an abbreviation for our particular implementation described here.

18 https://metacpan.org/pod/AI::MaxEntropy
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a-tree
zone=en_src

I
Sb
PRP

'd
Pred
MD

rather
Adv
RB

be
Obj
VB

a
AuxA
DT

hammer
Pnom
NN

than
AuxP
IN

a
AuxA
DT

nail
Atr
NN

.
AuxK
.

t-tree
zone=en_src

#PersPron
ACT n:subj
I

rather
MANN adv
rather

be.enunc
PRED v:fin
'd be

hammer
PAT n:obj
a hammer

nail
CPR n:than+X
than a nail

t-tree
zone=cs_tst

#PersPron
ACT n:1

spíše
MANN adv
Spíše

být.enunc
PRED v:fin
bych byl

kladivo
PAT n:1
kladivo

hřebík
CPR n:než+1
než hřebík

a-tree
zone=cs_tst

Spíše
!!
Dg

bych
AuxV
Vc

byl
!!
VpYSXRA

kladivo
!!
NNNS1

než
AuxP
J,

hřebík
!!
NNIS1

.
AuxK
Z:

Figure 3.2: TectoMT translation of a sentence “I’d rather be a hammer than a nail.”
Left to right (following the translation process): English a-tree, English t-tree,
Czech t-tree, Czech a-tree.

output_label=hřebík#N
feature λ

child_formeme_n:in+X=1 1.64
is_member_of_coord=1 1.30
child_formeme_v:fin=1 1.04
next_lemma=down 0.84
is_capitalized=1 0.79

+precedes_parent=0 0.75
tense_g=post 0.74

+voice_g=active 0.66
prev_lemma=drive 0.66
parent_capitalized=1 0.62
formeme=n:from+X 0.60

+prev_lemma=hammer 0.59
child_lemma_few=1 0.55
child_lemma_remove=1 0.54
sempos=n.denot 0.50
next_lemma=and 0.50
formeme_g=v:until+fin 0.49
child_lemma_rusty=1 0.47
. . .

output_label=nehet#N
feature λ

child_formeme_n:poss=1 1.32
child_lemma_finger=1 1.07
child_formeme_n:of+X=1 0.98
precedes_parent=1 0.88
prev_lemma=black 0.77
child_lemma_broken=1 0.76
child_formeme_v:attr=1 0.70
formeme=n:at+X 0.67
formeme_g=n:attr 0.67
child_lemma_long=1 0.67
next_lemma=file 0.60
child_lemma_false=1 0.58
prev_lemma=false 0.58

+number=sg 0.56
formeme=n:obj 0.53
formeme=n:by+X 0.52
. . .

Table 3.3: MaxEnt TM features and trained weights for translating lemma nail
either as hřebík (metal nail) in the left table or as nehet (fingernail) in the right table.
Features are sorted by their weights (λ) and only those with λ > 0.45 are shown.
Features active in Figure 3.2 are marked with a + sign and bold font.
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3.3.3 Interpreting Feature Weights
After training the MaxEnt model, there are ca. 4.5 million features with non-
zero weight, out of which 2.4 million features are derived from the tree context
(parent or child node), 1.1 million from the linear context (next or previous node)
and 1.0 million from the node itself. This shows that the MaxEnt TM employs
the dependency tree structure intensively (features which are not useful should
get a zero weight thanks to the regularization used in training).

Figure 3.2 shows a translation of an example sentence “I’d rather be a hammer
than a nail.”, where the baseline model translates nail as nehet (fingernail or toe-
nail), but the MaxEnt model chooses hřebík (metal nail). It is interesting to inspect
the features indicative of each translation (Table 3.2). As expected, we can see
features corresponding to phrases such as nail in/down, drive a/the nail, rusty
nail when translating nail as hřebík, and finger/black/broken/long/false nail, nail of,
nail file when translating nail as nehet. Note that the features prev_lemma and
next_lemma take into account the preceding/following lemma according to the
(surface) word order, but considering only nodes on the t-layer, thus excluding
any prepositions, articles and other function words.

What may be a bit surprising is that being a member of a coordination (as
a conjunct) is a feature indicative of hřebík (features is_member_of_coord and
next_lemma=and, although the latter does not overlap with being a conjunct).
Also nail following its parent node (feature precedes_parent=0) is indicative of
hřebík, while nail preceding its parent is indicative of nehet. In English, a noun
following its parent is typical for an object or a head of a prepositional phrase,
but we can see than being a direct object (feature formeme=n:obj) is indicative
of nehet, so we can conclude that it is rather the prepositional phrase what is
indicative of hřebík. Similarly, a noun preceding its parent is typically a subject
or a modifier, which is indicative of nehet, although the corresponding features
(formeme=n:subj and formeme=n:attr) have weights < 0.45 and are thus not
listed in the table.

We should be careful when interpreting the feature weights. By saying
“feature xf is indicative of translation y1” (compared to an alternative translation
y2) when translating lemma l, we simply mean that λl(xf , y1) > λl(xf , y2). It does
not imply that P (y1|l, xf ) > P (y2|l, xf ). For example, if l=nail, xf=‘number=sg’,
y1=nehet and y2=hřebík, we can say that singular is indicative of nehet, but this
does not necessarily mean that nail in singular (without knowing any other
feature) is more probable to be translated as nehet rather than as hřebík. MaxEnt
takes into account all the (possibly overlapping) features and it should hold that
λl(xf , y1) > λl(xf , y2) ⇔ P (y1|l,xf ) − P (y2|l,xf ) > P (y1|l,xnf ) − P (y2|l,xnf ),
where xf is a set of all features, xf ∈ xf and xnf = xf −{xf}.19 In other words, if
xf is indicative of y1 over y2, the relative probability of y1 compared to y2 should
be higher when xf is present in the features.

19 The biconditional is true if P is the probability predicted by the model. If the model is
properly trained, it should reflect the training data probability, which may be different from
the test data probability depending on the domain mismatch and amount of overfitting.
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3.4 VowpalWabbit Translation Model
Although the MaxEnt TM is powerful, we have decided to compare it with a
model trained with VowpalWabbit [Langford et al., 2007] machine learning
toolkit.20 We built one model for lemmas and another model for formemes.
Here, we describe the lemma model; the formeme model is created in a similar
way.

3.4.1 Advantages of VowpalWabbit over MaxEnt
• Only one model for all lemmas is trained instead of a separate model for

each source lemma. This is technically easier to work with. It also allows
exploring novel features shared across multiple source lemmas (so-called
multi-task learning using label-dependent features; see below).

• The training is many times faster. Training MaxEnt lemma models on
CzEng 1.0 takes more than one day when parallelized on 200 cores in a
Sun Grid Engine cluster (one needs to wait until the last lemma model
is trained). Training Vowpal Wabbit lemma model on CzEng 1.0 takes
less than two hours (with 2-pass training) on a single machine (2 cores).
Both approaches require to extract the training data into a suitable format,
which can be easily parallelized and takes several hours on the 200 cores
cluster. Therefore, Vowpal Wabbit allows researchers to try many more
experimental setups than MaxEnt in the same amount of time.

• No pruning of training data is needed. In order to be able to train the Max-
Ent models in reasonable time within 32 GiB memory, we had to limit the
number of training instances per one source lemma to 10,000 and exclude
source lemmas with less than 50 training instances. In VowpalWabbit
no such pruning is needed because of the fast online learning and also
because the model takes less space thanks to feature hashing [Ganchev
and Dredze, 2008].21

• VowpalWabbit is trained using online learning, which allows domain
adaptation using resumed learning (see Section 3.7).

3.4.2 One-Against-All Reduction in VowpalWabbit
Most machine-learning frameworks for multi-class classification expect that
there is a fixed and relatively small set of classes (output labels) and the features
provided by users are implicitly combined with all possible classes. In Vow-
palWabbit, we can train a multi-class classifier using a one-against-all (OAA,

20 https://github.com/JohnLangford/vowpal_wabbit
21 Moreover, the size of the model trained with VowpalWabbit can be adapted. We use 29-bit

hash function, so the models take ca. 3 GiB of disk and 8 GiB of memory. By using 27
bits, we could scale down the model to 2 GiB of memory with only a tiny degradation in
translation quality.
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also known as one-vs-rest) reduction22 to binary classification. For example,
when translating lemma nail, we can assign integer labels to its possible transla-
tions: 1=nehet#N, 2=hřebík#N, 3=přibít#V (finger nail, metal nail, to nail down) and
provide training examples in the following format:23

2 | prev_lemma=hammer voice_g=a precedes_p=0 num=sg
1 | prev_lemma=finger voice_g=a precedes_p=1 num=sg

This specifies two “positive” training examples (with correct translations
2=hřebík#N and 1=nehet#N, respectively). We list source-side features (following
the vertical bar) in a sparse format, i.e. listing only the “activated” features (their
default value is 1) and omitting the features not present for a given example.
Each feature is implicitly combined with the output label. VowpalWabbit (within
the OAA reduction) automatically generates “negative” examples for each of
the positive examples, listing all “incorrect” translations and combining them
with all features. Therefore, the underlying binary classifier is actually trained
on these examples:

0 | 1_&_prev_lemma=hammer 1_&_voice_g=a 1_&_precedes_p=0 1_&_num=sg
1 | 2_&_prev_lemma=hammer 2_&_voice_g=a 2_&_precedes_p=0 2_&_num=sg
0 | 3_&_prev_lemma=hammer 3_&_voice_g=a 3_&_precedes_p=0 3_&_num=sg
1 | 1_&_prev_lemma=finger 1_&_voice_g=a 1_&_precedes_p=1 1_&_num=sg
0 | 2_&_prev_lemma=finger 2_&_voice_g=a 2_&_precedes_p=1 2_&_num=sg
0 | 3_&_prev_lemma=finger 3_&_voice_g=a 3_&_precedes_p=1 3_&_num=sg

Here the output labels 1 and 0 specify positive and negative training exam-
ples, respectively.

3.4.3 Single Model for All Lemmas
So far, we considered a model for the translation of a single lemma (nail) only.
A naïve way how to extend it to a model for translation of all lemmas is to assign
integer labels to all possible translations and enrich each feature with the source
lemma, e.g. (assigning label 42 to snížit#V):

2 | nail_&_prev_lemma=hammer nail_&_voice_g=a nail_&_precedes_p=0 nail_&_num=sg
1 | nail_&_prev_lemma=finger nail_&_voice_g=a nail_&_precedes_p=1 nail_&_num=sg
42 | cut_&_prev_lemma=union cut_&_child_lemma=all

VowpalWabbit supports a compact representation of interaction features (i.e.
quadratic, cubic,. . . ) using so-called feature namespaces, so the previous sample
can be simplified to:

22 Reduction in machine learning means converting one task to another task. Usually a
new/complex task is reduced to a known/simpler task, for which we already have a model.

23 For simplicity, we restrict the toy example to only three possible translations and three
features per line, but we follow the data format of VowpalWabbit. In practice, there are tens
of features and up to 50 possible translations.
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2 |L nail |S prev_lemma=hammer voice_g=a precedes_p=0 num=sg
1 |L nail |S prev_lemma=finger voice_g=a precedes_p=1 num=sg
42 |L cut |S prev_lemma=union child_lemma=all

Here, namespace L contains a single feature with the source lemma and
namespace S contains all other source-side context features. If the training is
executed with option -q LS, quadratic features combining the two namespaces
will be created on the fly with the same effect as when explicitly enriching all
features with the source lemma.24

However, this naïve OAA does not work in practice because we have over
2 million classes (all target-language lemmas), 112 thousand of them with at
least 50 occurrences. Of course, when translating a given source lemma it does
not make sense to consider translations that were never seen in the training data
for this lemma. VowpalWabbit supports a cost-sensitive one-against-all reduction
with label-dependent features, where the data format allows to list “possible”
classes for each training example:

1:1 |T nail->nehet#N |S prev_lemma=hammer voice_g=a precedes_p=0 num=sg
2:0 |T nail->hřebík#N |S prev_lemma=hammer voice_g=a precedes_p=0 num=sg
3:1 |T nail->přibít#V |S prev_lemma=hammer voice_g=a precedes_p=0 num=sg

1:0 |T cut->snížit#V |S prev_lemma=union child_lemma=all
2:1 |T cut->krájet#V |S prev_lemma=union child_lemma=all

Here, we encode the source lemma and target lemma in a single feature and
place it in namespace T (and train with option -q ST). Each multi-class training
example is specified on multiple lines, where each line represents a possible
translation. Each line starts with an ID number and a cost, e.g. 2:0 means that
the second translation option has cost=0, which means it is the correct translation
(according to the reference). The ID number plays no role in the learning. While
cost-sensitive OAA allows any real-valued costs (e.g. marking some translations
as acceptable, but not ideal), we use always cost=0 for the correct translation
and cost=1 for the rest.

3.4.4 Label-Dependent Features
The features in namespace T (e.g. nail->nehet#N) are termed label-dependent
features because they depend on the output label (i.e. class, translation). In
the previous sample, they actually define the whole label and they are the only
way how the label is specified. However, we can also exploit label-dependent
features that define the output label only partially, for example by specifying
only the part-of-speech tag of the translation:

24 Using -q is faster because of clever implementation of feature hashing in interaction features.
When using -q, the “simple” features are retained, but in practice they do not affect the
final predictions because these features are the same for all competing classes.
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shared |S prev_lemma=hammer voice_g=a precedes_p=0 num=sg
1:1 |T nail->nehet#N |P nail->#N
2:0 |T nail->hřebík#N |P nail->#N
3:1 |T nail->přibít#V |P nail->#V

Here, we add features specifying the translation’s part-of-speech tag and
source lemma into namespace P. We also use a compact format for specifying
features (in namespace S) which are shared with all the lines in the multi-class
training example.

When training without the features in namespace P25 and with option -q ST,
we use effectively the same set of features as in our MaxEnt model and we
simulate a separate model for each source lemma. However, the P features
cannot be included in our implementation of the MaxEnt model. These features
are more robust (less sparse), e.g. the nail->#N feature is activated whenever
nail is translated as a noun. These features can be even combined with the
source-context features by training with option -q SP.

It is also possible to define features shared across multiple source lemmas,
which is an example of multi-task learning when considering translation of each
source lemma a separate task. For example, we can include features modeling
only the part-of-speech-tag translation probability (e.g. #V->#N) or we can define
features for translation of a whole group of lemmas with a similar meaning (e.g.
big/large/huge->velký#A), where the correct translation may depend rather
on the context (which will be modeled by interacting with features from the S
namespace) than on the exact source lemma.

Our best setup according to the BLEU score includes also source formeme26

in the P-namespace features but does not combine this namespace with all the
features in namespace S:

shared |S prev_lemma=hammer voice_g=a precedes_p=0 num=sg
1:1 |T nail->nehet#N |P nail_&_n-than+X->#N
2:0 |T nail->hřebík#N |P nail_&_n-than+X->#N
3:1 |T nail->přibít#V |P nail_&_n-than+X->#V

Concurrently with our work, Tamchyna et al. [2016a] used a similar model
with label-dependent features in VowpalWabbit to improve an SMT system.

3.4.5 Predicting Probability Distribution
The cost-sensitive OAA with label-dependent features in VowpalWabbit predicts
only the most probable class by default. However, in TectoMT we need a proba-
bility distribution for all the possible translations, so we can re-rank them with
HMTM (and few other special-purpose re-ranking blocks). For this purpose, we
have improved VowpalWabbit by implementing the option --probabilities,

25 Either by excluding these features from the training data, or by specifying option
--ignore P.

26 VowpalWabbit uses colon for separating feature name from its (optional) value. We thus
need to escape colons in feature names and encode formeme n:than+X e.g. as n-than+X.
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which should be used together with --loss_function=logistic, because the
default squared loss function does not result in proper probabilistic distribu-
tion.27 The option --probabilities also instructs VowpalWabbit to report the
multi-class logistic loss, which we consider a better intrinsic quality indicator
for our purposes than the zero-one loss which is reported by default. The exact
command we use for training is:

vw -d train-data.gz -f final.model -c --holdout_off -l 3 --passes=2 \
--loss_function=logistic --csoaa_ldf=mc --probabilities -b 29 -qST

3.4.6 Using VowpalWabbit for Word Sense Disambiguation
We have also used VowpalWabbit in other NLP tasks, successfully utilizing the
approach we developed originally for MT. For example, in Dušek et al. [2015a] we
report on improving the state of the art in Word Sense Disambiguation of verbs
(namely, valency frame detection) on the Prague Czech-English Dependency
Treebank (PCEDT) [Hajič et al., 2012]. We improved labeled F1 score from
80.30% to 82.39% only by using VowpalWabbit instead of LibLINEAR logistic
regression [Fan et al., 2008], with the same set of features. VowpalWabbit with
label-dependent features allowed to use also features from bi-lingual alignment
and valency lexicon, which further improved the F1 score to 82.93%. Prediction
of valency frames based on dependency-tree-based features is a similar task to
predicting target-language translations, but easier because the set of possible
valency frames is (almost always) smaller than the set of possible translations
and because the valency frame detection is the final task in this experiment
(unlike lemma translation in TectoMT, which is followed by HMTM reranking
and the synthesis phase).

27 In our experiments, optimizing for the squared loss and reducing the classification to a
regression problem leads to the best accuracy (considering only the top-ranked translation).
However, the best Recall@6 (see Section 3.5) and best BLEU is achieved when optimizing for
the logistic loss and reducing the classification to binary classification (logistic regression).
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3.5 Evaluation of Translation Models

3.5.1 Intrinsic Evaluation
First, we compare our TMs in a study focused on translation of a single lemma
cut.28 We call this intrinsic evaluation because we evaluate only the task solved
by the models, not our final task – translation of whole sentences (or documents).

The training and test data for this study were sampled from the CzEng
treebank. The training data consist of 5901 training examples with 1293 possible
translations, out of which 865 have only a single occurrence (most of these are
caused by alignment errors in CzEng). The test data consist of 758 examples,
out of which only 639 have a translation which is contained in the training data.
Thus the “oracle” accuracy is 639/758=84%; no classifier treating lemmas as
atomic units can have a higher accuracy and predict translations not seen in the
training data. The baseline accuracy of 7% corresponds to predicting always
the most frequent translation of cut, which is vyjmout (take out / remove / pull out)
and 90 out of the total 1293 test examples use this translation. We report also
recall@N (the percentage of cases when the correct translation is among the
N best ones according to a given model’s ranking), motivated by the fact that
HMTM considers the N-best list predicted by TMs.

model Accuracy (%) Recall@6 (%)

oracle (seen in train) 84 84
Baseline TM 7 25
MaxEnt TM 10 12
NeuralNet TM 33 50
VowpalWabbit TM 35 51

Table 3.4: Intrinsic evaluation of translation accuracy for lemma cut. Recall@N
is the percentage of cases when the correct translation is among the N best ones
according to a given model’s ranking. Accuracy corresponds to Recall@1.

Table 3.4 presents results of our intrinsic evaluation. Baseline TM is the
model based only on relative frequency of lemmas (without any context). Neu-
ralNet TM is a feed-forward neural network with a single hidden layer with 600
neurons.29 MaxEnt’s accuracy is only 3% higher than the baseline. Surprisingly,

28 We chose the lemma cut because it is difficult to translate without any context (it is one
of the top 100 English words with the highest entropy of P (cs|en) according to CzEng
alignments). When evaluating MaxEnt on all lemmas [Mareček et al., 2010], its accuracy
was 57% (vs. 10% for cut) because there are many easy-to-translate lemmas. We used
cut and several other lemmas when developing prototypes of our models. Some of the
prototypes, namely NeuralNet TM, were never trained for all lemmas (and evaluated within
TectoMT), thus we resort to cut in this study and Table 3.4.

29 This unpublished research on using neural networks for translation was done in 2012 in
collaboration with Markéta Tomková and Jakub Tomek. While the results were promising,
the networks had huge memory and disk-space requirements, so we abandoned this line of
research and focused on VowpalWabbit, which uses feature hashing to limit the memory
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BLEUTectoMT version No LM TreeLM

Baseline TM 10.70 12.15
MaxEnt TM 12.78 (+2.08) 13.57 (+1.42)
VowpalWabbit TM 13.07 (+2.37) 13.77 (+1.62)

Table 3.5: BLEU evaluation of our two context-sensitive models, with and without
a TreeLM (target-language tree model applied via HMTM) on the wmt13 test set.

its recall@6 is 13% worse than the baseline.30 This was one of our motivations
for switching to a better learning algorithm – VowpalWabbit, whose accuracy is
substantially better than MaxEnt: +25% (and recall@6 is also better: +39%).

We did a similar evaluation for a broader set of lemmas and while the
absolute scores differed, the relative ordering of our systems was always the
same (VowpalWabbit being much better than MaxEnt, which was slightly better
than the baseline).

3.5.2 BLEU Evaluation
According to the BLEU evaluation on the wmt13 testset (Table 3.5), VowpalWabbit
is significantly (p < 0.05) better than MaxEnt and MaxEnt significantly (p <
0.05) outperforms the baseline TM. Both MaxEnt and VowpalWabbit benefit
from re-ranking by TreeLM (via HMTM; see Section 2.4.3), although its relative
improvement (+0.79 for MaxEnt and +0.70 for VowpalWabbit) is lower than
the improvement of the baseline TM (+1.45). TreeLM is trained on big target-
language monolingual data, but the effect of target-side context-sensitivity
of TreeLM is partially overlapping with the source-side context-sensitivity of
MaxEnt and VowpalWabbit.

