Statistical Methods in Natural Language Processing

9. Hidden Markov Models and Baum Welch.

Pavel Pecina, Jindřich Helcl

16 December, 2025

Course Segments

- **1.** Introduction, probability, essential information theory
- 2. Statistical language modelling (n-gram)
- **3.** Statistical properties of words
- **4.** Word representations
- 5. Hidden Markov models, Tagging

Recap from Last Week

Markov Properties

- Markov Chain can generalize to any process (not just words):
 - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$
 - o Sample space S (*states*), size N: $S = \{s_0, s_1, s_2, ..., s_N\}$
- Two properties
 - 1. Limited history (context, horizon):

$$\forall i \in 1..T; P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$$

$$17379067345...$$

$$17379067345...$$

Time invariance (Markov Chain is stationary, homogeneous)

$$\forall i \in 1..T, \ \forall y, x \in S; \ P(X_i = y | X_{i-1} = x) = p(y | x)$$

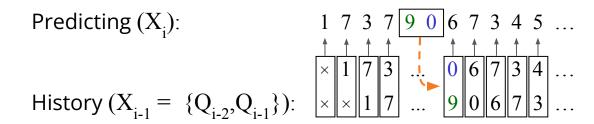
$$1 \ 7 \ 3 \ 7 \ 9 \ 0 \ 6 \ 7 \ 3 \ 4 \ 5...$$

NPFL147 - Statistical methods in NLP ok ... same <u>distribution</u>

Long History Possible

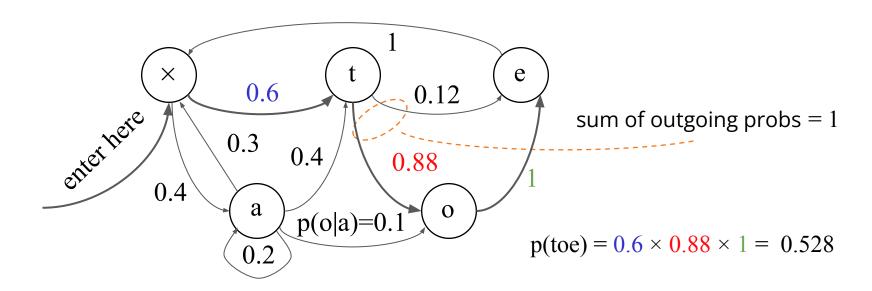
What if we want trigrams:

- Formally, use transformation:
 - Define new variables Q_i , such that $X_i = \{Q_{i-1}, Q_i\}$
 - $\circ \quad \text{And then } P(X_i|X_{i\text{-}1}) = P(Q_{i\text{-}1},Q_i|Q_{i\text{-}2},Q_{i\text{-}1}) = P(Q_i|Q_{i\text{-}2},Q_{i\text{-}1})$