The improvement of VowpalWabbit relative to MaxEnt is only +0.20 BLEU,
which is much less than what we hoped for based on the intrinsic evaluation.
One possible explanation is that VowpalWabbit overfitted the CzEng “domain”,
which is not optimal for WMT test sets.31

Note that in our domain-adaptation setting, the improvement caused by
using VowpalWabbit instead of MaxEnt is much bigger (+1.57 BLEU), see Sec-
tion 3.7.

requirements. Later we tried adding a hidden layer to VowpalWabbit, but without any
improvement in BLEU. We should emphasize that in these approaches, neural networks
were used only for the transfer phase (not in the end-to-end manner as in Chapters 4–5).

30 In TectoMT, we interpolate MaxEnt with the baseline TM, which partially compensates
this.

31 VowpalWabbit achieved substantial improvements over MaxEnt when evaluated on the
CzEng test data set (dtest), so this is not the typical case of overfitting to train vs. test data.
We have also tuned the number of training epochs (passes) in VowpalWabbit using WMT
development set to prevent this kind of overfitting.
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3.6 New Language Pairs in TectoMT
Until 2014, TectoMT was available only for the English→Czech translation
direction, although it had always been hoped that more language pairs will be
included in the future. That moment came in 2014–2016, when TectoMT was
extended to four more languages: Spanish, Portuguese, Dutch and Basque (es,
pt, nl, eu) within the QTLeap project.32 Consequently, there are ten translation
directions available in TectoMT: en↔cs, en↔es, en↔pt, en↔nl, en↔eu.33

In order to facilitate language-independent solutions, we decided to use two
projects carried out at ÚFAL: Interset and HamleDT. Interset [Zeman, 2008] is
a set of morphological (and some syntactic) features with a mapping to many
languages and morphological tag sets. HamleDT [Zeman et al., 2012, 2014, Rosa
et al., 2014] is a collection of dependency treebanks (for 36 languages in the
latest version HamleDT 3.0), defining a common annotation style based on the
Prague Dependency Treebank [Hajič et al., 2006]. We used and improved the
software developed originally within these two projects, which allowed us to
reuse existing taggers and parsers for the four new languages and convert the
morphological and syntactic annotation to a common Interset+HamleDT style.

Most TectoMT rules for the conversion from a-layer to t-layer have been
adapted to expect Interset morphological features and HamleDT-style depen-
dencies, which improves their usability for different languages. The imple-
mentation involves a common base classes with language-specific subclasses,
e.g. A2T::ES::SetFormeme is a subclass of A2T::SetFormeme. Similarly, we have
created extensible base classes for common tasks in the transfer and synthesis
phase. This greatly simplified the adoption of the new language pairs into
TectoMT.

Another simplification is inherent to the TectoMT’s design: the English
analysis code is shared for all language pairs with the English source side and
similarly, the English synthesis code is shared for all systems translating into
English. Only minor adaptations were needed here. For example, originally the
English synthesis contained a block for insertion of definite and indefinite articles
(the, a) based on heuristic rules. We replaced this synthesis block by a much
simpler block that assigns articles based on the definiteness grammateme.34 For
source languages that have an explicit notion of definiteness (i.e. use indefinite
and definite articles, either as separate words or suffixes), it is much more
straightforward to use the same definiteness value in English and change it
only when needed. Czech is the only exception among the five languages,
as no articles are used and definiteness is only implicit. For Czech→English
translation, the definiteness grammateme must be thus assigned in the transfer
phase.

32 http://qtleap.eu
33 Parts of this section were published in Dušek et al. [2015b]. More details about the systems

can be found in Popel et al. [2015].
34 We have added the definiteness grammateme on the t-layer because it is easier to work

with in translation than encoding the definiteness in deep word order and contextual
boundness/non-boundness from the FGD theory.
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The t-layer representation mostly follows the Czech and English TectoMT
annotation style, which is in turn based on PDT and PCEDT [Hajič et al., 2012]
treebanks. We adapted t-layer guidelines for some language-specific phenom-
ena. For example, in Spanish block A2T::ES::SetFormeme, we introduced a new
formeme adj:left-attr, which encodes the adjective-noun word order, which
is less frequent in Spanish and may indicate syntactic or semantic distinction rel-
ative to the standard noun-adjective word order (where the adjective is assigned
the standard formeme adj:attr). We are aware of several insufficiencies of the
current t-layer style for some languages, e.g. the current set of grammatemes
cannot express all required morphological meanings.

For the debugging and testing of the new analysis and synthesis pipelines
we used monolingual “roundtrip” experiments: we analyzed the development
data up to the t-layer and then synthesized back to word forms. We compared
the resulting sentences with the original ones and focused on the differences.
This allowed us to quickly reveal errors that could otherwise remain unnoticed
for a long time (and deteriorate the translation). Also, this experiment can be
done before the translation models are trained. Moreover, by improving the
analysis phase, we actually improve also the translation models’ quality.

All the newly added language pairs in TectoMT were tuned for translating
IT-domain texts, so their BLEU evaluation is provided in the following section
on domain adaptation. According to Tables 3.7–3.6, TectoMT outperformed
Moses baseline for 5 out of the 10 language pairs: cs→en, nl→en, en→cs, en→es
and en→pt.
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3.7 Domain Adaptation
The real-use scenario of the QTLeap project was a multilingual helpdesk inter-
face for IT troubleshooting: A user asks a question over a chat in Czech, Spanish,
Portuguese, Dutch or Basque. The question is automatically translated to En-
glish using TectoMT. An information retrieval system finds the best matching
answer in a database of questions and answers (or alerts a human operator if no
suitable answer is found). The answer is then translated from English back to
the language of the given user.

3.7.1 Baselines
For each language pair, we had relatively large general-domain parallel training
data, but only a limited amount of in-domain data [see Burchardt and Avramidis,
2015, for details]. In the experiments reported in this section, the in-domain
training data consisted of only 1000 questions (Batch1q) and 1000 answers
(Batch1a).

A baseline SMT system (Moses) for each language pair was trained using
the general-domain data and tuning hyper-parameters (with MERT [Och, 2003])
on Batch1, which is a standard form of baseline domain adaptation for SMT.35

TectoMT baseline systems were prepared as described in Section 3.6, training
the translation models on the general-domain data only and using Batch1 as a
development set for tracking progress, but not for extensive tuning.

3.7.2 Domain-Adaptation Techniques Used
Improved translation of questions and imperatives

Our general-domain parallel training and development data did not contain
many questions and imperatives. Also the taggers and parsers in TectoMT were
trained on sentences with a limited amount of questions and imperatives. As a
result, our initial TectoMT translations contained many errors related to ques-
tions and imperatives. For example, words such as use, check, hit etc. were tagged
(and translated) as nouns although used as imperative verbs. We implemented
rule-based blocks focused on fixing these errors as well as generating t-nodes
for dropped subjects (with 2nd person) of English imperatives and fixing the
word order of questions in the English synthesis phase. Most of these blocks
were included already in the version marked as “TectoMT baseline” in Table 3.7,
so we do not report any evaluation of these improvements.

HideIT – not translating specific expressions

Specific expressions from the IT domain such as URLs, email addresses, Unix
commands and paths should not be translated. We implemented a heuristic

35 In Rosa et al. [2016], we evaluated also other forms of domain adaptation for SMT, e.g.
extracting a secondary phrase table from the in-domain data.
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detection of these expressions and a simple mechanism which replaces these ex-
pressions with placeholders. After the translation the placeholders are replaced
with the original expressions. We call this approach HideIT; see Agirre et al.
[2016] for details.

Gazetteer – translating specific expressions

Other kind of expressions such as menu items, button names, messages and
product names (e.g. Class All Tabs, Cancel, Press enter to continue, MS Word)
need to be translated (and sometimes even localized, i.e. adapted to the target
locale/country). We used a bilingual database (gazetteer) of IT domain ex-
pressions, provided within the WMT IT-domain translation task36 [Bojar et al.,
2016b]. We call this approach Gazetter; see Rosa et al. [2016] for details.

MaxEnt TM interpolation

In addition to the MaxEnt TM (described in Section 3.3) trained on general-
domain data, we trained another MaxEnt TM on the in-domain training data.
We interpolated the translation probabilities of these two models. See Rosa et al.
[2015] for details.

VowpalWabbit TM fine-tuning

The VowpalWabbit TM described in Section 3.4 was trained with two passes of
online learning on the general-domain data (CzEng). We took this saved model
and continued training it with two more passes on the in-domain data (Batch1a).
The number of passes was tuned in a previous cross-validation experiment.
Batch1a is much smaller than CzEng (one thousand sentences versus 15 million
sentences), but online training is more sensitive to the later training examples,
so this approach is reasonably effective.

36 http://www.statmt.org/wmt16/it-translation-task.html
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3.7.3 Evaluation
Tables 3.6 and 3.7 present BLEU results of our domain-adaptation experiments
for translation from English and to English, respectively. The “TectoMT base-
line” row shows BLEU scores of TectoMT where all the domain-adaptation
components (except for the improvements of questions and imperatives) are
switched off. The rows below present the effect of switching on each of the
domain-adaptation components relative to the TectoMT baseline. The Vowpal-
Wabbit TM fine-tuning was performed only for en→cs. For en→pt, en→eu and
en↔es, also other techniques were applied [see Agirre et al., 2016].

The row “∆ total” shows the effect of switching on all the components. Note
that this is not a sum of the deltas for individual components because the effects
of these components may overlap. Some of these overlaps are systematic: by
activating the VowpalWabbit TM fine-tuning, we deactivate the MaxEnt TM
interpolation. Thus, “∆ MaxEnt TM interpolation” cannot be combined with
“∆ VowpalWabbit TM fine-tuning”. We can see that the latter is more effective
(+2.35 BLEU) than the former (+0.78 BLEU). In other words, the VowpalWabbit-
based domain adaptation is 1.57 BLEU better than the MaxEnt-based domain
adaptation.37

BLEU (QTLeap Batch2a)
system en→cs en→es en→eu en→nl en→pt

Moses 31.07 25.11 28.37 32.94 19.36
TectoMT baseline 28.84 22.41 16.07 25.01 20.33

∆ HideIT +0.79 +0.49 +1.00 +0.74 +0.37
∆ Gazetteer +3.67 +3.47 +2.98 +3.02 +1.00
∆ MaxEnt TM interpolation +0.78 +6.75 +0.17 +0.92 +1.42
∆ VowpalWabbit TM fine-tuning +2.35
∆ other +3.84 +2.50 +0.44

∆ total +5.83 +11.77 +7.34 +4.60 +3.12

TectoMT final 34.67 34.18 23.41 29.61 23.45

Table 3.6: Translations from English (Batch2a). Effect of various domain-
adaptation modules on BLEU performance.

37 Our MaxEnt implementation is trained with batch learning, so the online-learning fine-
tuning is not applicable.
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BLEU (QTLeap Batch2q)
system cs→en es→en eu→en nl→en pt→en

Moses 26.44 39.30 25.29 36.45 22.59
TectoMT baseline 29.02 24.85 14.12 44.46 12.77

∆ HideIT +0.00 +0.00 +0.06 +0.00 +0.02
∆ Gazetteer +0.89 +0.59 +0.00 −0.34 +0.03
∆ MaxEnt TM interpolation +1.14 +1.09 +1.48 +1.85 +1.66
∆ other +2.03

∆ total +2.12 +3.15 +1.44 +1.85 +1.71

TectoMT final 31.14 28.00 15.56 46.31 14.48

Table 3.7: Translations to English (Batch2q). Effect of various domain-adaptation
modules on BLEU performance. The best result for each language pair is marked
in bold.

65



3.8. ADVANTAGES AND DISADVANTAGES OF TECTOMT

3.8 Advantages and Disadvantages of TectoMT
Advantages

• We think the main advantage of TectoMT over SMT is an explicit modeling
of the hierarchical sentence structure. TectoMT uses explicit linguistic
structures (dependency trees) on both the source and target side. TectoMT
translations are very different from SMT translations. The complementary
qualities of TectoMT and SMT (cf. Section 2.3) allowed to build the Chimera
combination, which was the best English-to-Czech MT system in WMT
2013–2015.

• Tectogrammatical trees for the same sentence are more similar across
languages relative to surface-dependency trees (a-trees in terms of PDT)
[Mareček et al., 2008]. Consequently, the transfer is easier. The analysis and
synthesis phases can be reused for many translation directions (e.g. the
English analysis in TectoMT was implemented originally for en→cs, but
later reused for en→es, en→eu, en→nland en→pt). This is the underlying
motivation of all transfer-based MT approaches [Vauquois, 1975].

• Formemes seem to be an important feature of TectoMT: On the one hand,
they support the deep-syntactic transfer by being mapped one-to-one to
t-nodes and representing some kind of generalization compared to a plain
list of function words. On the other hand, they are still surface-oriented,
i.e. the mapping between surface text and formemes is relatively reliably
predictable in both direction (analysis and synthesis).

• TectoMT allows to divide the whole translation process into meaning-
ful parts: the three main phases analysis–transfer–synthesis are further
divided into subtasks up to the level of Treex blocks. These are usually
linguistically interpretable and can be developed relatively independently.
This also allows to track down each translation error to a particular block
in the pipeline.

• It is relatively easy to adapt TectoMT for a given application, without a
need to retrain all the parts (cf. imperatives and questions in Section 3.7).

Disadvantages

Ideally, we would like to distinguish disadvantages inherently present in the
design of TectoMT (which are very difficult or impossible to overcome) and
disadvantages of the current implementation (which could be improved if more
effort had been invested). However, both are closely interconnected.

• Explicit syntax modeling forces us to handle phenomena which are not
necessary for the MT purposes. Often these phenomena are annotated
in very different ways. For example, some PP-attachment ambiguities
may be present in both source and target sentence, but in the dependency
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parsing we must choose only one representation, which is then used for
the translation.38 This makes our training data more sparse and we lose
the alternative representation’s context, which could help to disambiguate
the translation. Another example is the strict boundary between functional
and content words – we are forced to decide whether e.g. by means of, by
way of or with the help of should be treated as multiword prepositions and
encoded in the formeme value, or whether means, way and help should be
treated as content words and annotated as a separate t-node.39 Any bound-
ary will cause “inconsistencies” between the source and target language,
which result in the necessity of non-isomorphic transfer.40

• TectoMT uses 1-best analysis in tagging, parsing, transfer and synthesis.41

SMT systems use beam search and consider thousands of possible transla-
tions, so e.g. translation ambiguities may be resolved using the language
model. It would be very difficult to allow multiple dependency analyses to
be stored in a compact form (similarly to forests or lattices in constituency
parsing), while keeping the intuitive API for rule-based blocks.

• TectoMT does not use n-gram (nor neural) language model. Instead, it
uses a target-language tree model (TreeLM). While n-gram LM is trained
on the “correct” data, TreeLM is trained on automatically analyzed data
and the automatic analysis introduces a bias (especially if the analysis of
source and target language are incompatible in some aspects).

• While the modularity of TectoMT is an advantage, it comes also with a
drawback: The whole system is very complex and the complexity tends to
grow over the years. Fixing an error in one block can sometimes result in
worsening of the translation because of an unexpected interference with a
seemingly unrelated block.

• It is difficult to find enough skilled developers of TectoMT because the skills
include (Perl) programming, machine learning and linguistics with at least
a basic overview of tectogrammatics. This is a much rarer combination
than (Python) programming and neural networks within TensorFlow.

38 PP stands for prepositional phrase. For example, in “Bring the box from the cellar!” it is
syntactically unclear whether the prepositional phrase from the cellar depends on the box or
on the verb bring. Theoretically, there may be a box from the cellar, which is currently located
in the garden, but if there is just one box in the cellar, then both syntactic structures have
the same pragmatic meaning. In this case, the same (spurious) ambiguity is in the Czech
translation (“Přines tu bednu ze sklepa!”).

39 In the current TectoMT implementation, only the first of the three phrases is treated as a
multiword preposition.

40 For example, in some contexts with the help of, using and by can be used interchangeably
and translated to Czech either as s pomocí or pomocí or using the instrumental case without
any preposition.

41 Inside the lemma and formeme translation, multiple variants are considered and several
re-ranking blocks are applied (including HMTM—Hidden Markov Tree Model), but after
the transfer phase, only the best variant is kept and used as input for the synthesis.
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Chapter 4

Training NMT

Add one very large bilingual corpus,
one sentence-to-sentence alignment process,
a gallon of sophisticated Bayesian statistics,

a touch of pixie dust, and throw them
into the computational cauldron.

Lo and behold, out comes a self-generated, robust,
corpus-based, general-purpose machine translation system.

Who needs a dictionary, grammars, semantics, or linguists?. . .
This, of course, is a caricature of the statistical MT position.

However, remove the pixie dust, and the caricature
comes uncomfortably close to reality.

. . .
Neural nets have been suggested as an answer

to many of the World’s problems,
so why not use them for MT as well?

Carbonell et al. [1992]

This chapter describes our experiments with NMT using the Tensor2Tensor
framework1 (abbreviated T2T) and the Transformer sequence-to-sequence model
[Vaswani et al., 2017].2 We examine some of the critical parameters that affect the
final translation quality, memory usage, training stability and training time. The
know-how presented in this chapter together with the novel training strategies
presented in the following chapter (5) allowed us to build English→Czech and
Czech→English NMT systems that outperformed all other systems and even
human translation in WMT2018, as described in Chapter 6.

While investigations into the effect of hyper-parameters like learning rate and
batch size are available in the deep-learning community [e.g. Bottou et al., 2016,
Smith and Le, 2017, Jastrzebski et al., 2017], these are either mostly theoretic or
experimentally supported from domains like image recognition rather than MT.
The Transformer model is rather different from the previously used NMT models
(based on RNN or convolutions, cf. Section 2.5), so it is not clear whether the
training strategies developed for these models will work optimally also for the

1 https://github.com/tensorflow/tensor2tensor
2 This chapter is an adapted version of Popel and Bojar [2018]. For a brief introduction into

NMT and a description of the Transformer model see Section 2.5.
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Transformer model. Moreover, both the Transformer model and the T2T toolkit
have been released only recently – in June 2017, so there is a very small number
of relevant publications and experimental results as of June 2018. We are aware
only of the following publications: Vaswani et al. [2017] explore the effect of
number of layers, number of attention heads, dropout and dimensions of various
parameters. Shaw et al. [2018] substitute the absolute position encoding with
a relative-position-aware self-attention. Roy et al. [2018] describe techniques
for faster inference. Shazeer and Stern [2018] introduce Adafactor optimization
into Transformer.

In this chapter, we fill this gap by focusing exclusively on MT and on the
Transformer model, providing potential best practices for this particular setting.
We also focus on the English-Czech language pair with much larger training data
(58 million sentence pairs) than the previously reported experiments (English-
German with 4.5 million sentence pairs and English-French 36 million sentence
pairs [Vaswani et al., 2017]).

Some of our observations confirm the previous experience in the ML field,
such as that larger training data are generally beneficial. Some of our obser-
vations are somewhat surprising, e.g. that training a model until achieving a
given translation quality (as measured by BLEU) is more than three times faster
on two GPUs relative to a single GPU (Section 4.3.7). Similarly interesting are
our findings about the interaction between maximum sentence length, learning
rate and batch size.

The rest of this chapter is structured as follows. In Section 4.1, we discuss
our evaluation methodology and main criteria: translation quality and speed
of training. Section 4.2 describes our dataset and its preparations. Section 4.3
is the main contribution of the chapter: a set of commented experiments, each
wrapped with a set of conclusions and recommendations. Finally, Section 4.4
compares our best Transformer run with systems participating in WMT2017.
We conclude in Section 4.5.
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4.1 Evaluation Methodology
For automatic evaluation, we use the BLEU metric [Papineni et al., 2002], see
Section 2.2.2 for details and a discussion on drawbacks of BLEU. We evaluated
all our results in this chapter also with a character-based metric chrF [Popović,
2015], but the results were highly correlated with BLEU, so we omit these scores.

We implemented two helper script, t2t-bleu and t2t-translate-all, which
we use for BLEU evaluation and plotting of all the learning curves presented in
this chapter.

4.1.1 Considerations on Stopping Criterion
Training of NMT systems is usually non-deterministic,3 and (esp. with the most
recent models) hardly ever converges or starts overfitting4 on reasonably large
datasets. This leads to learning curves that never fully flatten, let alone start
decreasing (see Section 4.3.2). The common practice of machine learning to
evaluate the model on a final test set when it started overfitting (or shortly before
that moment) is thus not applicable in practice.

Many papers in NMT do not specify any stopping criteria whatsoever. In
other cases, they mention only an approximate number of days the model was
trained for, e.g. Bahdanau et al. [2014], sometimes the exact number of training
steps is given but no indication on “how much converged” the model was at that
point, e.g. Vaswani et al. [2017]. Most probably, the training was run until no
further improvements were “clearly apparent” on the development test set, and
the model was evaluated at that point. Such an approximate stopping criterion
is rather risky: it is conceivable that different setups were stopped at different
stages of training and their comparison is not fair.

A somewhat more reliable method is to keep training for a specified number
of iterations or a certain number of epochs. This is however not a perfect solution
either, if the training is stopped before reaching the maximal BLEU. It is quite
possible that e.g. a more complex model would need a few more epochs and
eventually arrived at a higher score than its competitor. Also, the duration of
one training step (or one epoch) differs between models (see Section 4.3.1) and
from the practical point of view, we are mostly interested in the wall-clock time.

We tried the standard technique of early stopping, which means that the
training is stopped when N subsequent evaluations on the development test set
do not give improvements larger than a given delta. We saw a large variance
in the training time and final BLEU, when applying early stopping, even for
experiments with the same hyper-parameters and only a different random seed.
Moreover to get the best results, we would have had to use a very large N and a
very small delta.

3 Even if we fix the random seed, a change of some hyper-parameters may affect the results
not because of the change itself, but because it influenced the random initialization.

4 By overfitting we mean here that the translation quality (test-set BLEU) begins to worsen,
while the training loss keeps improving.
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Based on the discussion above, we decided to report always the full learning
curves and not only single scores. This solution does not fully prevent the risk
of premature judgments, but the readers can at least judge for themselves if they
would expect any sudden twist in the results or not.

In all cases, we plot the case-insensitive BLEU score (see Section 2.2.2) against
the wall-clock time in hours. This solution obviously depends on the hardware
chosen, so we always used the same equipment: one up to eight GeForce GTX
1080 Ti GPUs with NVIDIA driver 375.66 on Intel Xeon E5-2620. Some variation
in the measurements is unfortunately unavoidable because we could not fully
isolate the computation from different processes on the same machine and
from general network traffic, but based on our experiments with replicated
experiments such variation is negligible.

4.1.2 Terminology
For clarity, we define the following terms and adhere to them for the rest of the
chapter (see also Section 2.5 for a general introduction to NMT):

Translation quality is an automatic estimate of how well the translation carried
out by a particular fixed model expresses the meaning of the source text.
We estimate translation quality by BLEU score (cf. Section 2.2.2).

Training Steps denote the number of iterations, i.e. the number of times the
optimizer update was run. This number is also equal to the number of
(mini)batches that were processed.

Batch Size is the number of training examples used by one GPU in one training
step. In sequence-to-sequence models, batch size is usually specified as
the number of sentence pairs. However, the parameter batch_size in T2T
translation specifies the approximate number of tokens (subwords) in one
batch.5 This allows to use a higher number of short sentences in one batch
or a smaller number of long sentences.

Effective Batch Size is the number of training examples consumed in one train-
ing step. When training on multiple GPUs, the parameter batch_size is
interpreted per GPU, i.e. with batch_size=1500 and 8 GPUs, the system
actually digests 12 thousand subwords of each language in one step.

Training Epoch corresponds to one complete pass over the training data. Un-
fortunately, it is not easy to measure the number of training epochs in
T2T.6 T2T reports only the number of training steps. In order to convert
training steps to epochs, we need to multiply the steps by the effective

5 For this purpose, the number of tokens in a sentence is defined as the maximum of
source and target subwords. T2T also does reordering and bucketing of the sentences by
their length to minimize the use of padding symbols. Some padding is still needed, thus
batch_size only approximates the actual number of (non-padding) subwords per batch.

6 https://github.com/tensorflow/tensor2tensor/issues/415
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batch size and divide by the number of subwords in the training data
(see Section 4.2.1). The segmentation of the training data into subwords
is usually hidden to the user and the number of subwords must be thus
computed by a special script.

Computation Speed is simply the observed number of training steps per hour.
Computation speed obviously depends on the hardware (GPU speed,
GPU-CPU communication) and software (driver version, CUDA library
version, implementation). The main parameters affecting computation
speed are the model size, optimizer and other settings that directly modify
the formula of the neural network.

Training Throughput is the amount of training data digested by the training.
We report training throughput in subwords per hour. Training Throughput
equals to the Computation Speed multiplied by the effective batch size.

Convergence Speed or BLEU Convergence is the increase in BLEU in a given
time span (e.g. one hour or one day). Convergence speed changes heavily
during training, starting very high and decreasing as the training pro-
gresses. A converged model should have convergence speed of zero.

Time Until Score is the training time needed to achieve a certain level of transla-
tion quality, in our case BLEU. We use this as an informal measure because
it is not clear how to define the moment of “achieving” a given BLEU
score. We define it as time after which the BLEU never falls below the
given level.7

Examples Until Score is the number of training examples (in subwords) needed
to achieve a certain level of BLEU. It equals to the Time Until Score multi-
plied by Training Throughput.

4.2 Data Selection and Preprocessing
Our training data comes from CzEng 1.7 and three smaller sources (Europarl,
News Commentary, Common Crawl), see Table 2.1 on page 17 for details. We
use this dataset of 58M sentence pairs for most our experiments in this chapter.
In some experiments (in Sections 4.3.2 and 4.3.6), we substitute CzEng 1.7 with
an older and considerably smaller CzEng 1.0 [Bojar et al., 2012] containing 15M
sentence pairs (so together with the three smaller sources, the total size is 16M).

To plot the performance throughout the training, we use wmt13 as a develop-
ment set. In Section 4.4, we apply our best model (judged from the performance
on the development set) to the wmt17 test set, for comparison with the state-of-
the-art systems.

7 Such definition of Time Until Score leads to a high variance of its values because of the rela-
tively high BLEU variance between subsequent checkpoints (visible as a “flickering” of the
learning curves in the figures). To decrease the variation one can use a larger development
test set.
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4.2.1 Training Data Preprocessing
T2T supports two types of tokenization into subword units (see Section 2.5.1).
The tokenization is either provided by an external script (e.g. the popular BPE
algorithm [Sennrich et al., 2016b]) or a built-in tokenization is used. The T2T
built-in subword tokenization is based on the word-piece algorithm [Wu et al.,
2016]. Unlike BPE it does not expect the input to be pre-tokenized to words and
it can fully recover the original raw text including spaces.8 Based on a small
sample of the training data, T2T will train a subword vocabulary and apply it to
all the training and later evaluation data.

We use the T2T built-in tokenization and provide raw plain-text training
sentences. We use the default parameters: shared source and target (English
and Czech) subword vocabulary of size 32k. After this preprocessing, the
total number of subwords in our main training data is 992 millions (taking
the maximum of English and Czech lengths for each sentence pair, as needed
for computing the number of epochs; see Section 4.1.2). The smaller dataset
CzEng 1.0 has 327 million subwords. In both cases the average number of
subwords per (space-delimited) word is ca. 1.5.

Even when following the default parameters, there are important details to
be considered:

• We make sure that the subword vocabulary is trained on a sufficiently
large sample of the training data.9

• As discussed in Section 4.3.5, a larger batch size may be beneficial for
the training and the batch size can be larger when excluding training
sentences longer than a given threshold. This can be controlled with
parameter max_length (see Section 4.3.4), but it may be a good idea to
exclude too long sentences even before preparing the training data using
t2t-datagen. This way the TFRecords training files will be smaller and
their processing a bit faster.10

4.3 Experiments
In this section, we present several experiments, always summarizing the obser-
vations and conclusions from each experiment. All experiments in this chapter
were done with T2T v1.2.9 unless stated otherwise.

We experiment with two sets of hyper-parameters which are pre-defined in
T2T: transformer_big_single_gpu (BIG) and transformer_base_single_gpu

8 There is also a difference in encoding whether a given subword is followed by a space. For
details, see Macháček et al. [2018] who report a 4.9 BLEU improvement on German→Czech
translation caused by switching from the default BPE subwords to T2T built-in subwords.

9 This is controlled by a file_byte_budget constant, which must be changed directly in the
source code in T2T v1.2.9. A sign of too small training data for the subword vocabulary is
that the min_count as reported in the logs is too low, so the vocabulary is estimated from
words seen only once or twice.

10 We did no such pre-filtering in our experiments in this chapter (cf. Section 5.3.10).
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(BASE). They differ mainly in the size of the model. Note that transfor-
mer_big_single_gpu and transformer_base_single_gpu are only names of a
set of hyper-parameters, which can be applied even when training on multiple
GPUs, as we do in our experiments; see Section 4.3.7.11

Our baseline setting uses the BIG model with its default hyper-parameters
except for:

• batch_size=1500 (see the discussion of different sizes in Section 4.3.5),

• --train_steps=6000000, i.e. high enough, so we can stop each experiment
manually as needed,

• --save_checkpoints_secs=3600which forces checkpoint saving each hour
(see Section 4.3.10),

• --schedule=trainwhich disables the internal evaluation with approx_bleu
and thus makes training a bit faster.12

4.3.1 Computation Speed and Training Throughput
We are primarily interested in the translation quality (BLEU learning curves and
Time Until Score) and we discuss it in the following sections 4.3.2–4.3.10. In this
section, we focus however only on the computation speed and training throughput.
Both are affected by three important factors: batch size, number of used GPUs
and model size. The speed is usually almost constant for a given experiment.13

Table 4.1 shows the computation speed and training throughput for a single
GPU and various batch sizes and model sizes (BASE and BIG). The BASE model
allows for using a higher batch size than the BIG model. The cells where the
BIG model resulted in out-of-memory errors are marked with “OOM”.14 We can
see that the computation speed decreases with increasing batch size because not
all operations in GPU are fully batch-parallelizable. The training throughput
grows sub-linearly with increasing batch size, so based on these experiments
only, there is only a small advantage when setting the batch size to the maximum
value. We will return to this question in Section 4.3.5, while taking into account
the translation quality.

11 According to our experiments (not reported here), transformer_big_single_gpu is better
than transformer_big even when training on 8 GPUs, although the naming suggests that
the T2T authors had an opposite experience.

12 Also there are some problems with the alternative schedules train_and_evaluate (it needs
more memory) and continuous_train_and_eval (see https://github.com/tensorflow/
tensor2tensor/issues/556).

13 TensorBoard shows global_step/sec statistics, i.e. the computation speed curve. These
curves in our experiments are almost constant for the whole training with variation within
2%, except for moments when a checkpoint is being saved (and the computation speed is
thus much slower).

14 For these experiments, we used max_length=50 in order to be able to test larger batch
sizes. However, in additional experiments we checked that max_length does not affect the
training throughput itself.
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model
batch_size BASE BIG

500 43.4k 23.6k
1000 30.2k 13.5k
1500 22.3k 9.8k
2000 16.8k 7.5k
2500 14.4k 6.5k
3000 12.3k OOM
4500 8.2k OOM
6000 6.6k OOM

(a) Computation speed
(steps/hour)

model
batch_size BASE BIG

500 21.7M 11.9M
1000 30.2M 13.5M
1500 33.4M 14.7M
2000 33.7M 15.0M
2500 36.0M 16.2M
3000 37.0M OOM
4500 36.7M OOM
6000 39.4M OOM

(b) Training throughput
(subwords/hour)

Table 4.1: Computation speed and training throughput for a single GPU.

We can also see the BASE model has approximately two times larger through-
put, as well as computation speed, relative to the BIG model.

GPUs steps/hour subwords/hour

1 9.8k 14.7M
2 7.4k 22.2M
6 5.4k 48.6M
8 5.6k 67.2M

Table 4.2: Computation speed and training throughput for various numbers of
GPUs, with the BIG model and batch_size=1500. Note that (training) steps are
defined in Section 4.1.2 as ‘the number of times the optimizer update was run’
and that the optimizer does synchronous updates in case of multiple GPUs.

Table 4.2 uses the BIG model and batch_size=1500, while varying the num-
ber of GPUs. The overhead in GPU synchronization is apparent from the de-
creasing computation speed. Nevertheless, the training throughput still grows
with more GPUs, so e.g. with 6 GPUs we process 3.2 times more training
data per hour relative to a single GPU (while without any overhead we would
hypothetically expect 6 times more data).

The overhead when scaling to multiple GPUs is smaller than the overhead
when scaling to a higher batch size. Scaling from a single GPU to 6 GPUs
increases the throughput 3.2 times, but scaling from batch size 1000 to 6000 on
a single GPU increases the throughput 1.3 times.

4.3.2 Training Data Size
For this experiment, we substituted CzEng 1.7 with CzEng 1.0 in the training
data, so the total training size is 16 million sentence pairs (cf. Section 2.1).
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Figure 4.1: Training data size effect. BLEU learning curves for our main train-
ing dataset with 58 million sentence pairs and an alternative training dataset
with 16 million sentence pairs. Both trained with 8 GPUs, BIG model and
batch_size=1500.

Figure 4.1 compares the BLEU learning curves of two experiments which differ
only in the training data: the baseline CzEng 1.7 versus the smaller CzEng
1.0. Both are trained on the same hardware with the same hyper-parameters
(8 GPUs, BIG, batch_size=1500). Training on the smaller dataset (2.5 times
smaller in the number of words) converges to BLEU of ca. 25.5 (on the wmt13
dev set) after two days of training and does not improve over the next week of
training. Training on the larger dataset gives slightly worse results in the first
eight hours of training (not shown in the graph) but clearly better results after
two days of training, reaching over 26.5 BLEU after eight days.15

With batch_size=1500 and 8 GPUs, training one epoch of the smaller dataset
(with CzEng 1.0) takes 27k steps (5 hours of training), compared to 83k steps
(15 hours) for the larger dataset (with CzEng 1.7). This means ca. 10 epochs in
the smaller dataset were needed for reaching the convergence and this is also
the moment when the larger dataset starts being clearly better. However, even
18 epochs in the larger dataset were not enough to reach the convergence.

Conclusions Related to Training Data Size

• For comparing different datasets (e.g. smaller and cleaner vs. larger and
noisier), we need to train the network for a sufficient amount of time, given
that the results after first several hours (or days if training on a single GPU)
are not representative of the ultimate performance.

• For large training data (e.g. CzEng 1.7, which has over 500M words), BLEU
improves even after one week of training on eight GPUs (or after 20 days
of training on two GPUs in another experiment).

15 We compared the two datasets also in another experiment with two GPUs, where CzEng
1.7 gave slightly worse results than CzEng 1.0 during the first two days of training but
clearly better results after eight days. We hypothesize CzEng 1.0 is somewhat cleaner than
CzEng 1.7.
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• We cannot simply linearly interpolate one dataset results to another dataset.
While the smaller training data (with CzEng 1.0) converged after 2 days, the
main training data (with CzEng 1.7), which is 2.5 times larger, continues
improving even after 2.5×2 days.16

4.3.3 Model Size
Choosing the right model size is important for practical reasons: larger models
may exceed the memory capacity of GPUs, or they may require to use a very
small batch size.

We present experiments with two models,17 which are pre-defined in Ten-
sor2Tensor: transformer_big_single_gpu (BIG) and transformer_base_sin-
gle_gpu (BASE). They differ in four hyper-parameters summarized in Table 4.3.

model hidden_size filter_size num_heads adam_beta2

BASE 512 2048 8 0.980
BIG 1024 4096 16 0.998

Table 4.3: Differences in hyper-parameter of transformer_big_single_gpu (BIG)
and transformer_base_single_gpu (BASE). See Section 2.5.2 for explanation of
the first three hyper-parameters (hidden_size corresponds to dmodel, filter_size is
the dimension of the feed-forward sublayer). adam_beta2 is the second-moment
hyper-parameter of the Adam optimizer [Kingma and Ba, 2014].
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BASE model, batch size 2000, 1 GPU

Figure 4.2: Effect of model size and batch size on a single GPU.

Figure 4.2 shows that on a single GPU, the BIG model becomes clearly better
than the BASE model after 4 hours of training if we keep the batch size the same
– 2000 (and we have confirmed it with 1500 in other experiments). However, the

16 Although such an expectation may seem naïve, we can find it in literature. For example,
Bottou [2012] in Section 4.2 writes: “Expect the validation performance to plateau after a number
of epochs roughly comparable to the number of epochs needed to reach this point on the small training
set.”

17 We tried also a model three times as large as BASE (1.5 times as large as BIG), but it did
not reach better results than BIG, so we don’t report it here.
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Figure 4.3: Effect of model size and batch size on 8 GPUs.

BASE model requires less memory, so we can afford a larger batch size, in our
case 4500 (with no max_length restriction; see the next section), which improves
the BLEU (see Section 4.3.5). But even so, after less than one day of training, BIG
with batch size 2000 becomes better than BASE with batch size 4500 (or even
6000 with max_length=70 in another experiment) and the difference grows up
to 1.8 BLEU after three days of training.

Figure 4.3 confirms this with 8 GPUs – here BIG with batch size 1500 becomes
clearly better than BASE with batch size 4500 after 18 hours of training.

Conclusions Related to Model Size

• The BIG model is preferable over the BASE model if more than one day is
used for training and 11GB (or more) GPU memory is available.

• With less memory, we recommend to benchmark BIG and BASE with the
maximum possible batch size.
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4.3.4 Maximum Training Sentence Length
The parameter max_length specifies the maximum sentence length in the num-
ber of subwords. Longer sentences (either in source or target language) are
excluded from the training completely. If no max_length is specified (which is
the default), batch_size is used instead. Lowering the max_length allows to
use a larger batch size or a larger model. Since the Transformer implementation
in T2T can suddenly run out of memory even after several hours of training, it is
good to know how large batch size fits in our GPU. Table 4.4 presents what we
empirically measured for the BASE and BIG models with Adam and Adafactor18

optimizers and various max_length values.

maximum batch size longer sentences
max_length BIG+Adam BIG+Adafactor BASE+Adam in train in test

none 2040 2550 4950 0.0% 0.0%
150 2230 2970 5430 0.2% 0.0%
100 2390 3280 5990 0.7% 0.3%
70 2630 3590 6290 2.1% 2.2%
50 2750 3770 6430 5.0% 9.1%

Table 4.4: Maximum batch size which fits into 11GB memory for various com-
binations of max_length (maximum sentence length in subwords), model size
(BASE or BIG) and optimizer (Adam or Adafactor). The last two columns show
the percentage of sentences in the train (CzEng 1.7) and test (wmt13) data that
are longer than a given threshold.
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Figure 4.4: Effect of restricting the training data to various max_length values. All
trained on 1 GPU with the BIG model and batch_size=1500. An experiment with-
out any max_length is not shown, but it has the same curve as max_length=400.

Setting max_length too low would result in excluding too many training
sentences and biasing the translation towards shorter sentences, which would
hurt the translation quality. The last two columns in Table 4.4 show that setting

18 The Adafactor optimizer [Shazeer and Stern, 2018] is available only in T2T 1.4.2 or newer
and has three times smaller models than Adam because it does not store first and second
moments for all weights. We use Adafactor in Chapter 5.
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max_length to 70 results in excluding only 2.1% of sentences in the training
data, and only 2.2% sentences in the development test data are longer. For
max_length of 100, the number are 0.7% and 0.3%, respectively. Thus, the
detrimental effect of smaller training data and length bias should be minimal
in this setting. However, our experiments with batch_size=1500 in Figure 4.4
show an unexpected abrupt drop in BLEU after one hour of training for all
experiments with max_length 70 or lower. Even with max_length 150 or 200,
the BLEU learning curve is worse than with max_length=400, which finally
gives the same result as not using any max_length restriction. The training loss
of max_length=25 (and 50 and 70) has a high variance and stops improving
after the first hour of training but shows no sudden increase (as in the case of
diverged training discussed in Section 4.3.6 when the learning rate is too high).
We have no explanation for this phenomenon.19

We performed another set of experiments with varying max_length, but this
time with batch_size=2000 instead of 1500. In this case, max_length 25 and 50
still results in slower-growing BLEU curves, but for max_length of 70 and higher,
the learning curve is essentially identical to the one of unrestricted max_length.
Therefore, if the batch size is large enough, the max_length has almost no effect
on BLEU, but this should be verified for each new dataset (obviously, all the
results in this subsection are dependent on the distribution of sentence lengths
in our training and test data).

We trained several models with various max_length values for three days
and observed that they are not able to produce longer translations than what was
the maximum length used in training, even if we change the decoding parameter
alpha. Setting the alpha parameter too high results in longer translations, but
only because word repetitions and nonsense translations are exploited. Our
observation about the limited length of translations is in contrast with the
hypothesis of Vaswani et al. [2017]: “We chose the sinusoidal version [of positional
encoding] because it may allow the model to extrapolate to sequence lengths longer
than the ones encountered during training.”

Conclusions Related to max_length

• On the one hand, we recommend to set (a reasonably low) max_length.
This allows to use a larger batch size and prevents out-of-memory errors
after several hours of training. Also, with a higher percentage of training
sentences that are almost max_length long, there is a higher chance that
the training will fail either immediately (if the batch size is too large) or
never (otherwise).20

• On the other hand, we recommend to set a reasonably high max_length by
considering the percentage of sentences excluded from training and from
the targeted development test set, and also by watching for unexpected
drops (or stagnations) of the BLEU curve in the first hours of training.

19 https://github.com/tensorflow/tensor2tensor/issues/582
20 Note that by default, T2T shuffles all sentences in the training data.
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4.3.5 Batch Size
The default batch_size value in recent T2T versions is 4096 subwords for all
models except for transformer_base_single_gpu, where the default is 2048.
However, we recommend to always set the batch size explicitly21 or at least make
a note what was the default in a given T2T version when reporting experimental
results.
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Figure 4.5: Effect of the batch size with the BASE model. All trained on 1 GPU.

Figure 4.5 shows learning curves for five different batch sizes (1000, 1500,
3000, 4500 and 6000) for experiments with a single GPU and the BASE model.22

A larger batch size up to 4500 is clearly better in terms of BLEU as measured by
Time Until Score and Examples Until Score metrics defined in Section 4.3.1. For
example, to get over BLEU of 18 with batch_size=3000, we need 7 hours (260M
examples), and with batch_size=1500, we need ca. 3 days (2260M examples),
i.e. 10 times longer (9 time more examples). From Table 4.1a we know that
larger batches have slower computation speed, so when re-plotting Figure 4.5
with steps instead of time on the x-axis, the difference between the curves
would be even larger. From Table 4.1b we know that larger batches have slightly
higher training throughput, so when re-plotting with the number of examples
processed on the x-axis, the difference will be smaller, but still visible. The only
exception is the difference between batch size 4500 and 6000 (in Figure 4.5),
which is very small and can be fully explained by the fact that batch size 6000
has 7% higher throughput than batch size 4500.

In summary, a larger batch size yields better results when using the BASE
model, although with diminishing returns. This observation goes against the
common knowledge in other NMT frameworks and deep learning in general
[e.g. Keskar et al., 2017] that smaller batches proceed slower (training examples

21 e.g. --hparams="batch_size=1500"; as the batch size is specified in subwords, we see no
advantage in using power-of-two values.

22 All the experiments in Figure 4.5 use max_length=70, but we have obtained the same curves
when re-running without any max_length restrictions, except for batch_size=6000 which
failed with OOM.
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Figure 4.6: Effect of the batch size with the BIG model. All trained on a single
GPU.

per hour) but result in better generalization (higher test-set BLEU) in the end. In
our experiments with the BASE model in T2T, larger batches are not only faster
in training throughput (as could be expected), but also faster in convergence
speed, Time Until Score and Examples Until Score.

Interestingly, when replicating these experiments with the BIG model, we
see quite different results, as shown in Figure 4.6. The BIG model needs a certain
minimal batch size to start converging at all, but for larger batch sizes there is
almost no difference in the BLEU curves (however, an increased batch size never
makes the BLEU worse in our experiments). In our case, the cut-off is between
batch size 1450, which trains well, and 1400, which drops off after two hours of
training, recovering only slowly.

According to Smith and Le [2017] and Smith et al. [2017], the gradient noise
scale, i.e. scale of random fluctuations in the SGD (or Adam etc.) dynamics, is
proportional to learning rate divided by the batch size (cf. Section 4.3.8). Thus,
when decreasing the batch size, we increase the noise scale and the training
may diverge. This may be either permanent, as in the case of batch size 1000 in
Figure 4.6, or temporary, as in the case of batch size 1300 and 1400, where the
BLEU continues to grow after the temporary drop, but much more slowly than
the non-diverged curves.

We are not sure what causes the difference between the BASE and BIG models
with regards to the sensitivity to batch size. One hypothesis is that the BIG
model is more difficult to initialize and thus more sensitive to divergence in
the early training phase. Also, while for BASE, increasing the batch size was
highly beneficial until 4500, for BIG this limit may be below 1450, i.e. below the
minimal batch size needed for preventing diverged training.

Conclusions Related to Batch Size

• Batch size should be set as large as possible while keeping a reserve for not
hitting the out-of-memory errors. It is advisable to establish the largest
possible batch size before starting the main and long training.
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4.3.6 Learning Rate and Warmup Steps on a Single GPU
The default learning rate in T2T translation models is 0.20. Figure 4.7 shows that
varying the value within range 0.05–0.25 makes almost no difference. Setting the
learning rate too low (0.01) results in notably slower convergence. Setting the
learning rate too high (0.30, not shown in the figure) results in diverged training,
which means in this case that the learning curve starts growing as usual, but at
one moment drops down almost to zero and stays there forever.
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Figure 4.7: Effect of the learning rate on a single GPU. All trained on CzEng 1.0
with the default batch size (1500), BIG model and warmup steps (16k).

A common solution to prevent diverged training is to decrease the learning_-
rate parameter or increase learning_rate_warmup_steps or introduce gradient
clipping. The learning_rate_warmup_steps parameter configures a linear_-
warmup_rsqrt_decay schedule23 and it is set to 16 000 by default (for the BIG
model), meaning that within the first 16k steps the learning rate grows linearly
and then follows an inverse square root decay (t−0.5, cf. Section 4.3.8). At 16k
steps, the actual learning rate is thus the highest.

If a divergence is to happen, it usually happens within the first few hours of
training, when the actual learning rate becomes the highest. Once we increased
the warmup steps from 16k to 32k, we were able to train with the learning rate of
0.30 and even 0.50 without any divergence. The learning curves looked similar to
the baseline one (with default values of 16k warmup steps and learning rate 0.20).
When trying learning rate 1.0, we had to increase warmup steps to 60k (with
40k, the training diverged after one hour) – this resulted in a slower convergence
at first (ca. 3 BLEU lower than the baseline after 8 hours of training), but after
3–4 days of training almost the same curve as in the baseline was achieved.

Figure 4.8 shows the effect of different warmup steps with a fixed learning
rate (the default 0.20). Setting warmup steps too low (12k) results in diverged
training. Setting them too high (48k, green curve) results in a slightly slower
convergence at first, but matching the baseline after a few hours of training.

We can conclude that for a single GPU and the BIG model, there is a relatively
large range of learning rate and warmup steps values that achieve the optimal

23 The schedule was called noam in T2T versions older than 1.4.4. In recent T2T versions, it
should be specified as constant*linear_warmup*rsqrt_decay*rsqrt_hidden_size.
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Figure 4.8: Effect of the warmup steps on a single GPU. All trained on CzEng 1.0
with the default batch size (1500) and learning rate (0.20).

results. The default values learning_rate=0.20 and learning_rate_warmup_-
steps=16000 are within this range.

Conclusions Related to Learning Rate and Warmup Steps
• Gradient clipping and/or more warmup steps help to prevent diverged

training.

• If that does not help (or if the warmup steps are too high relative to the
expected total training steps), it is advisable to decrease the learning rate.

• Note that when decreasing the number of warmup steps (while maintain-
ing the learning rate), the maximum actual learning rate is increased as
well because of the way how the linear_warmup_rsqrt_decay schedule
is implemented.

4.3.7 Number of GPUs
T2T allows to train with multiple GPUs on the same machine simply using
the parameter --worker_gpus.24 As explained in Section 4.1.2, the parameter
batch_size is interpreted per GPU, so with 8 GPUs, the effective batch size is 8
times larger.

A single-GPU experiment with batch size 4000, should give exactly the same
results as two GPUs and batch size 2000 and as four GPUs and batch size 1000
because the effective batch size is 4000 in all three cases. We have confirmed this
empirically. By the “same results” we mean BLEU (or train loss) versus training
steps on the x-axis. When considering time, the four-GPU experiment will be
the fastest one, as explained in Section 4.3.1.

24 and making sure environment variable CUDA_VISIBLE_DEVICES is set so enough GPUs
are visible. T2T allows also distributed training (on multiple machines), but we have
not experimented with it. Both single-machine multi-gpu and distributed training use
synchronous Adam updates by default.
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Figure 4.9: Effect of the number of GPUs. BLEU=25.6 is marked with a black line.

Figure 4.9 shows BLEU curves for different numbers of GPUs and the BIG
model with batch size, learning rate and warmup steps fixed on their default
values (1500, 0.20 and 16k, respectively). As expected, training with more GPUs
converges faster. What is interesting is the Time Until Score. Table 4.5 lists
the approximate training time and number of training examples (in millions of
subwords) needed to “surpass” (i.e. achieve and never again fall below) BLEU
of 25.6.

# GPUs hours subwords (M)

1 > 600 > 9000
2 203 2322·2 = 4644
6 56 451·6 = 2706
8 40 341·8 = 2728

Table 4.5: Time and training data consumed to reach BLEU of 25.6, i.e. Time Until
Score and Examples Until Score. Note that the experiment on 1 GPU was ended
after 25 days of training without clearly surpassing the threshold (already outside
of Figure 4.9).

We can see that two GPUs are more than three times faster than a single GPU
when measuring the Time Until Score and need much less training examples
(i.e. they have lower Examples Until Score). Similarly, eight GPUs are more than
five times faster than two GPUs and 1.7 times less training data is needed.

Recall that in Figure 4.6 we have shown that increasing the batch size from
1450 to 2000 has almost no effect on the BLEU curve. However, when increasing
the effective batch size by using more GPUs, the improvement is higher than
could be expected from the higher throughput.25 We find this quite surprising,

25 It is possible to simulate multi-GPU training on a single GPU, simply by doing the update
once after N batches (and summing the gradients). This is similar to the ghost batches of
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especially considering the fact that we have not tuned the learning rate and
warmup steps (see the next section).

Conclusions Related to the Number of GPUs

• For the fastest BLEU convergence, it is recommended to use as many GPUs
as available (in our experiments up to 8).

• This holds even when there are more experiments to be done. For example,
it is better to run one 8-GPUs experiment after another, rather than running
two 4-GPUs experiments in parallel or eight single-GPU experiments in
parallel.

4.3.8 Learning Rate and Warmup Steps on Multiple GPUs
Related Work

There is a growing number of articles on scaling deep learning to multiple
machines with synchronous SGD (or its variants) by increasing the effective
batch size. We will focus mostly on the question how to adapt the learning rate
schedule, when scaling from one GPU (or any device, in general) to k GPUs.

Krizhevsky [2014] says “Theory suggests that when multiplying the batch size
by k, one should multiply the learning rate by

√
k to keep the variance in the gradi-

ent expectation constant”, without actually explaining which theory suggests so.
However, in the experimental part, he reports that what worked the best, was
a linear scaling heuristics, i.e. multiplying the learning rate by k, again without
any explanation nor details on the difference between

√
k scaling and k scaling.

The linear scaling heuristics became popular, leading to good scaling results
in practice [Goyal et al., 2017, Smith et al., 2017] and also theoretical explanations
[Bottou et al., 2016, Smith and Le, 2017, Jastrzebski et al., 2017]. Smith and Le
[2017] interpret SGD (and its variants) as a stochastic differential equation and
show that the gradient noise scale g equals ϵ

(
N
B
− 1

)
, where ϵ is the learning rate,

N is the training set size, and B is the effective batch size. This noise “drives SGD
away from sharp minima, and therefore there is an optimal batch size which maximizes
the test set accuracy”. In other words, for keeping the optimal level of gradient
noise (which leads to “flat minima” that generalize well), we need to scale the
learning rate linearly when increasing the effective batch size.

However, Hoffer et al. [2017] suggest to use
√
k scaling instead of the linear

scaling and provide both theoretical and empirical support for this claim. They
show that cov(∆w,∆w) ∝ ϵ2

NB
, thus if we want to keep the the covariance matrix

of the parameters update step ∆w in the same range for any effective batch
size B, we need to scale the learning rate proportionally to the square root of

Hoffer et al. [2017], but using ghost batch size larger than the actual batch size. Indepen-
dently on Popel and Bojar [2018], this was suggested by Saunders et al. [2018] under name
Delayed SGD update and by Ott et al. [2018] under name Accumulating gradients. It is now
available in T2T via the option --optimizer_multistep_accumulate_steps and it would
be interesting to explore even larger effective batch sizes.
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B. They found that
√
k scaling works better than linear scaling on CIFAR10.26

You et al. [2017] confirm linear scaling does not perform well on ImageNet and
suggest to use Layer-wise Adaptive Rate Scaling.

We can see that finding the optimal design of large-batch training is still
an open research question. Most of the articles cited above have experimental
support only from the image recognition tasks (usually ImageNet) and con-
volutional networks (e.g. ResNet), so it is not clear whether their suggestions
can be applied also to sequence-to-sequence tasks (NMT) with self-attentional
networks (Transformer). There are several other differences as well: Modern
convolutional networks are usually trained with batch normalization [Ioffe and
Szegedy, 2015], which seems to be important for the scaling, while Transformer
uses layer normalization [Lei Ba et al., 2016].27 Also, Transformer uses Adam
together with an inverse-square-root learning-rate decay, while most ImageNet
papers use SGD with momentum and piecewise-constant learning-rate decay.

Our Experiments

We decided to find out empirically the optimal learning rate for training on
8 GPUs. Increasing the learning rate from 0.20 to 0.30 resulted in diverged
training (BLEU dropped to almost 0 after two hours of training). Similarly to our
single-GPU experiments (Section 4.3.6), we were able to prevent the divergence
by increasing the warmup steps or by introducing gradient clipping (e.g. with
clip_grad_norm=1.0, we prevented the divergence for learning rate 0.40, but
increasing it further to 0.60 led to divergence nevertheless). However, none of
these experiments led to any improvements over the default learning rate – all
had about the same BLEU curve after few hours of training.

Jastrzebski et al. [2017] show that “the invariance under simultaneous rescaling
of learning rate and batch size breaks down if the learning rate gets too large or the batch
size gets too small”. A similar observation was reported e.g. by Bottou et al. [2016].
Thus, our initial hypothesis was that 0.20 (or 0.25) is the maximal learning rate
suitable for stable training in our experiments even when we scale from a single
GPU to 8 GPUs. Considering this initial hypothesis, we were surprised that we
were able to achieve such a good Time Until Score with 8 GPUs (more than 8
times smaller relative to a single GPU, as reported in Table 4.5). To answer this
riddle, we need to understand how learning rate schedules are implemented in
T2T.

26 To close the gap between small-batch training and large-batch training, Hoffer et al. [2017]
introduce (in addition to

√
k scaling) so-called ghost batch normalization and adapted training

regime, which means decaying the learning rate after a given number of steps instead of
epochs.

27 Applying batch normalization on RNN is difficult. Transformer does not use RNN, but
still, we were not successful in switching to batch normalization (and possibly ghost batch
normalization) due to NaN loss errors.
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Parametrization of Learning Rate Schedules in T2T

In most works on learning rate schedules,28 the “time” parameter is actually
interpreted as the number of epochs or training examples. For example a popular
setup for piecewise-constant decay in ImageNet training [e.g. Goyal et al., 2017]
is to divide the learning rate by a factor of 10 at the 30-th, 60-th and 80-th epoch.

However, in T2T, it is the global_step variable that is used as the “time”
parameter. So when increasing the effective batch size 8 times, e.g. by using
8 GPUs instead of a single GPU, the actual learning rate29 achieves a given
value after the same number of steps, but after 8 times fewer training examples.
For the inverse-square-root decay, we have actual_lr(steps) = c · steps−0.5 =
1√
8
· actual_lr(steps · 8), where c is a constant containing also the learning_rate

parameter. So with 8 GPUs, if we divide the learning_rateparameter by
√
8, we

achieve the same actual learning rate after a given number of training examples
as in the original single-GPU setting.

This explains the riddle from the previous subsection. By keeping the
learning_rate parameter the same when scaling to k times larger effective
batch, we actually increase the actual learning rate

√
k times, in accordance with

the suggestion of Hoffer et al. [2017].30 This holds only for the linear_warmup_-
rsqrt_decay schedule and ignoring the warmup steps.

If we want to keep the same learning rate also in the warmup phase, we
would need to divide the warmup steps by k. However, this means that the
maximum actual learning rate will be

√
k times higher, relative to the single-GPU

maximal actual learning rate and this leads to divergence in our experiments.
Indeed, many researchers [e.g. Goyal et al., 2017] suggest to use a warmup when
scaling to more GPUs in order to prevent divergence. Transformer uses learning
rate warmup by default even for single-GPU training (cf. Section 4.3.6), but it
makes sense to use more warmup training examples in multi-GPU setting.

In our experiments with 8 GPUs and the default learning rate 0.20, using
8k warmup steps instead of the default 16k had no effect on the BLEU curve
(it was slightly higher in the first few hours, but the same afterwards). Further
decreasing the number of warmup steps resulted in a very slow BLEU conver-
gence (in the case of 6k warmup steps) or a complete divergence (in the case of
2k warmup steps).

28 Examples of learning rate schedules are inverse-square-root decay, inverse-time decay,
exponential decay or piecewise-constant decay, see https://www.tensorflow.org/api_
guides/python/train#Decaying_the_learning_rate for TF implementations.

29 By actual learning rate, we mean the learning rate after applying the decay schedule. The
learning_rate parameter stays the same in this case.

30 In addition to suggesting the
√
k learning-rate scaling, Hoffer et al. [2017] show that to

fully close the “generalization gap”, we need to train longer because the absolute number
of steps (updates) matters. So from this point of view, using steps instead of epochs as the
time parameter for learning rate schedules may not be a completely wrong idea.
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Conclusions Related to Learning Rate and Warmup Steps on Multiple GPUs

• It is recommended to keep the learning_rate parameter at its optimal
value found in single-GPU experiments.

• The number of warmup steps can be decreased but less than linearly and
without expecting to improve the final BLEU this way.

4.3.9 Resumed Training
T2T allows to resume training from a checkpoint, simply by pointing the output_-
dir parameter to a directory with an existing checkpoint (specified in the
checkpoint file). This may be useful when the training fails (e.g. because
of hardware error), when we need to continue training on a different machine
or during hyper-parameter search (when we want to continue with the most
promising setups). T2T saves also Adam momentum into the checkpoint, so the
training continues almost as if it had not been stopped. However, it does not
store the position in the training data – it starts from a random position. Also
the relative time (and wall-clock time) in TensorBoard graphs will be influenced
by the stopping.

Resumed training can also be exploited for changing some hyper-parameters
which cannot be meta-parametrized by the number of steps. For example, Smith
et al. [2017] suggest to increase the effective batch size (and number of GPUs)
during training, instead of decaying the learning rate.

Yet another usage is to do domain adaptation by so-called fine-tuning – by
switching from (large) general-domain training data to (small) target-domain
training data for the few last epochs (cf. Section 5.1). In this case, we should
consider tuning also the learning rate or learning rate schedule (or faking the
global_step stored in the checkpoint) to make sure the learning rate is not too
small.

4.3.10 Checkpoint Averaging
Vaswani et al. [2017] average all the weights in the last 20 checkpoints saved in 10-
minute intervals (see Section 5.2.2). According to our experiments, slightly better
results are achieved with averaging checkpoints saved in 1-hour intervals.31

This has also the advantage that less time is spent with checkpoint saving, so the
training is faster. We have implemented a tool t2t-avg-all for automatic check-
point averaging, which can be combined with our scripts t2t-translate-all
and t2t-bleu for continuous checkpoint evaluation.32

Figure 4.10 shows the effect of averaging is twofold: the averaged curve has
a lower variance (flickering) from checkpoint to checkpoint and it is almost

31 We carried out these experiments both on a single GPU and on 8 GPUs. With more than
8 GPUs, the optimal interval (and total training time) may be lower. In practice, also the
available disk space must be considered.

32 All three scripts are available at
https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/bin/.
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Figure 4.10: Effect of checkpoint averaging. All trained on 6 GPUs.

always better than the baseline without averaging (usually by ca. 0.2 BLEU). In
the early phases of training, while the (baseline) learning curve grows fast, it
is better to use fewer checkpoints for averaging. In later phases (as shown in
Figure 4.10, after 4.5–7.5 days of training), it seems that 16 checkpoints (covering
last 16 hours) give slightly better results on average than 8 checkpoints, but we
have not done any proper evaluation for significance (using paired bootstrap
testing for each hour and then summarizing the results).

The fact that resumed training starts from a random position in the training
data (cf. Section 4.3.9) can be actually exploited for “forking” a training to get
two (or more) copies of the model, which are trained for the same number
of steps, but independently in the later stages and thus ending with different
weights saved in the final checkpoint. These semi-independent models can be
averaged in the same way as checkpoints from the same run, as described above.
In our experiments using three “forks” helped ca. 0.1–0.2 BLEU relative to the
default (no-fork) checkpoint averaging (the forks were done after 1, 2 and 4 days
of training on a single GPU, the final evaluation was done after 9 days after
the first fork). However, in further experiments we decided to use multi-GPU
setups instead and we had not enough computational resources to try forking
with multiple GPUs.

Conclusions Related to Checkpoint Averaging

• Averaging 8 checkpoints takes ca. 5 minutes, so it is a “BLEU boost for
free” (compared with the time needed for the whole training).33

• See also Chapter 5 for research on the synergy of checkpoint averaging
with backtranslation.

33 The averaging was done on CPU (Intel Xeon E5-2620). The speed depends mostly on the
size of the checkpoints (2.4GB in our case).
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4.4 Comparison with WMT2017 Systems
Table 4.6 provides the results of WMT2017 English→Czech news translation
task, with our best Transformer model (BIG trained on 8 GPUs for 8 days, av-
eraging 8 checkpoints) evaluated on the wmt17 test set using exactly the same
implementation of automatic metrics. See Section 2.2.2 for details on the evalua-
tion.

automatic manual
BLEU BLEU chrF2 refDA refDA

system cased uncased cased Avg % Ave z

our Transformer 23.84 24.40 0.5164
Nematus (UEdin) 22.80 23.29 0.5059 62.0 0.308
Google 20.12 20.57 0.4847 59.7 0.240
LIMSI-factored 20.22 20.92 0.4870 55.9 0.111
LIUM-FNMT 19.95 20.69 0.4847 55.2 0.102
LIUM-NMT 20.20 20.61 0.4841 55.2 0.090
Chimera (CUNI) 20.51 21.65 0.4834 54.1 0.050
Moses (JHU) 19.12 19.64 0.4760
Bing 16.55 17.55 0.4593 53.3 0.029
PJATK 16.18 16.32 0.4302 41.9 −0.327
TectoMT (CUNI) 12.91 13.43 0.4346

Table 4.6: Evaluation of WMT2017 systems and our Transformer model on the
wmt17 test set. Human evaluation scores are taken from the official ranking [Bojar
et al., 2017a].

The best English→Czech system in WMT2017 according to both automatic
and manual evaluation was Nematus (UEdin) [Sennrich et al., 2017]. It is an
ensemble of eight Deep-RNN models (4 left-to-right and 4 right-to-left) trained
with back-translated data (see the next chapter). Our Transformer model (in this
chapter) does not use any of these techniques and still, it outperforms Nematus
by 1 BLEU point (which is significant, p < 0.05). In Popel and Bojar [2018], we
report Transformer is better than Nematus also in three more automatic metrics.

In the next chapter, we present further improvements, evaluated again on
wmt17 in Section 5.4. We acknowledge the automatic evaluation is not fully
reliable – in Chapter 6, we present the final evaluation on wmt18 including
manual evaluation.
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4.5 Conclusions
We presented a broad range of experiments with the Transformer model [Vaswani
et al., 2017] for English→Czech neural machine translation. While we limited
our exploration to the standard hyper-parameters provided in the T2T frame-
work, we observed interesting phenomena, some of which are novel to the best
of our knowledge. We believe this chapter can be useful for other researchers.
In total, all experiments done for this chapter took approximately 4 years of
GPU time.

The most notable of our observations about the Transformer model imple-
mented in the Tensor2Tensor framework are:

• Larger batch sizes lead not only to faster training, but more importantly
better translation quality.

• For training longer than one day on 11GB GPU, the larger setup (BIG)
should be always preferred.

• Using as many GPUs as possible and running experiments one after an-
other should be preferred over running several single-GPU experiments
concurrently.

• The best performing model we obtained on 8 GPUs trained for 8 days has
outperformed the WMT2017 winner according to BLEU and chrF2.

93



4.5. CONCLUSIONS

94



Chapter 5

Backtranslation and Checkpoint
Averaging in NMT

Essentially, all models are wrong, but some are useful.
George Box

This chapter presents improvements of the NMT system described in the
previous chapter. The improvements in translation quality (+3 BLEU for English
→Czech) are achieved by exploiting monolingual data according to the current
best practices (+1 BLEU) and by improving these practices with novel tech-
niques (+2 BLEU). The synergy of concat backtranslation and checkpoint averaging
described in Sections 5.3.2 and 5.3.3 is one of the key achievements of the whole
thesis with both theoretical (cf. the discussion in Section 5.5) and practical (cf.
the evaluation in Section 5.4 and Chapter 6) impact.

5.1 Introduction
The quality of NMT depends heavily on the amount and quality of the training
parallel sentences. Although millions of parallel sentences are freely available
for several language pairs,1 it is still not enough for achieving optimal results.
Moreover, the parallel data may not be available for the target domain (e.g. med-
ical or IT domain). A common solution is to use monolingual target-language
data, which is usually available in much larger amounts than the parallel data.
The current best practice in improving the quality of NMT using monolingual
target-language data is backtranslation [Sennrich et al., 2016a], where the mono-
lingual data is machine-translated to the source language, and the resulting
sentence pairs are used as additional (synthetic) parallel training data.2

Sennrich et al. [2017] compared two regimes of how to incorporate the syn-
thetic training data. In the fine-tuned regime, a system is trained first on the

1 http://opus.nlpl.eu/ provides 32 English-X parallel corpora larger than 500M tokens
for the following 17 languages: ar, bg, cs, de, el, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sr, tr.

2 In translation studies (translatology), “backtranslation” means translating a previously
translated document back into the original language. However, in this thesis we follow the
NMT terminology of Sennrich et al. [2016a], where “backtranslation” means that for a final
X→Y MT system, we prepare (back-translate) additional training data using an MT system
in the opposite direction, i.e. Y→X. This data is almost always originally written in the
language Y (not translated to Y), thus the NMT backtranslation does not overlap with the
translation-studies backtranslation.
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authentic parallel data and then after several epochs it is trained on a 1:1 mix of
authentic and synthetic data. In the mixed regime, the 1:1 mixed data is used
from the beginning of training. In both cases, the 1:1 mix means shuffling the
data randomly at the sentence level, possibly oversampling the smaller of the
two data sources.

In this chapter, we introduce a third approach, termed concat regime, where
the authentic and synthetic parallel data are simply concatenated (without
shuffling). We observe that this regime changes the training dynamics and leads
to improvements in translation quality relative to both mixed and fine-tuned
regimes (Section 5.3.2).

We also further explore the effect of checkpoint averaging (averaging all weights
in the last N checkpoints, i.e. model snapshot files saved e.g. each hour), which
is a light-weight alternative to checkpoint ensembling. We observe surprising
synergic improvements (Section 5.3.3) when using the checkpoint averaging
together with the concat-regime backtranslation. We explore these improve-
ments (Sections 5.3.4–5.3.8) and analyze the differences in translation outputs
from the various models (Section 5.3.9). Finally, we provide suggestions for
further improvements: filtering the training data (Section 5.3.10) and building
two separate models based on the original language of the text to be translated
(Section 5.3.11).

5.2 Related Work

5.2.1 Backtranslation

In SMT, target-language monolingual data are usually used only to build lan-
guage models, but there are also works showing that additional synthetic paral-
lel training data created with backtranslation can improve SMT [Schwenk, 2008,
Bertoldi and Federico, 2009, Bojar and Tamchyna, 2011].

The early end-to-end NMT systems (e.g. Bahdanau et al. [2014]; see Sec-
tion 2.5) used no target-language monolingual data. First attempts to exploit this
abundant data to improve NMT used a separately-trained RNN language model
[Gülçehre et al., 2015] or sentence pairs with dummy (empty) source side used to
train only the NMT decoder [Sennrich et al., 2016a]. However, synthetic parallel
data created by backtranslation quickly became popular because it is very easy
to use with any NMT architecture and it gives better results than both aforemen-
tioned approaches [Sennrich et al., 2016a]. So while in SMT, target-language
monolingual data are typically used for building language models, in NMT
they are typically used for building synthetic parallel data via backtranslation.

Note that although the data is termed synthetic, it is only its source side
which is machine-translated. The target side is authentic and thus can improve
the fluency (and sometimes even adequacy) of the final translations, simply by
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increasing the total size and diversity of the training data.3 Backtranslation can
also be used as a domain-adaptation technique if the target-language monolin-
gual data is in-domain or filtered to match the target domain [Moore and Lewis,
2010].

Poncelas et al. [2018] explore the optimal ratio of authentic and synthetic
training data. According to their German→English experiments, using 1M
authentic + 1M synthetic sentences gives better results than using 2M authentic
sentences. Even better results are achieved with 1M authentic and 2M synthetic
sentences and the authors suggest that 1:2 is the optimal authentic-to-synthetic
ratio for the given dataset because adding more synthetic data (2.5M sentences)
resulted in slightly worse results. However, they have not tried oversampling
the authentic data, so we consider the results inconclusive.4

5.2.2 Checkpoint Averaging
A popular way of improving the translation quality in NMT is ensembling,
where several independent models are trained and during inference (decoding)
each target token is chosen according to an averaged probability distribution
(using argmax in the case of greedy decoding) and used for further decisions in
the autoregressive decoder of each model.

However, ensembling is expensive both in training and inference time. The
training time can be decreased by using checkpoint ensembles [Sennrich et al.,
2017], where N last checkpoints of a single training run are used instead of
N independently trained models. Checkpoint ensembles are usually worse
than independent ensembles [Sennrich et al., 2017], but allow to use more
models in the ensemble thanks to shorter training time. The inference time
can be decreased by using checkpoint averaging, where the weights in the N last
checkpoints are element-wise averaged, creating a single averaged model.

Averaging weights of independently trained models (with different random
initialization, including embedding weights) does not work because the model
weights are not “compatible”. Utans [1996] suggests to train an initial network
on all data and then use it as a starting point for training N networks on different
subsets of the data and subsequently average weights of these networks. So
similarly to checkpoint averaging, the averaged models share the same initial
training and are not completely independent.5

Checkpoint averaging has been first used in NMT by Junczys-Dowmunt et al.
[2016, § 6.3], who report that averaging four checkpoints is “not much worse than
the actual ensemble” of the same four checkpoints and it is better than ensembles

3 Rarrick et al. [2011] show that it is beneficial to filter out machine-translated sentences from
the training data, but this concerns target-side synthetic sentences, so it does not contradict
the improvements caused by backtranslation.

4 Poncelas et al. [2018] used 15 training epochs for all experiments, without reporting the
full learning curves nor any indication of convergence. Their best result was achieved with
3M authentic sentences, which was surprisingly even better than 3.5M authentic sentences.

5 In Section 4.3.10, we show that this technique of N “forked” networks can be combined
with checkpoint averaging.
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of two checkpoints. Averaging ten checkpoints “even slightly outperforms the real
four-model ensemble”.

Checkpoint averaging is popular in recent NMT systems [e.g. Vaswani et al.,
2017] because it has almost no additional cost (averaging takes a few minutes),
the results of averaged models have lower variance in BLEU and are almost
always at least slightly better than without averaging (Section 4.3.10).

Checkpoint averaging and its interplay with training dynamics is still not
fully explored and understood. An example of recent surprisingly promising
improvements is stochastic weight averaging [Izmailov et al., 2018], where check-
point averaging is used in combination with cyclic learning rate [Loshchilov and
Hutter, 2016] or constant learning rate and it leads to faster convergence and
better generalization, as it finds much broader optima than standard SGD.

We hypothesize that both our concat-regime backtranslation and stochastic
weight averaging exploit a similar mechanism of supplementary diversification
of the checkpoints being averaged (in addition to the diversity caused by con-
ventional training with decaying learning rate).

5.3 Experiments

In our experiments, we use the Transformer BIG model [Vaswani et al., 2017] as
described in the previous chapter, except for optimizing our models with the
Adafactor algorithm [Shazeer and Stern, 2018] instead of the default Adam.6
We store checkpoints each hour and train on four or eight GTX 1080 Ti GPUs.
We evaluate translation quality with BLEU on the wmt13 test set (unless stated
otherwise) as described in Section 2.2.2.

Our training data is constrained to the data allowed in the WMT2018 shared
task.7 Authentic parallel data (auth) are: CzEng 1.7, Europarl v7, News Com-
mentary v11 and Common Crawl. See Section 2.1 for details on data sizes. The
synthetic parallel data were created by translating Czech News Crawl articles
to English using Nematus 2016 [Sennrich et al., 2016c] and filtering out ca. 3%
of sentences (see Section 5.3.10). We split the synthetic data (synth) into two
parts: articles from 2007–2016 (57M sentences, synth07-16) and articles from
2017 (7M sentences, synth17).

Note that usually the amount of available monolingual data is orders of
magnitude larger than the available parallel data, but in our case it is comparable
(58M auth vs. 64M synth).

6 We use T2T version 1.6.0, transformer_big model and hyper-parameters batch_size=2900,
max_length=150, layer_prepostprocess_dropout=0, learning_rate_schedule=rsqrt_decay,
learning_rate_warmup_steps=8000, optimizer=Adafactor. For decoding, we use alpha=1.0.

7 We use almost all the available parallel English-Czech and monolingual Czech training
data allowed for the WMT constrained task. We exclude only the ParaCrawl corpus (https:
//paracrawl.eu/) because we found even the filtered 10M en-cs sentences too noisy.
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5.3.1 Training on Fully Shuffled Data
Figure 5.1 shows that relative to the authentic-only data, training on mixed
(authentic and synthetic) data results in faster convergence (higher BLEU in
the early training), but only a small improvement (0.1–0.2 BLEU) after 50 hours
of training on 4 GPUs. This contrasts with Sennrich et al. [2016a] reporting
an 2.8–3.4 BLEU improvement on English-German by using 3.6M synthetic
sentences in addition to 4.2M authentic sentences. Note that our English-Czech
data is more than ten times larger, so it is expected that backtranslation as a
data-augmentation technique will lead to smaller improvements than on the
English-German pair. In Figure 5.1, one training epoch takes about 11 hours
for the auth data (58M sentences), 16 hours for synth (64M sentences) and 27
hours for mix (122M sentences).

0 5 10 15 20 25 30 35 40 45 50
15

20

25

Training time (hours)

BL
EU

mix data
auth data
synth data

10 20 30 40 50 60 70 80 90 100 110 120 130

Training steps (thousands)

Figure 5.1: Learning curves for training on authentic, synthetic and mixed data.
All trained on 4 GPUs.

Training on synth leads to the highest BLEU in the first two hours of training,
but it is 0.6 BLEU worse than auth after 50 hours. The source side (English, in
this case) of synth is created by an MT system, so we hypothesize it is more
regular in some sense than the authentic data and thus easier for the encoder to
exploit the regularities.

Our experiments (data not shown) with fine-tuned regime (first train on auth,
then switch to mix) led to the same final BLEU as training on mix from the
beginning, in accordance with the results of Sennrich et al. [2016a]. Switching
from auth to mix at different moments (20, 30 and 40 hours) did not markedly
improve the final BLEU after 50 hours of training (data not shown).

5.3.2 Concat Regime Training
Each of the three training datasets (auth, synth and mix) in Figure 5.1 was
shuffled on the sentence level. Now, we contrast it with a concat dataset, created
simply by concatenating: auth, synth07-16, auth and synth17, in this order. The
sentences within these four data blocks are still shuffled, we only do not shuffle

99



5.3. EXPERIMENTS

0 10 20 30 40 50 60 70 80

24

26

authauth synth auth s. auth synth auth

Training time (hours)

BL
EU

concat
mix

Figure 5.2: Learning curves for training on concat vs. mixed regime backtranslation.
Both trained on 8 GPUs. Arrows show auth/synth training spans for concat.

sentences across the data blocks. Note that we have included auth twice in the
concatenation, so the total ratio of authentic:synthetic data is 116:64.8 Another
motivation was to explore a bit more the effect of the size of concatenated data
blocks (cf. Section 5.3.4).

For further experiments, we switch to 8 GPUs, in order to have a stronger
baseline [cf. Denkowski and Neubig, 2017]. Note that this doubles the effective
batch size relative to the 4GPU experiments, which has a positive effect on BLEU
in addition to faster training (see Section 4.3.7).

Figure 5.2 shows that when the model is being trained on auth, the dev-set
BLEU suddenly increases by ca. 1.6 BLEU. In these auth-training phases, the
model is on average ca. 0.3 BLEU better than when training on mix.

5.3.3 Checkpoint Averaging Synergy
The thick and thin blue curves in Figure 5.3 show that, as expected, averaging
the last 8 checkpoints has a small positive effect (+0.3 BLEU on average) when
training on mix.9 Surprisingly, the positive effect on concat (red curves) is much
larger (over +1.3 BLEU). Importantly, by comparing the thick curves (taking the
maximal value achieved at a given time), we see that averaged concat is over
1.1 BLUE better than averaged mix.

We continued training up to 9 days (1M steps), where the best dev-set BLEU
climbs up to 28.8 for concat-avg8 and 27.8 for mix-avg8,10 while the curves

8 For further experiments in this chapter, we have oversampled authentic data twice also in
the mix dataset, so it has the same size as concat – 180M sentences.

9 When training longer than 80 hours, the improvement caused by averaging on mix is
slightly smaller – ca. +0.2 BLEU (in accordance with our observations in Section 4.3.10).

10 The optimal BLEU=27.80 of mix-avg8was achieved at 607k steps, then it became slightly de-
creasing (possibly overfitting the training data). For concat-avg8, the optimal BLEU=28.84
was achieved at a 775k-steps peak and further peaks at 971k and 1168k steps achieved
almost the same BLEU. We concluded that no substantial improvement could be achieved
by further training.
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Figure 5.3: The effect of averaging 8 last checkpoints with concat and mixed regime
backtranslation. The callouts (pointing to the “initial” and “final” peaks of the
concat+avg8 curve) illustrate the training datasets of the 8 averaged checkpoints
(synth as brown circles, auth as violet circles). Note that both peaks have the same
ratio of 6 auth-trained and 2 synth-trained checkpoints in the average.

follow still the same pattern. Evaluation on our test set (wmt17; see Table 5.1)
confirms that the improvement of concat-avg8 relative to mix-avg8 is ca. +1.0
BLEU even for these fully trained models.

The “initial” peak of concat-avg8 (at 34 and 75 hours in Figure 5.3) follows
six hours after starting training on auth and the “final” peak (at 55 hours in
Figure 5.3) follows two hours after starting training back on synth07-16. Note
that in both cases, the optimal ratio of high-BLEU (auth-trained) and low-BLEU
(synth-trained) checkpoints in the average is 6:2.11

5.3.4 Data Block Size Effect

We increased the size of the authentic data block by repeating auth three times
(data not shown). The maximal improvement caused by averaging was again
ca. +1.3 BLEU, six hours after switching to auth. When training longer on auth,
the improvement caused by averaging gradually decreased to ca. +0.3 BLEU
(similarly as when training on mix).

In another experiment, we decreased auth size, so training on it took only
three hours (data not shown). The 8-checkpoint averaging curve reached its
maximum at the auth:synth ratio of 3:5, which was the highest ratio achievable

11 In further training (data not shown), sometimes the optimal ratio is 5:3, as the auth/synth
switch is not exactly aligned to the one-hour checkpoint interval.
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Figure 5.4: Effect of averaging 8, 16 and 24 checkpoints and exponential moving
averaging (ema) with interpolation constants 0.8 and 0.9.

in this setting, but the BLEU was lower than in Figure 5.3 because the ratio was
far from its optimal value of 6:2.

The advantage of concat-regime backtranslation with checkpoint averaging
is that we do not need to know the optimal ratio of auth and synth in advance
(unlike in mixing). We only need to keep both of these data blocks large enough
(possibly by oversampling, depending on the chosen number of checkpoints to
average), so that all ratios are explored during training and evaluated on the
development set.

5.3.5 Training History Effect

We took the three models from Figure 5.1 (trained on auth, synth and mix)
and continued training on concat. In all three cases, we obtained similar im-
provements and final results as when we trained on concat from the beginning.
We hypothesize the positive effect of concat backtranslation with checkpoint
averaging is independent of the way how a given model was trained in the past
(unless the training diverged, of course).
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5.3.6 Averaging Variants
In addition to 8 checkpoints, we tried averaging also 16 and 24 checkpoints; see
Figure 5.4. The optimal ratio was similar (ca. 12:4 and 18:6, respectively), but
the peaks were flatter and the effects of auth→synth and synth→auth switch
were overlapping. We tried also exponential moving averages with interpolation
constants 0.8 and 0.9, which led to similar curves as avg16 and avg24, respectively.
All these four additional experiments had a similar maximal BLEU as avg8.

5.3.7 Effect of Backtranslation Quality
We tried similar experiments using the Czech→English direction and obtained
similar results and relative improvements caused by concat backtranslation. The
synthetic data for these experiments were based on English News Crawl articles
from 2016–2017, translated by our English→Czech Transformer, which already
uses concat backtranslation (as described in Section 5.3.3).

As a “byproduct,” we obtain a high-quality Czech→English Transformer
system, which we used for translating Czech monolingual News Crawl; however,
due to lack of GPU resources, we translated only articles from years 2016 and
2017. We replaced the synth07-16 and synth17 data sets translated by Nema-
tus 2016 by synth16-17 translated by our Transformer with a notably higher
translation quality. Our Czech→English Transformer is 5.7 BLEU better than
Nematus 2016 on the wmt16 test set. Out of this difference, 2.5 BLEU is caused
by the concat backtranslation and the rest (2.7 BLEU) can be attributed to the
higher quality of Transformer relative to Nematus 2016.

We observed a +0.8 BLEU improvement on the final English→Czech trans-
lation, after we started training using the concat backtranslation on the higher-
quality new data (synth16-17). See Table 5.1 for evaluation on the wmt17 test
set.

Note that for obtaining this final English→Czech system (which won the
WMT2018 shared task, cf. Chapter 6), we iterated the backtranslation process:

1. We reused the Nematus 2016 models trained by Sennrich et al. [2016c] us-
ing fine-tuned backtranslation of English News Crawl 2015 articles, which
were translated “with an earlier NMT model trained on WMT15 data” [Sen-
nrich et al., 2016c].

2. We used Nematus 2016 to translate Czech News Crawl 2007–2017 articles
to English.

3. We trained an English→Czech Transformer on this data (synth07-16 and
synth17) using concat backtranslation with averaging as described in
Section 5.3.3.

4. We used this Transformer model to translate English News Crawl 2016–
2017 articles into Czech.
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5. We trained our Czech→English Transformer model (mentioned at the
beginning of this section) on this data using concat backtranslation with
averaging.

6. We translated Czech News Crawl 2016–2017 articles into English using
this system, producing (a higher-quality) synth16-17.

7. We trained our final English→Czech system on this data, again using
concat backtranslation.

5.3.8 Generalization to Other Test Sets

In order to benefit from the described BLEU improvements in practice, we
need to test whether they generalize to unseen test sets. For this purpose,
we concatenated WMT test sets from 2008–2012 (13.5k sentences total) and
observed the same cyclic pattern as in Figure 5.3, with similar relative BLEU
improvements, and most importantly with the same optimal ratio 6:2 of auth-
trained and synth-trained checkpoints in the average. However, when testing
on wmt16, the optimal ratio was 5:3 or even 4:4 and using the models averaged
with the 6:2 ratio resulted in lower improvements (+0.4 BLEU) relative to the
mix+avg8 baseline (while the 5:3 ratio results in ca. +1.0 BLEU improvements).

This seemingly disappointing observation led us to further improvements
and, more importantly, to a better understanding of the mechanisms behind the
observed effects, as described below.

5.3.9 Inspecting the Translation Differences

We inspected the actual translations of our dev set (wmt13) and focused on
comparing the outputs of a (low-BLEU) synth-trained model and a (high-BLEU)
auth-trained model, both without averaging. We used the MT-ComparEval
toolkit [Klejch et al., 2015] for the manual inspection.

On the one hand, we noticed sentences where the synth-trained model
output was more fluent. For example, “Tories” was kept untranslated in the
auth-trained output, and correctly/fluently translated to Czech as “Toryové”
in the synth-trained output. On the other hand, we noticed sentences where
the synth-trained was less adequate. For example, “rakfisk” was correctly
kept untranslated in the auth-trained output (as there is no established Czech
translation for this Norwegian dish), but incorrectly (though fluently) translated
as “rakytník” (meaning Hippophae or sea buckthorn) in the synth-trained output.

We saw a similar type of differences when comparing the outputs of the
synth-trained and auth-trained averaged models, but here the auth-trained avg8
output seemed to combine the strengths of both synth- and auth-trained model
outputs. We also observed that the synth-trained output sentences are slightly
longer on average and include a higher percentage of untranslated sentences
(but in our final experiments this is not true – see the next section).
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5.3.10 Training Data Filtering
In our initial experiments mentioned in the previous section, ca. 0.5% of dev-set
sentences remained untranslated in the synth-trained output. We found out that
the Czech monolingual data set (News Crawl 2007–2017) contains many English
sentences. Those sentences were either kept untranslated or paraphrased when
preparing the synth data with backtranslation. Thus the synth data included
many English-English sentence pairs and models trained on synth thus had a
higher probability of keeping a sentence untranslated.

In order to filter out the English sentences from the Czech data, we kept
only sentences containing at least one accented character.12 We also filtered out
sentences longer than 500 characters from the synth data. Most of these sen-
tences would be ignored anyway because we are training our Transformer with
max_length=150, i.e. filtering out sentences longer than 150 subwords (cf. Sec-
tion 4.3.4). Sometimes a Czech sentence was much shorter than its English trans-
lation (especially for the translations by Nematus 2016) – because of filler words
repeated many times, which is a well-known problem of NMT systems [Su-
darikov et al., 2016]. We filtered out all sentences with a word (or a pair of words)
repeated more than twice using a regular expression ’ (\S+ ?\S+) \1 \1 ’.

This way, we filtered out ca. 3% of sentences and re-trained our systems.
After this filtering, we did not observe any untranslated sentences in the synth-
trained output. We re-ran all the experiments; all figures and BLEU scores
presented in this chapter are thus based on the filtered training data.

5.3.11 Separating Models for CZ and nonCZ
In the wmt13 test set, 17% of sentences originate from Czech news servers (e.g.
aktualne.cz) and the rest from non-Czech news servers (e.g. bbc.com). All
WMT test sets include the server name for each document in metadata, so we
were able to split wmt13 (and later other WMT test sets) into two parts: CZ (for
Czech-domain articles, i.e. documents with docid containing “.cz”) and nonCZ
(for non-Czech-domain articles).

Figure 5.5 compares BLEU learning curves of a single concat-backtranslation-
trained model evaluated separately on these two parts. When focusing on the
thin curves of models without averaging, we can see that when the model is
being trained on synth, it performs much better on the CZ test set than on the
nonCZ test set. When trained on auth, it is the other way round. Intuitively,
this makes sense: The target side of synth are original Czech sentences from
Czech newspapers, similarly to the CZ test set. In auth, over 90% of sentences
were originally written in English about “non-Czech topics” and translated into
Czech (by human translators), similarly to the nonCZ test set. In Section 5.5.3, we
will discuss these two closely related phenomena: a question of domain (topics)
in the training data and a question of so-called translationese effect, i.e. which

12 This simple heuristics is surprisingly effective for Czech. In addition to English sentences,
it filters out also some short Czech sentences, sentences in other languages (e.g. Chinese)
and various “non-linguistic” content, such as lists of football or stock-market results.

105

https://www.aktualne.cz/
http://www.bbc.com/


5.3. EXPERIMENTS

700 720 740 760 780 800 820 840 860 880 900 920 940 960 9801,000
26

27

28

29

30

31

auth synth16-17 auth synth16-17 auth synth16-17 auth 3× synth16-17

774k

788k

Training steps (thousands)

BL
EU

CZ nonCZ CZ+avg8 nonCZ+avg8

Figure 5.5: Evaluating concat backtranslation on the Czech-domain (CZ) and non-
Czech domain (nonCZ) portion of wmt13. The callouts mark maxima of CZ+avg8
(at 774k steps) and nonCZ+avg8 (at 788k) curves.

side of the parallel training data (and test data) is the original and which is the
translation.

In Section 5.3.8, we observed that the optimal ratio of auth-trained and synth-
trained checkpoints differs between wmt13 and wmt16 (6:2 vs. 4:4). This can be
explained by an interaction of two factors. First, we have shown that the CZ-
evaluation prefers synth-trained models and the nonCZ-evaluation prefers auth-
trained models. Second, wmt13 contains only 17% of Czech-domain sentences,
whereas wmt16 contains 50% of such sentences. WMT test sets in 2008–2013 were
created by selecting news from 5–7 languages and using the same set of news
articles for all the language pairs. Thus, the English-Czech test sets in 2008–2013
contain mostly sentence pairs where both sides are actually translations (e.g.
an originally Spanish sentences translated to English and Czech). WMT test
sets in 2014–2018 use only direct translations for each language pair (so for each
language pair X-EN, half of the sentences are originally English and the other
half originally X).

Based on these observations, we prepared a CZ-tuned model and a nonCZ-
tuned model. Both models were trained and evaluated in the same way as
in Figure 5.5. For the CZ-tuned model, we selected the checkpoint with the
best performance on wmt13-CZ (CZ+avg8 checkpoint at 774k steps, 3:5 ratio).
Similarly, for the nonCZ-tuned model, we selected the checkpoint with the best
performance on wmt13-nonCZ (nonCZ+avg8 checkpoint at 788k steps, 6:2 ratio).
Note that both the models were trained jointly in one experiment, just selecting
checkpoints at two different moments.

We have confirmed that the model tuned on wmt13-CZ obtains near-optimal
results on wmt16-CZ and similarly for the nonCZ-tuned model and test sets
(data not shown). Thus, we have resolved the disappointing generalization
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problems reported in Section 5.3.8. Moreover, we obtained a further +0.2 BLEU
improvement on wmt17 (Table 5.1) by translating the wmt17-CZ portion with the
CZ-tuned model and the wmt17-nonCZ portion with the nonCZ-tuned model.

5.3.12 Tuning Translation Length

We also tried tuning the beam-search parameter α [Wu et al., 2016], which affects
the translation length.13 For these experiments, we concatenated the WMT test
sets 2008–2016 and split them to wmt08-16-CZ (Czech domain, 7 400 sentences)
and wmt08-16-nonCZ (the rest, 17 800 sentences). We define length ratio as the
total length of all translations produced by the MT system divided by the total
length of all reference translations. All lengths are measured in words.
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Figure 5.6: Effect of α on BLEU and length ratio for the two systems described in
Section 5.3.11: nonCZ-tuned (788k steps) and CZ-tuned (744k steps). The upper
graphs show BLEU, the lower graphs show length ratio, i.e. length of the trans-
lations divided by the length of the references. The left graphs show scores on
the wmt08-16-nonCZ set and the right graphs on wmt08-16-CZ. The green vertical
lines mark the α that results in the maximum BLEU.

Figure 5.6 explores the effect of α on our two final systems (nonCZ-tuned and
CZ-tuned) and on these two data sets. The optimal value of α (marked with a
green vertical line) according to BLEU is the same for both systems, but different
for the two data sets: 1.3 for wmt08-16-nonCZ and 0.5 for wmt08-16-CZ. However,
our default value of α=1.0 (used in all experiments in this chapter) is almost
optimal for both the systems. For simplicity, we decided to keep α=1.0 also for
our final systems evaluated on wmt17 (Section 5.4).

13 In general, lower α leads to shorter sentences in number of subwords. This usually means
shorter in number of words. However, sometimes it can lead also the the same number of
words, but using more frequent words (which consist of fewer subwords).
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Figure 5.7: Effect of α and source length on the length ratio for the nonCZ-tuned
system evaluated on wmt08-16-nonCZ. Red colors mark too short translations,
blue colors mark too long translations.

Interestingly, the length ratio is almost the same for the two systems, although
the BLEU scores differ. This means that the effect of CZ- and nonCZ- tuning using
concat backtranslation cannot be explained only by tuning the translation length.

Figure 5.6 also shows that for wmt08-16-nonCZ, the optimal α (according to
BLEU) is achieved with length ratio 0.98, i.e. a bit shorter translations than in the
reference translation. Trying to make the translations as long as the reference
using the α parameter would result in much lower BLEU (because of lower
n-gram precision). In contrast, for wmt08-16-CZ the optimal α for both systems
is achieved with length ratio 1.0.

Figure 5.7 shows again the effect of α on the length ratio, but this time consid-
ering also the source-sentence length14 and focusing on the nonCZ-tuned system
evaluated on wmt08-16-nonCZ. We can see that α makes the translations longer
for all source lengths, but it has the largest effect on source lengths of 5–15 words
(for which the translations are the shortest relative to reference with α=0, but
the longest relative to reference with α=1.4).

5.4 Evaluation on WMT2017

In Table 5.1, we evaluate the models developed in this chapter on an unseen test
set – wmt17 (cf. Section 2.1.2). We report three automatic metrics: case-sensitive
(cased) BLEU,15 case-insensitive (uncased) BLEU16 and a character-level metric

14 We bucketed the 17.8k sentence pairs by their source-language length into 15 buckets, each
with at least 1000 sentences.

15 using the default sacreBLEU tokenization for better comparability with the official results
at http://matrix.statmt.org. The sacreBLEU signature is
BLEU+case.mixed+lang.en-cs+numrefs.1+smooth.exp+test.wmt17+tok.13a.

16 using the international tokenization for better comparability with other BLEU results in
this thesis. The sacreBLEU signature is
BLEU+case.lc+lang.en-cs+numrefs.1+smooth.exp+test.wmt17+tok.intl.
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BLEU BLEU chrF2
system cased uncased cased

Nematus (WMT2017 winner) 22.80 23.29 0.5059
our baseline Transformer 23.84 24.40 0.5164

our mixed backtranslation 24.85 25.33 0.5267
our concat backtranslation 25.77 (+0.92) 26.29 0.5352
+ higher quality backtranslation 26.60 (+0.83) 27.10 0.5410
+ CZ/nonCZ tuning 26.81 (+0.21) 27.30 0.5431

Table 5.1: Final automatic evaluation on the (English→Czech) wmt17 test set. The
three scores in parenthesis show BLEU difference relative to the previous line.

chrF2;17 see Section 2.2.2 for details. We compare our results with two published
systems:

• Nematus [Sennrich et al., 2017] is a Deep-RNN system, which presents the
previous state of the art on this test set – it was significantly better than all
other systems in WMT2017, also in manual evaluation; see Section 4.4 for
details.

• Our baseline Transformer is the system presented in Chapter 4 and pub-
lished in Popel and Bojar [2018]. It is implemented in the T2T framework,
trained for 8 days on 8 GPUs with 8-checkpoint averaging, but without
any backtranslation.

The most relevant “baseline” for this chapter is:

• Our mixed backtranslation, which uses the same setting (including hyper-
parameters) as “our baseline Transformer” except that it uses T2T 1.6.0
(instead of 1.2.9 as in Chapter 4) with Adafactor optimizer [Shazeer and
Stern, 2018] (instead of Adam) and can thus utilize a higher batch size (2900
instead of 2000) with the same GPU memory. It is trained with mixed-
regime backtranslation (which is the previous state-of-the-art technique
for exploiting monolingual data).

The test-set results confirm our findings on the dev set:

• Using concat backtranslation (with checkpoint averaging) improves the
translation quality by +0.9 BLEU relative to using mixed backtranslation.

• Iterating the process of concat backtranslation and using our Transformer
instead of Nematus for producing the synthetic data leads to further im-
provement of +0.8 BLEU.

• Tuning separate models for translating Czech-domain and non-Czech-
domain sentences adds +0.2 BLEU.

17 chrF2+case.mixed+lang.en-cs+numchars.6+numrefs.1+space.False+test.wmt17
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All these BLEU improvements are statistically significant (p < 0.05), although
the reliability of single-reference BLEU for such high (near-human) quality
translation is questionable (cf. Section 2.2.2).

In total, our improvements in Chapters 4 and 5 improve the translation
quality by 4 BLEU points over the previous (one year old) state of the art. See
Chapter 6, for a comparison on wmt18 with this-year state of the art, including a
manual evaluation.

5.5 Discussion

5.5.1 Relation to Best ML Practices
We find it interesting that some of our results and approaches considerably
improve the MT performance, even though they seem counter-intuitive at the
first sight. For example, when substituting high-BLEU checkpoints in the av-
erage with low-BLEU ones, the BLEU of the averaged model is improved (but
this can be explained by the complementary strengths of more diverse models).
Also, concat-regime backtranslation goes against the standard recommendation
that in SGD the training data should be shuffled (or follow the natural order in
case of predicting time series, or increasing complexity in case of curriculum
learning [Bengio et al., 2009]).

5.5.2 Relation to Dropout
We observed (in an experiment not reported so far) that disabling dropout18

slightly improves our dev-set BLEU even after several days of training, in con-
trast with dropout 0.1 and 0.3, which are the values suggested by Vaswani et al.
[2017] for EN-FR and EN-DE, respectively. Our EN-CS training data set (58M
auth and 64M synth sentences) is much larger than both EN-FR (36M sentences)
and EN-DE (4.5M sentences). Dropout is a form of regularization which can be
interpreted as an ensemble of exponentially many models with shared weights
[Srivastava et al., 2014]. Checkpoint averaging with concat-regime backtransla-
tion can be also viewed as a form of regularization.19 It is interesting that this
regularization is effective even in cases when dropout is not.

5.5.3 Relation to Domain Adaptation and Translationese
Backtranslation is recognized as a form of domain adaptation – Sennrich et al.
[2016a] investigated adaptation to multiple domains by fine-tuned backtransla-
tion on the respective monolingual data. We show that concat backtranslation
can be successfully used for joint training of two models – tuned for translation
of Czech-origin and non-Czech-origin texts.

18 setting layer_prepostprocess_dropout=0
19 The training loss when training on auth is much higher than on synth. Concat backtrans-

lation does not improve the training loss, but it improves the generalization.
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There are two closely-related aspects of such domain adaptation. The first
aspect is adaptation to the topics of the translated texts. English-origin news
usually report about USA, UK or worldwide topics, while Czech-origin news
often report about Czech-specific topics (worldwide topics are also covered,
but usually from the Czech point of view). The second aspect is adaptation to
translationese – adaptation of an English→Czech MT system to translation of
original-English texts vs. texts translated to English from another language.20

We have noticed both these aspects in our experiments, but it is difficult to
exactly measure their impact because we do not have enough training parallel
texts about Czech topics written originally in English and later translated to
Czech.

When comparing the distribution of sentence lengths in our CZ and nonCZ
data, we observed an example of the translationese aspect. The nonCZ data
set (mostly original-English) contains many short English sentences where the
Czech translation is notably longer. Most of these sentences are news headlines,
where in English it is common to use a special style (or even grammar) for
brevity, e.g. “Grave-tenders robbed” translated as “Návštěvník hřbitova při údržbě
hrobu okraden” (A visitor of a graveyard robbed during the maintenance of a grave).

In Section 2.6, we described positive and negative aspects of translationese.
Ideally, MT should simulate professional (high-quality) translators, i.e. using
translationese only where necessary or appropriate. However, at least 40% of
our parallel training data was not translated by professional translators and
even the rest may contain untranslated or misaligned segments.

5.5.4 Relation to Unsupervised Machine Translation
Our iterated backtranslation described in Section 5.3.7 is similar to the on-the-fly
backtranslation [Artetxe et al., 2018] used in unsupervised NMT, where both
translation directions are trained jointly and “as training progresses and the model
improves, it will produce better synthetic sentence pairs through backtranslation, which
will serve to further improve the model in the following iterations” [Artetxe et al., 2018].
In on-the-fly backtranslation, the translation direction being trained is switched
after each batch, while in iterated backtranslation it is switched after training the
full system for several epochs.

20 If the other language is Czech, we deal with re-translation, also known as backtranslation in
the field of translation studies (cf. footnote 2). Thus, backtranslation in the NMT sense is
useful for backtranslation in the translation-studies sense.
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5.6 Conclusions
We have presented three novel methods for improving MT quality:

• concat-regime backtranslation, possibly applied iteratively,

• checkpoint averaging of diverse models trained on different types of data,
and

• domain adaptation by jointly tuning two models specialized for translation
of Czech-origin texts (translationese on the source side) and of non-Czech-
origin texts (mostly original English on the source side).

These methods can be used separately,21 but the strongest synergy is achieved
when they are used jointly.

21 Concat backtranslation without averaging is presented in Figure 5.2. We focus on diversify-
ing the averaged checkpoints by concat backtranslation, but one could imagine many other
ways, e.g. switching different domains or genres. Finally, two models (CZ and nonCZ) could
be tuned even without concat backtranslation, e.g. by fine-tuning two separate models on
authentic parallel original-translationese and translationese-original data, if this metadata
is available.
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Chapter 6

Final Evaluation and Discussion

The original is unfaithful to the translation.
Jorge Luis Borges

In the previous chapters, we described individual components and aspects
of our two MT systems (TectoMT and Transformer). Our evaluations in the
respective chapters focused mostly on the impact of these components and
aspects. In this chapter, we evaluate each system as a whole and compare it
with other systems submitted to WMT each year. In Section 6.1, we present
a summary of the state of the art in English→Czech MT over the last twelve
years, which witnessed several paradigm shifts. In Section 6.2, we present the
results of the WMT2018 automatic and manual evaluation of English→Czech
and Czech→English MT systems. We show that our Transformer system was
ranked in the manual evaluation as significantly better than the human reference
translations. Finally, in Section 6.3, we discuss the surprising result and provide
a list of hypotheses.

6.1 WMT English-to-Czech Evaluations Summary
We present a summary of the results of both automatic and manual evaluation
of WMT shared tasks in 2007–2018. See Section 2.3 for a description of WMT
and the categories of MT systems presented in this section. See Section 2.2 for a
description of the automatic and manual evaluation methods. To remind the
basic facts: The WMT manual evaluation involves usually over 2000 judgments
per a single MT system. The secret test set usually contains ca. 3000 sentences
taken from recent news articles.

Table 6.1 presents an overview of six categories of MT systems (as defined
in Section 2.3). For each category and each year, the best system according to
the manual WMT evaluation was selected. We report both the “well-known”
names of MT systems or frameworks (such as Moses or Nematus), as well as the
names that are reported in the official WMT results, so the readers of this thesis
can find more details about the systems in WMT proceedings.1 Note that even if
a same system name is reported for several years, it almost always represents a
different system – trained on newer (and larger) training data. Sometimes even
the system architecture and training techniques differ notably, e.g. CU-Bojar in
2007–2011 used different configurations of the Moses system.

1 Available from http://www.statmt.org/wmt17/results.html and similarly for other
years,
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category system name (as reported in official WMT results)

TectoMT TectoMT, Chapter 3 (CU-Popel in 2011, CU-TectoMT other years)
RBMT PC-Translator

(PCT in 2007, PC-Trans in 2009–2010, Commercial2 in 2011–2014)
SMT Moses [Koehn et al., 2007] (CU-Bojar in 2007–2011 and 2013,

UEdin in 2012, UEdin-unconstrained in 2014, UEdin-JHU in 2015,
JHU-PBMT in 2016, Moses in 2017–2018)

Online online system (Google in 2009, Online-B since 2010)
Chimera Chimera [Bojar et al., 2013], Section 2.3

(CU-Depfix in 2012–2014, CU-Chimera since 2015)
NMT various systems:

Montreal (GroundHog) in 2015 [Jean et al., 2015],
UEdin-NMT (Nematus) in 2016–2017 [Sennrich et al., 2016c, 2017],
CUNI-Transformer (T2T, Chapter 5) in 2018

Table 6.1: Overview of systems selected for our summary. Abbreviations used:
Charles University (CU, CUNI), University of Edinburgh (UEdin), Johns Hopkins
University (JHU). The names of commercial online systems are anonymized in
WMT since 2010.

Figure 6.1 shows BLEU scores of the selected six English→Czech systems or
categories of systems. In addition, we plot a median BLEU (out of all systems
submitted in a given year). Note that there is a different test set each year, so the
BLEU scores are not comparable across years. For example, we can see a “drop”
in BLEU in years 2012, 2015 and 2017 for all systems, which is likely caused by a
more “difficult” test set or the style of reference translations.2 However, note that
the RBMT system submitted to WMT in 2010–2015 is exactly the same version
of PC-Translator and its BLEU curve for these years is almost constant within
the range 9–11 BLEU, which roughly corresponds to the variance in test set
“difficulty”.3 Taking this into account, we can see the general trend of growing
BLEU score over years for the best system.

Table 6.2 and Figure 6.2 show the results of manual evaluation. See Sec-
tion 2.2.1 for an overview of the evaluation types. As can be seen in Table 6.2,
the range of manual evaluation scores varies greatly over the years, so in Fig-
ure 6.2, we plot a relative score for each system: we scale the scores linearly into
interval ⟨0, 1⟩ (the worst system gets 0 and the best system gets 1). Note that for
each year, we plot only a subset of the submitted systems, which usually does
not contain the worst system (except for TectoMT in 2008–2009 and RBMT in
2015).

2 For example, inconsistencies in the encoding of quotation marks (Unicode typographic vs.
plain ASCII) may result in almost one BLEU point difference [Popel and Žabokrtský, 2009].

3 Different systems may have various sensitivity to the test set “difficulty”.
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Figure 6.1: WMT English→Czech BLEU evaluation.
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Figure 6.2: WMT English→Czech manual evaluation (higher=better).

year eval type TectoMT RBMT SMT Online Chimera NMT

2007 ≥ranking 49.9 *40.5
2008 ≥ranking 49.4 71.5 *63.4
2009 ≥ranking 48.0 67.0 *61.0 66.0
2010 ≥ranking 60.0 62.0 66.0 70.0
2011 ≥ranking *57.7 51.1 63.7 64.6
2012 >ranking *53.1 45.7 *55.9 63.0 66.4
2013 >ranking 47.6 45.7 58.0 56.2 57.8
2014 TrueSkill −17.5 −59.4 35.6 16.9 37.1
2015 TrueSkill 20.9 11.4 *50.3 51.5 68.6 46.7
2016 TrueSkill −3.0 34.0 19.0 30.0 *59.0
2017 srcDA 59.7 54.1 *62.0
2018 refDA 49.7 *64.1

Table 6.2: WMT English→Czech manual evaluation scores. The overall winner in
a given year is marked with bold (winner means that no other system is statistically
significantly better in pairwise comparison; thus there may be more winners each
year). The constrained winner is marked with * (meaning that no other constrained
system is significantly better).
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We can conclude with the following observations:

• The best system in 2007–2009 was RBMT, although it had lower BLEU
than SMT.4

• In 2010–2011, the best system was Online-B, followed by SMT.5 In 2012,
the best system was Depfix post-editing of Online-B (shown here as a
Chimera-category system; cf. Section 2.3).

• In 2013–2015, the best system was Chimera: in 2013–2014 it was tied with
SMT as the WMT winner, in 2015 it was the sole winner, significantly better
than all other systems. All these Chimera systems (2013–2015) included
TectoMT (as described in Chapter 3), which contributed essentially to the
success of Chimera [Tamchyna and Bojar, 2015]; cf. Section 2.3.

• Since 2016, NMT has been significantly better than all other systems.

• TectoMT was never the overall WMT winner, but in 2011–2012 it was one
of the constrained winners, i.e. no other constrained system (using only the
allowed training data) was significantly better.

Discussion on Paradigm Shifts
We can see paradigm shifts from Rule-based MT to Statistical MT and finally in
the last few years to Neural MT (NMT). We focus on English→Czech because
for other translation directions, only some of the MT categories are available:
TectoMT was submitted to Czech→English WMT only in 2015–2016; Chimera
and PC-Translator (RBMT system) were submitted only to English→Czech.
However, similar trends in paradigm shifts can be seen in other language pairs
as well.

4 A possible explanation of the mismatch between BLEU and manual ranking is that BLEU
as an n-gram based metric is biased towards phrase-based systems [Bojar et al., 2010]. Also,
low BLEU scores (say, below 20) have a low correlation with humans in general [Bojar et al.,
2010].

5 Online-B in 2010–2011 is most likely also based on phrase-based SMT.
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6.2 WMT2018 Evaluation

In this section, we present results of the automatic and manual evaluation of all
systems submitted to WMT2018 for English→Czech and Czech→English

Description of Systems

The set of submitted systems is the same for both directions: three popular
online systems with anonymized names (Online-A, Online-B and Online-G)
and two academic systems: UEdin-NMT and our Transformer.

UEdin-NMT is the newest version of Nematus system, submitted by a team
from the University of Edinburgh, who won the WMT2017 shared task for
English→Czech and Czech→English [Sennrich et al., 2017]. According to the
available information,6 it uses a similar setup as in 2017 – an ensemble of
eight Deep-RNN models (4 left-to-right and 4 right-to-left) trained with back-
translated data. However, the details on training and improvements since last
year were not published yet.

Transformer is our system as described in Chapter 5, with the following
post-processing (1) and pre-processing (2, 3) adjustments:

1. We deleted phrases repeated more than twice (immediately following each
other) from the output; we kept just the first occurrence. We considered
phrases of one up to four words.

2. For English→Czech, we converted quotation symbols in the Czech trans-
lations to the typographically correct Unicode symbols.

3. For Czech→English, we inserted pronoun ona (she) into the Czech transla-
tions as described below. Our Transformer system translates each sentence
independently of other sentences. If the gender information is missing in
a sentence, it prefers masculine-geneder translations, e.g. “Není doma” is
translated as “He is not home”, although in some context “She is not home”
is the correct translation.

We analyzed the documents in Treex (see Section 2.4.1) and found sen-
tences where the female pronoun in subject position was dropped, and the
coreference link was pointing to a noun representing a human (i.e. exclud-
ing grammatical-only female gender of inanimate objects and animals) in
a different sentence. This preprocessing affected only 1% of sentences in
our dev set and for most of them the English translation was improved,
although the overall BLEU score remained the same. We consider this
solution as a temporary workaround before document-level NMT [e.g.
Kuang et al., 2017] is available in T2T.

6 http://matrix.statmt.org/systems/show/3488
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Evaluation Description
In the automatic evaluation, we report a character-based chrF2 score and two
variants of BLEU score (cf. Section 5.4).

In the manual evaluation results, we report results kindly provided by the
WMT organizers (before official publication). The manual annotations were
carried out by two groups: annotators hired via the Amazon’s Mechanical
Turk crowd-sourcing platform (crowd) and researchers (or people hired by the
researchers) who submitted the systems.

As mentioned in Section 2.2.1, two types of manual evaluation were carried
out in WMT2018: refDA and srcDA. In refDA (reference-based direct assess-
ments) evaluation, the annotators see the system translation of a single sentence
together with a reference translation. The task is to assess the quality of the
translation relative to the reference on a 0–100 scale. The srcDA (source-based
DA) evaluation is similar, but instead of the reference translation, the source
sentence is shown to the annotators. In this case, the reference can be used as
one of the compared systems, in order to compare the quality of MT relative to
the quality of humans. Figure 6.3 shows an example of the annotation interface.

Figure 6.3: A screen shot of the Appraise [Federmann, 2012] manual evaluation
interface for Czech→English refDA.

Results
Tables 6.3 and 6.4 show the automatic and manual evaluation results for English
→Czech. Similarly, Tables 6.5 and 6.6 show the Czech→English. We can see
our Transformer system is the best one in both directions in all metrics. Interest-
ingly and surprisingly, it is also significantly better then the human reference
translation.
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English→Czech

BLEU BLEU chrF2
system uncased cased cased

our Transformer 26.82 26.01 0.5372
UEdin NMT 24.30 23.42 0.5166
Chimera 21.43 19.81 0.4838
Online-B 20.16 19.45 0.4854
Moses 17.88 16.36 0.4594
Online-A 16.84 15.74 0.4584
Online-G 16.33 15.11 0.4560
TectoMT 13.09 12.43 0.4332

Table 6.3: WMT2018 English→Czech automatic evaluation. For reference, we have
included also two systems not participating in WMT2018: Moses and TectoMT.

crowd researchers
srcDA srcDA refDA

system Avg % Avg z Avg % Avg z Avg % Avg z

our Transformer 79.5 0.705 84.5 0.669 64.1 0.610

UEdin NMT 74.1 0.486 79.8 0.521 58.0 0.396
reference 73.1 0.484 78.6 0.483
Online-B 65.2 0.126 68.1 0.127 49.7 0.113
Online-A 55.6 −0.248 59.4 −0.179 43.9 −0.090
Online-G 50.4 −0.446 54.1 −0.354 40.1 −0.218

Table 6.4: WMT2018 English→Czech manual evaluation. Significantly different
scores (p < 0.05, Wilcoxon signed-rank test) are separated by horizontal lines.
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Czech→English

BLEU BLEU chrF2
system uncased cased cased

our Transformer 35.64 33.91 0.5876
Online-B 34.12 33.06 0.5801
UEdin NMT 33.58 31.78 0.5736
Online-A 28.47 26.78 0.5447
Online-G 25.20 22.53 0.5310
TectoMT 11.36 10.02 0.4501

Table 6.5: WMT2018 Czech→English automatic evaluation.

crowd researchers
srcDA refDA

system Avg % Avg z Avg % Avg z

our Transformer 80.6 0.546 66.5 0.462

UEdin NMT 75.5 0.374 61.3 0.265
reference 72.5 0.284
Online-B 71.0 0.215 59.5 0.208
Online-A 64.4 −0.058 55.1 0.030
Online-G 59.6 −0.227 50.7 −0.114

Table 6.6: WMT2018 Czech→English manual evaluation. Significantly different
scores (p < 0.05, Wilcoxon signed-rank test) are separated by horizontal lines.
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6.3 Discussion
Hajič et al. [2004] wrote: “The upper bound for the performance of our system would
be translation by humans.” Twelve years afterwards, the authors of Google Neural
Machine Translation system (GNMT) reported in their article “[GNMT]: Bridg-
ing the Gap between Human and Machine Translation” [Wu et al., 2016] that
“In some cases human and GNMT translations are nearly indistinguishable on the rel-
atively simplistic and isolated sentences sampled from Wikipedia and news articles for
this experiment.” However, the human translations by “average bilingual human
translators” were still evaluated as (slightly) better than GNMT for all six tested
language pairs (en↔es, en↔fr, en↔zh).

Less than two years afterwards, the manual srcDA evaluation results for
English↔Czech (presented in Tables 6.4 and 6.6) show that Transformed signifi-
cantly outperformed human translation and they suggest we should reconsider
the presupposition of Hajič et al. [2004].

Naturally, the question arises how is it possible that an MT system is evaluated
as better than humans. In this section, we would like to discuss whether we
can omit the two emphasized words from the previous sentence. While the final
answer is still inconclusive, we believe the discussion below provides insight
which may be useful in further improvements of (N)MT systems, as well as
improvements of MT-evaluation methods.

We first discuss a concern about the quality of reference translations. Sub-
sequently, we present several hypotheses trying to explain the surprising and
difficult-to-believe results. We focus on the English→Czech direction, but some
of our hypotheses are relevant also for the opposite direction.

Our discussion is partially based on inspecting translation examples from the
wmt18 test set. We uploaded the test set to http://wmt.ufal.cz/ and used the
online MT-ComparEval service [Klejch et al., 2015] for exploring the translations.
MT-ComparEval was designed for comparing two MT-systems relative to the
reference, not for comparing the quality of an MT system and the reference.
Nevertheless, its visualization capabilities proved useful even for the latter
purpose.
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Concerns about non-professional references and non-calibrated evaluation

Our first concern was that the quality of WMT2018 human references is lower
than in other years, perhaps produced by unskilled translators. However, this
is not the case: English-Czech references in WMT2018 were created by a well-
known professional translation agency7 “with a layer of quality control, and a small
quality control check by [the WMT organizers] on a random sample”.8

While we spot some (usually minor) translation errors in the references
(see below), we have no reason to suspect the translations were not created by
professional translators, most likely of a higher quality than average bilingual
human translators.

Our second concern were “non-calibrated raters and translators with a varying
level of proficiency” mentioned by Wu et al. [2016] as a possible flaw in their
evaluation methodology. We are not aware of any such flaws in the WMT srcDA
evaluation. Unlike crowd-sourced translations, professional translation agencies
should guarantee a stable level of quality and consistency. When reporting srcDA
scores (in Tables 6.4 and 6.6), we provided both “Avg %” and “Avg z” measures
(see Section 2.2.1). In “Avg z”, all scores are standardized first, i.e. calibrated, so
that the scores from each annotator have zero mean and standard deviation
equal to one. In addition, srcDA evaluation methodology includes several other
techniques that improve consistency and reliability; see [Graham et al., 2016]
for details.

Even professional human references contain errors

Despite originating from professional translators, several errors are observed in
the WMT reference translations each year.

For example, there is a grammatical error in subject-predicate agreement
in the reference translation in the following sample. Verb form měli (they had)
is not correct in this sentence because the referenced subject myši (mice) has a
feminine gender in Czech; the correct form is měly.

src-orig The more tryptophan the mice had in their diet,
the more of these immune cells they had.’

ref Čím více tryptofanu měly myši ve své stravě,
tím více měli těchto imunitních buněk.“

our Čím více tryptofanu měly myši v potravě,
tím více těchto imunitních buněk měly.“

Reference translations are affected by translationese effects

In the previous example, we can also see that the reference translation translates
in their diet as ve své stravě. Although this is grammatically correct, using the
possessive pronoun in this context is not natural in Czech – the relation between

7 Translated.net (https://www.translated.net/en/)
8 Personal communication with the WMT organizers.
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diet and mice is implicit in the Czech sentence even when omitting the pronoun.
Using extra possessive pronouns is a common (negative) translationese effect,
when translating from English, where the possessive pronoun is necessary in
this context.

Another translationese effect can be seen in the following sentence. The
human translator decided to translate including as Patří mezi ně, so that the two
names can be translated in nominative case with no suffix changes from the
English original. This may be the preferred translation (and thus a positive
translationese effect) in academic or legal texts, where the exact spelling of
names is important. However, this sentence originates from a story in the Time
Magazine, so the more natural-sounding Transformer translation (with names
in genitive) seems appropriate (as well).

src-orig Some of the top OPM leaders hail from Paniai,
including Tadius Yogi and Daniel Yudas Kogoya.

ref Někteří z vůdců OPM pocházejí z Paniai.
Patří mezi ne Tadius Yogi a Daniel Yudas Kogoya.

our Někteří z nejvyšších představitelů OPM pocházejí z Paniai,
včetně Tadiuse Yogiho a Daniela Yudase Kogoyi.

Humans are prone to typos

The reference translation in the previous example contains a typographical error:
ne (no) instead of ně (them). As both words exist in Czech, this error cannot be
reported by simple (context-unaware) spell-checkers.

The annotators do not see any context

In the srcDA type of evaluation the annotators see always just a single sentence
and its translation. They are restricted in the same way as most current MT
systems, which also translate each sentence independently. In the following
example, the reference uses a masculine form of the verb, but Transformer
feminine. While Dixie is a common female first name, in this example it is
actually a male surname, so the reference is correct. However, annotators did
not have this information, so they could assign better score to the incorrect
Transformer translation.

src Dixie claimed that Sally and her ex-boyfriend Lewis Sprotson
were fighting on the fateful night.

ref-orig Dixie tvrdil, že Sally a její ex přítel Lewis Sprotson
se osudné noci hádali.

our Dixie tvrdila, že se Sally a její expřítel Lewis Sprotson
v osudnou noc hádali.

Note that this phenomenon does not imply that the Transformer translation
will be necessarily scored better than the reference in human evaluation. This
is because in both srcDA and refDA, the annotators see always just a single
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translation and assign it an absolute-quality score; they do not rank alternative
translations. The sentences are presented to the annotators in random order.
Even if an alternative translation of the same source sentence is presented to
the same annotator, it may be several days after scoring the first translation
and the annotators are highly unlikely to remember which score (0–100) they
had assigned. Note that this property is not considered as a flaw of DA, by the
authors of DA [Graham et al., 2016].

The original is unfaithful to the translation

Note that half of the 3000 sentences in wmt18 was originally written in Czech
and the other half in English. Already in the previous example, the “reference”
was actually not a translation but an original Czech sentence (from a Czech
tabloid newspaper blesk.cz).9

Similarly, in the following example, the reference originates from a Czech
newspaper and uses historical present (or rather narrative present), i.e. the verb
pokračuje (continues) is in present tense.

src "Central Bohemian region was most affected,"
Zaoralová continued.

ref-orig "Nejvíce zasahovali ve Středočeském kraji,"
pokračuje Zaoralová.

our „Nejvíce to postihlo Středočeský kraj,“
pokračovala Zaoralová.

While in English, historical present ‘is also used in fiction, for “hot news” (as in
headlines)’ [Huddleston and Pullum, 2002, p. 129], the translator considered it
more appropriate to use simple past tense (continued) in the English transla-
tion (which is part of the body of the article, not the headline). However, the
annotators (probably) did not know that the source sentence is actually a trans-
lation and they (surely) did not see the whole article. Thus, it is very likely they
assigned a better score to the Transformer translation, which is more faithful
to the source sentence than the original (ref-orig). Transformer is faithful to
the source not only in preserving the past tense, but, more importantly, also
in the meaning of the quotation – the ref-orig sentence actually means “[They]
intervened in [the] Central-Bohemian region.”

As discussed above, in the DA evaluation, the annotators do not see alterna-
tive translations side by side and they do not rank their relative quality. However,
in this case we believe10 the “unfaithfulness” of ref-orig to the source sentence
is so pronounced that even independent annotators would score ref-orig as
absolutely–low-quality translation relative to the source sentence.

9 The story takes place in Croydon (UK) and the article refers to the Mirror tabloid, so it is
possible that some parts of the article are actually translations.

10 The WMT2018 manual evaluation results have not been released yet (July 2018).
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WMT organizers normalize the source and reference sentences

Typographically-inclined readers may have noticed that the ref-orig sentence in
the previous example uses straight "ASCII" quotation marks, while Transformer
uses correct-Czech „lower and upper“ quotes. In English, the distinction be-
tween "straight" and “curly” quotes is considered as a rather typographical (or
style-related) issue.11 However, in Czech, a mismatch between lower (opening)
and upper (closing) quotes is considered as an error in formal writing.

Interestingly, after inspecting the original web-version of the article,12 we
observed that it uses correct Czech quotes. It seems the sentences (used as
the source for the Czech→English evaluation and as the reference for the
English→Czech evaluation, presented in this discussion) were normalized by
the WMT organizers. While such normalization may be beneficial in training
data preprocessing (or rather used to be beneficial in the SMT-quality era), we
consider it inappropriate for manual MT evaluation in the NMT-quality era. It
may bias the comparison of human references with typography-aware MT.13

Document-level context is not shown

One of the design decisions of the DA evaluation (both srcDA and refDA) is
that the annotators are presented with only a single translation per screen and
that the sentences are shuffled randomly. Thus, the annotators cannot see the
context of previous and following sentences. If they could see that in the last
example, previous sentences mention firefighters attending to incidents in Central
Bohemia, the scores assigned to the ref-orig sentence could have been higher.

Limited-context evaluation is problematic also for various other cross-sentence
phenomena, most notably coreference. For example, “It is long.” can be trans-
lated as “Je dlouhá.” or “Je dlouhý.”, in dependence on whether the referred entity
is of feminine or masculine gender. This particular example is more problematic
in the refDA evaluation, where the annotators naturally expect that the reference
is correct with regards to discourse. However, if the previous sentence was “I
like that part.”, long can be still translated in both ways (dlouhý and dlouhá), in
dependence on whether part is translated with a feminine noun část or with a
masculine noun úsek.

The described problems could be alleviated if a longer source-side context (a
whole document) was shown to the annotators, at the cost of a slower annotation.

We consider this last hypothesis about limited evaluation context one of the
most important ones. To summarize:

11 Note that this thesis is typeset in TEX Gyre Pagella font (based on Palatino), which uses a
different shape of quotes than e.g. Times New Roman;
see https://tex.stackexchange.com/a/12103.

12 http://www.blesk.cz/clanek/zpravy-udalosti/485329/
13 Of course, some annotators may not consider the distinction in quotes important. Analyzing

the manual evaluation results in this aspect is a future work.

125

https://tex.stackexchange.com/a/12103
http://www.blesk.cz/clanek/zpravy-udalosti/485329/


6.3. DISCUSSION

• The source-reference pair is translated by humans within the context of the
whole document (in one direction in case of src-orig and the other direction
in case of ref-orig).

• The source-Transformer pair is translated with no cross-sentence context
(except for the “ona” adjustment mentioned in Section 6.2).

• The manual evaluation is done with no cross-sentence context.

We found many other examples where the Transformer translation seemed
to represent better the meaning of the source relative to the reference and the
reason was the above-mentioned mismatch.
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Chapter 7

Conclusions

Translation is the art of failure.
Umberto Eco

In this thesis, we explored and improved two distinct MT systems based
on different paradigms: deep-syntactic TectoMT and neural-MT (NMT) Trans-
former. Our NMT system produces substantially higher-quality translations
than TectoMT, in accordance with the recent paradigm shift in the MT field,
where NMT is the new state of the art already since 2016. Nevertheless, we hope
some of our achievements in the deep-syntactic MT research may be useful in
future, even if the TectoMT system itself has little practical use today. Below, we
summarize the main achievements of this thesis, divided into two parts related
to our two systems.

Achievements in Deep-Syntactic MT

• We designed and implemented a novel context-sensitive discriminative
translation model. We applied it to the transfer of lemmas and formemes
on the tectogrammatical layer in the TectoMT system. The model uses a
number of contextual features extracted from the source-language depen-
dency trees. We compared two implementations of the model: one based
on MaxEnt and the other on the VowpalWabbit machine-learning toolkit.

– With MaxEnt (a maximum-entropy batch optimizer), we built a sep-
arate classifier for each source-language lemma. We improved the
English→Czech translation quality by +1.4 BLEU compared to a base-
line relative-frequency-based model.

– With VowpalWabbit (an advanced online-learning optimizer), we
built a single classifier for all lemmas. We proposed novel label-
dependent features shared across multiple source lemmas. We im-
proved the translation quality by further +0.2 BLEU relative to Max-
Ent. Moreover, training with VowpalWabbit is more than 1000 times
faster relative to MaxEnt.

• We adapted TectoMT to new language pairs and domains (IT-domain
helpdesk questions and answers) within an international research project
QTLeap. We exploited the modular design of TectoMT and analysis-
transfer-synthesis design, where the English analysis is shared for all
translation directions from English (English→Czech, English→Spanish,
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English→Portuguese, English→Dutch and English→Basque), and simi-
larly, the English synthesis is shared for all translations into English. Using
the VowpalWabbit translation model for domain adaptation improved the
results by +1.6 BLEU compared with a MaxEnt-based domain adaptation.
The improved TectoMT system outperformed the SMT system Moses in
the IT-domain evaluation in five out of ten language pairs.

• In our opinion, the main advantages of the TectoMT approach are the
following: Its sentence representation is linguistically interpretable and
its translation strengths are complementary to SMT, as shown by their
successful combination in Chimera, the best-performing English→Czech
MT system in WMT 2013–2015. The main disadvantages of TectoMT are:
It is restricted to 1-best analysis in its main components: tagging, parsing,
transfer and synthesis. It is a complex system from the software point of
view and its development requires a combination of machine-learning,
programming and linguistic skills.

Achievements in Neural MT

• Transformer model is the current state of the art in sequence-to-sequence
modelling. We used it for English-Czech NMT and optimized its training.
We analyzed in detail the effect of several training hyper-parameters. For
example, we observed that larger batch sizes lead not only to faster training,
but also to better translation quality. We observed surprising benefits of
multi-GPU training: training a model until achieving a given translation
quality (as measured by BLEU) is more than three times faster on two
GPUs relative to a single GPU.

• We proposed a novel technique for the exploitation of monolingual training
data. We observed a surprising synergy (+0.9 BLEU) when using our novel
concat-regime backtranslation together with checkpoint averaging. We gained
further improvements (+0.8 BLEU) by iterating the process of concat-regime
backtranslation.

• We explored the translation differences when training and/or testing on
Czech-origin and non-Czech-origin texts. By tuning two separate models
for these two tasks, we obtained a further +0.2 BLEU improvement.
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Achieved Goals and Future Work
We believe our work achieved all the three goals listed in Section 1.2. The
achievements open new research questions and point to interesting future work:

• We improved the English↔Czech MT. Our neural system was evaluated as
significantly (p < 0.05) better than all other MT systems and also than the
human reference translation within the WMT2018 shared task. Training
the neural system for other language pairs is straightforward and we
plan to do so in the near future. A demo of our English↔Czech NMT is
available online, as well as all WMT2018 translation outputs.1

• We explored the impact of syntactic structures within our linguistically-
motivated TectoMT system. We provided insight into the deep-syntactic
translation process, e.g. by interpreting how the context-sensitive model
decides which translation to choose and which linguistic features are
important for this decision.
The Transformer model uses latent syntactic structures learned in an unsu-
pervised way. However, it remains a future work to explore how exactly
are these structures similar to or different from the linguistic structures in
manually-annotated treebanks, and thus possibly better understand how
NMT (and human language) works.

• We explored domain-adaptation techniques. We successfully adapted
TectoMT to a new domain of translating IT helpdesk questions and answers.
We improved the translation quality (according to BLEU) of our NMT
system by adapting it to the translation of Czech-origin and non-Czech-
origin news articles. We discussed relations to the effect of translationese,
i.e which language in parallel training data is the original and which is
the translation.
We did not perform a manual evaluation of this Czech-origin domain
adaptation. Taking into account that the quality of our NMT is higher than
the quality of reference translations, we cannot be sure whether the +0.2
BLEU difference is actually an improvement, or whether our translations
only resemble more the human references. It is not clear whether the
goal of MT is to simulate human translators (and produce “translationese”
output) or whether it should rather produce output that resembles texts
written originally in the target language.
Finally, there is a challenging future work on domain adaptation to more
difficult domains and genres, e.g. legal texts or fiction.

1 https://lindat.mff.cuni.cz/services/transformer/
http://wmt.ufal.cz
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Appendix A

Author’s Contribution

Prď na LATEX, piš to normálně ve Wordu.
Markéta Popelová Nečasová

TectoMT-related software and publications
I have been the main developer of TectoMT and Treex since 2011. Detailed infor-
mation about authorship of each component is available in the documentation
and git/svn commit history.1 As for the code discussed in more detail in this
thesis:

• I implemented and evaluated the sentence-chunk parsing technique men-
tioned in Section 3.1 and Popel et al. [2011].

• The TectoMT code for reoredering of Czech clitics mentioned in Sec-
tion 3.2 (block T2A::CS::MoveCliticsToWackernagel) was originally im-
plemented by Zdeněk Žabokrtský, but refactored and substantially im-
proved by myself.

• The MaxEnt TM (Section 3.3) was originally implemented by Zdeněk
Žabokrtský and refactored and improved by myself and David Mareček.

• I am the sole author of the VowpalWabbit TM in TectoMT (Section 3.4).
I contributed also to the VowpalWabbit framework (most importantly,
adding the --probabilities option and refactoring of --csoaa_ldf).2

• In “Using Parallel Texts and Lexicons for Verbal Word Sense Disambigua-
tion” [Dušek et al., 2015a], I contributed the VowpalWabbit model (includ-
ing tuning and evaluation on a given task), while reusing the training data
prepared by Ondřej Dušek.

• I redesigned the TectoMT analysis phase by extracting code common to
multiple languages into base classes and improving it. I implemented
the initial version of English↔Spanish and English↔Portuguese TectoMT
and consulted the development of the final version, also for the other
languages mentioned in Section 3.6.

1 https://github.com/ufal/treex/commits?author=martinpopel
https://svn.ms.mff.cuni.cz/trac/tectomt_devel (username=password=“public”)

2 https://github.com/JohnLangford/vowpal_wabbit/commits?author=martinpopel
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• I conducted the experiments with VowpalWabbit TM fine-tuning (Sec-
tion 3.7). The other reported domain-adaptation techniques were a joint
work with the coauthors of Rosa et al. [2016, 2015].

NMT software and publications
• I contributed minor code improvements and bugfixes to T2T.3 For example,

adding English-Czech datasets or BLEU evaluation and helper scripts
(t2t-bleu, t2t-translate-all).

• In “Training Tips for the Transformer Model” [Popel and Bojar, 2018], I
designed, analyzed and described all the experiments (Chapter 4). Ondřej
Bojar contributed to the sections Introduction (which is omitted in Chap-
ter 4), Evaluation Methodology and Comparison with WMT17 Systems
(which is rewritten in Chapter 4).

• I conducted all the experiments in Chapter 5.

• I prepared the English→Czech and Czech→English Transformer system
submitted to WMT18. I thank Rico Sennrich, David Mareček and Jindřich
Helcl for providing me with Nematus 2016 models and/or translations
of NewsCrawl data by these models. I thank Dušan Variš and Ondřej
Košarko for integrating the Transformer translation into Lindat services.

Other
• I wrote most parts of the two papers [Klejch et al., 2015, Sudarikov et al.,

2016] about MT-ComparEval4 and contributed to a third paper [Aranberri
et al., 2016]. I implemented a prototype of the toolkit and supervised the
final implementation done by Ondřej Klejch. The other co-authors of the
papers implemented additional metrics (Hjerson, TER) and integration
into https://www.translate5.net.

• I wrote “Udapi: Universal API for Universal Dependencies” [Popel et al.,
2017]. The design of Udapi core was a joint work with Zdeněk Žabokrtský,
who also implemented a first Python prototype. I did the Perl implemen-
tation of Udapi and re-implemented and improved the Python Udapi,
contributing all the blocks described in the paper. Martin Vojtek did the
Java implementation based on our specification of the API.

• In “Adaptation of machine translation for multilingual information re-
trieval in the medical domain” [Pecina et al., 2014], I did the automatic
evaluation of MT (§ 2.4), helped with preprocessing (esp. English lemma-
tization) and contributed to the summary of related work (§ 2.1).

3 https://github.com/tensorflow/tensor2tensor/commits?author=martinpopel
4 http://mt-compareval.ufal.cz/
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Appendix B

System Details

B.1 Translation Examples
T2009 and T2018 is TectoMT in versions 2009 and 2018 and “Our” is our final
version of Transformer. Google, Bing and Yandex are translations obtained in
July 2018 from the respective online translation services.1

source TectoMT is currently an experimental system, which is outperformed by
state-of-the-art MT systems such as open source Moses.

T2009 TectoMT je nyní experimentální systém, který je překonán state-of-the-art
MT systémy otevřených zdrojových Mojžíšů.

T2018 Tectomt je nyní experimentální systém, který je překonán známými MT
systémy jako otevření zdroj Mojžíši.

Google TectoMT je v současné době experimentální systém, který je překonán
nejmodernějšími systémy MT, jako je open source Moses.

Our TectoMT je v současné době experimentální systém, který je překonán
nejmodernějšími systémy MT, jako je open source Moses.

source Birds of a feather flock together.
T2009 Ptáci v bederním hejnu spolu.
T2018 Ptáci péřového hejna spolu.
Google Vrána k vráně sedá.
Our Vrána k vráně sedá.

source Great talkers are little doers.
T2009 Velcí řečníci jsou malí vrazi.
T2018 Velcí řečníci jsou malí lidé.
Google Velcí mluvčí jsou malí lidé.
Our Velcí mluvkové jsou malí dříči.

source As good be an addled egg as an idle bird.
T2009 Dobré je feťácké vejce jako činný pták.
T2018 Dobří buďte plete vejce jako nečinný pták.
Google Jako dobrá být včleněná vejce.
Our Stejně dobré je být pomateným vejcem jako zahálejícím ptákem.

source A miss by an inch is a miss by a mile.
T2009 Slečna palec je slečna miliónu.
T2018 Slečna palce je slečna míle.
Google Chybějící palcem je míle vzdálená míle.
Our Minutí o centimetr je o kilometr.

1 Google Translate https://translate.google.com/; Bing Translator https://www.bing.
com/Translator; Yandex Translate https://translate.yandex.com
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source I’d rather be a hammer than a nail.
T2009 Spíše bych byl kladivo než nehet.
T2018 Spíše bych byl kladivo než hřebík.
Google Rád bych byl kladivo než hřebík.
Our Radši budu kladivo než hřebík.

source A bird in the hand is worth two in the bush.
T2009 Pták v ruce je cenný dvakrát v Bushovi.
T2018 Pták v ruce má hodnotu dva v buši.
Google Pták v ruce stojí za dva v křoví.
Our Pták v ruce má cenu dvou v buši.

source Bread is the staff of life.
T2009 Chléb je zaměstnanec života.
T2018 Chléb je zaměstnanci života.
Google Chléb je zaměstnancem života.
Our Chléb je holí života.

source For every kind of beasts, and of birds, and of serpents, and of things in the
sea, is tamed, and hath been tamed of mankind: But the tongue can no man
tame; it is an unruly evil, full of deadly poison.

T2018 Každého druhu zvířat a ptáků a hadů a věcí v moři je zkrocení a hath byl
zkrocení lidstva: Ale jazyk nemůže žádný muž tame; je to nevzpurné zlo,
plné smrtelného jedu.

Google Pro každý druh dobytka, ptáků, hadů a všeho v moři je zkroucený a
ponižován lidstvem. Ale jazyk nemůže splácet nikdo; je to neupřímné zlo,
plné smrtícího jedu.

Our Neboť každá šelma, ptáci, hadi a věci v moři jsou zkroceny a lidstvo
zkroceno jest: Jazyk však člověk zkrotit nedokáže; je to nezkrotné zlo,
plné smrtícího jedu.

refB21 Lidstvo se pokouší zkrotit každý druh zvířat, ptáků, plazů i mořských tvorů
a daří se mu to, ale jazyk žádný člověk zkrotit neumí. Je to nezvládnutelné
zlo, plné smrtelného jedu.

refČEP Všechny druhy zvířat i ptáků, plazů i mořských živočichů mohou být a
jsou kroceny člověkem, ale jazyk neumí zkrotit nikdo z lidí. Je to zlo, které
si nedá pokoj, plné smrtonosného jedu.

refBKR Všeliké zajisté přirození i zvěři, i ptactva, i hadů, i mořských potvor bývá
zkroceno, a jest okroceno od lidí; Ale jazyka žádný z lidí zkrotiti nemůže;
tak jest nezkrotitelné zlé, pln jsa jedu smrtelného.

source Chytal tlouště na višni.
T2008 He caught chub to cherry.
Yandex Catching chub on a cherry.
Bing He caught chub on the višni.
Google He caught the fat on the cherry.
Our He was getting fat on the cherry.
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source Prď na LaTeX, piš to normálně ve Wordu.
T2018 Fart to LaTeX, write this normally in Word.
Bing Prď on LaTeX, write it normally in Word.
Google Go to LaTeX, write it normally in Word.
Our Screw LaTeX, type it normally in Word.2

2 I feel this is an appropriate place where to explain the abundance of footnotes in this thesis.
source T2018 Yandex Bing Google Our

I want trans-
lations with
copious
footnotes,
footnotes
reaching
up like
skyscrapers
to the top of
this or that
page so as
to leave only
the gleam
of one tex-
tual line
between
commen-
tary and
eternity.
(Vladimir
Vladimirovich
Nabokov)

Chci
překlady
s hojnými
poznámkami
poznámky
natáhnout
se jako
mrako-
drapy k
vrcholu
tohoto nebo
té stránky,
tak nechte
pouze lesk
jedné tex-
tové čáry
mezi ko-
mentářem
a věčností.
(Vladimir
Vladimirovič
Nabokov)

Chci,
překlady
s velkým
množstvím
poznámek
pod čarou,
poznámky
pod čarou,
dosahující
až jako
mrako-
drapy na
vrcholu
tohoto, nebo
tu stránku
tak, aby
se nechat
jen záblesk
jeden tex-
tový řádek
mezi ko-
mentářem
a věčnosti.
(Vladimir
Vladimirovič
Nabokov)

Chci
překlady
s velkým
poznámky
pod čarou,
poznámky
pod čarou
dosahující
jako mrako-
drapy na
vrchol
této nebo
stránky tak,
aby opustit
pouze
záblesk
jedné tex-
tové čáry
mezi ko-
mentářem
a věčnost.
(Vladimír
Vladimirovič
Nabokov)

Chci
překlady
srozsáh-
lými
poznámkami
pod čarou,
poznámky
pod čarou,
které se
dostanou
nahoru
jako mrako-
drapy na
vrchol této
nebo té
stránky, aby
zanechaly
jen záblesk
jedné tex-
tové čáry
mezi ko-
mentářem
a věčností.
(Vladimir
Vladimirovich
Nabokov)

Chci
překlady
s hojnými
poznámkami
pod čarou,
s poznámkami
pod čarou
sahajícími
jako mrako-
drapy až
nahoru na
tu či onu
stránku,
aby zůstal
jen záblesk
jedné tex-
tové čáry
mezi ko-
mentářem
a věčností.
(Vladimir
Vladimirovič
Nabokov)

Translation
is like a
woman. If it
is beautiful,
it is not
faithful. If
it is faithful,
it is most
certainly not
beautiful.
(Yevgeny
Aleksan-
drovich Yev-
tushenko)

Překlad je
jako žena.
Pokud je
krásné,
není věrné.
Pokud
je věrné,
není určitě
krásné.
(Yevgeny
Alexan-
drovič Yev-
tushenko)

Překlad je
jako žena.
Pokud to
je krásný,
není věrný.
Pokud je
věřící, to
je nejvíce
rozhodně
není krásné.
(Jevgenij
Alexan-
drovič Yev-
tushenko)

Překlad je
jako žena.
Pokud je to
krásné, není
to věrné.
Pokud je
věrný, je
to určitě
není krásná.
(Jevgenij
Alexan-
drovič Yev-
tushenko)

Překlad je
jako žena.
Pokud je to
krásné, není
to věrné.
Pokud je
věrná, určitě
není krásná.
(Jevgenij
Aleksan-
drovič Yev-
tushenko)

Překlad je
jako žena.
Je-li krásná,
není věrná.
Je-li věrný,
rozhodně
není krásný.
(Jevgenij
Alexan-
drovič
Jevtušenko)
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B.2 TectoMT English-Czech Scenario
The following scenario listing can be obtained with treex --dump Scen::EN2CS.

Util::SetGlobal language=en selector=src
W2A::EN::Tokenize
W2A::EN::NormalizeForms
W2A::EN::FixTokenization
W2A::EN::TagMorce
W2A::EN::FixTags
W2A::EN::FixTagsImperatives
W2A::EN::Lemmatize
A2N::EN::NameTag
A2N::EN::DistinguishPersonalNames
W2A::MarkChunks
W2A::EN::ParseMST
model=conll_mcd_order2_0.01.model

W2A::EN::SetIsMemberFromDeprel
W2A::EN::RehangConllToPdtStyle
W2A::EN::FixNominalGroups
W2A::EN::FixIsMember
W2A::EN::FixAtree
W2A::EN::FixMultiwordPrepAndConj
W2A::EN::FixDicendiVerbs
W2A::EN::SetAfunAuxCPCoord
W2A::EN::SetAfun
W2A::FixQuotes
W2A::EN::MarkCheckCommas
A2A::ConvertTags input_driver=en::penn
A2A::EN::EnhanceInterset
A2T::EN::MarkEdgesToCollapse
A2T::EN::MarkEdgesToCollapseNeg
A2T::BuildTtree
A2T::SetIsMember
A2T::EN::MoveAuxFromCoordToMembers
A2T::ProjectSelectedWild
A2T::EN::FixTlemmas
A2T::EN::SetCoapFunctors
A2T::EN::FixEitherOr
A2T::EN::FixHowPlusAdjective
A2T::FixIsMember
A2T::EN::MarkClauseHeads
A2T::EN::SetFunctors
A2T::EN::MarkInfin
A2T::EN::MarkRelClauseHeads
A2T::EN::MarkRelClauseCoref
A2T::EN::MarkDspRoot
A2T::MarkParentheses
A2T::SetNodetype
A2T::EN::SetFormemeInterset
A2T::EN::SetTense
A2T::EN::SetGrammatemes
A2T::SetGrammatemesFromAux
A2T::EN::SetSentmod
A2T::EN::RehangSharedAttr
A2T::EN::SetVoice
A2T::EN::FixImperatives
A2T::EN::SetIsNameOfPerson
A2T::EN::SetGenderOfPerson
A2T::EN::AddCorAct
T2T::SetClauseNumber
A2T::EN::FixRelClauseNoRelPron
A2T::EN::MarkReferentialIt
resolver_type=nada threshold=0.5 suffix=nada_0.5

A2T::EN::FindTextCoref
Util::SetGlobal language=cs selector=tst
T2T::CopyTtree source_language=en source_selector=src
T2T::ProjectSelectedWild
T2T::EN2CS::TrLFPhrases
T2T::EN2CS::DeleteSuperfluousTnodes
T2T::EN2CS::TrFTryRules
T2T::EN2CS::TrFAddVariantsInterpol
model_dir=data/models/translation/en2cs
maxent_features_version=0.9
models=’
static 1.0 formeme_czeng09.static.pls.slurp.gz
maxent 0.5 formeme_czeng09.maxent.compact.pls.slurp.gz’

T2T::EN2CS::TrFRerank2
T2T::EN2CS::TrLTryRules
T2T::EN2CS::TrLPersPronIt
T2T::EN2CS::TrLPersPronRefl
T2T::EN2CS::TrLHackNNP
T2T::EN2CS::TrLAddVariantsInterpol models=’
static 0.5 tlemma_czeng09.static.pls.slurp.gz
maxent 1.0 tlemma_czeng12.maxent.10000.100.2_1.compact.pls.gz
static 0.1 tlemma_humanlex.static.pls.slurp.gz’

T2T::EN2CS::TrLFNumeralsByRules
T2T::EN2CS::TrLFilterAspect

T2T::EN2CS::TransformPassiveConstructions
T2T::EN2CS::PrunePersonalNameVariants
T2T::EN2CS::RemoveUnpassivizableVariants
T2T::EN2CS::TrLFCompounds
T2T::CutVariants
lemma_prob_sum=0.5 max_lemma_variants=7
formeme_prob_sum=0.9 max_formeme_variants=7

T2T::RehangToEffParents
T2T::EN2CS::TrLFTreeViterbi
T2T::RehangToOrigParents
T2T::CutVariants max_lemma_variants=3 max_formeme_variants=3
T2T::EN2CS::FixTransferChoices
T2T::EN2CS::ReplaceVerbWithAdj
T2T::EN2CS::DeletePossPronBeforeVlastni
T2T::EN2CS::TrLFemaleSurnames
T2T::EN2CS::AddNounGender
T2T::EN2CS::MarkNewRelClauses
T2T::EN2CS::AddRelpronBelowRc
T2T::EN2CS::ChangeCorToPersPron
T2T::EN2CS::AddPersPronBelowVfin
T2T::EN2CS::AddVerbAspect
T2T::EN2CS::FixDateTime
T2T::EN2CS::FixGrammatemesAfterTransfer
T2T::EN2CS::FixNegation
T2T::EN2CS::MoveAdjsBeforeNouns
T2T::EN2CS::MoveGenitivesRight
T2T::EN2CS::MoveRelClauseRight
T2T::EN2CS::MoveDicendiCloserToDsp
T2T::EN2CS::MovePersPronNextToVerb
T2T::EN2CS::MoveEnoughBeforeAdj
T2T::EN2CS::MoveJesteBeforeVerb
T2T::EN2CS::MoveNounAttrAfterNouns
T2T::EN2CS::FixMoney
T2T::EN2CS::FindGramCorefForReflPron
T2T::EN2CS::NeutPersPronGenderFromAntec
T2T::EN2CS::ValencyRelatedRules
T2T::SetClauseNumber
T2T::EN2CS::TurnTextCorefToGramCoref
T2T::EN2CS::FixAdjComplAgreement
Util::SetGlobal
language=cs selector=tst source_language=en source_selector=src

T2A::CS::CopyTtree
T2A::CS::DistinguishHomonymousMlemmas
T2A::CS::ReverseNumberNounDependency
T2A::CS::InitMorphcat
T2A::CS::FixPossessiveAdjs
T2A::CS::MarkSubject
T2A::CS::ImposePronZAgr
T2A::CS::ImposeRelPronAgr
T2A::CS::ImposeSubjpredAgr
T2A::CS::ImposeAttrAgr
T2A::CS::ImposeComplAgr
T2A::CS::DropSubjPersProns
T2A::CS::AddPrepos
T2A::CS::AddSubconjs
T2A::CS::AddReflexParticles
T2A::CS::AddAuxVerbCompoundPassive
T2A::CS::AddAuxVerbModal
T2A::CS::AddAuxVerbCompoundFuture
T2A::CS::AddAuxVerbConditional
T2A::CS::AddAuxVerbCompoundPast
T2A::CS::AddClausalExpletivePronouns
T2A::CS::MoveQuotes
T2A::CS::ResolveVerbs
T2A::ProjectClauseNumber
T2A::AddParentheses
T2A::CS::AddSentFinalPunct
T2A::CS::AddSubordClausePunct
T2A::CS::AddCoordPunct
T2A::CS::AddAppositionPunct
T2A::CS::CheckCommas
T2A::CS::ChooseMlemmaForPersPron
T2A::CS::GenerateWordforms inflect_by_ending=1
T2A::CS::DeleteSuperfluousAuxCP
T2A::CS::MoveCliticsToWackernagel
T2A::CS::DeleteEmptyNouns
T2A::CS::VocalizePrepos
T2A::CS::CapitalizeSentStart
T2A::CS::CapitalizeNamedEntitiesAfterTransfer
A2A::ProjectCase
A2W::ConcatenateTokens
A2W::CS::ApplySubstitutions
A2W::CS::DetokenizeUsingRules
A2W::CS::RemoveRepeatedTokens
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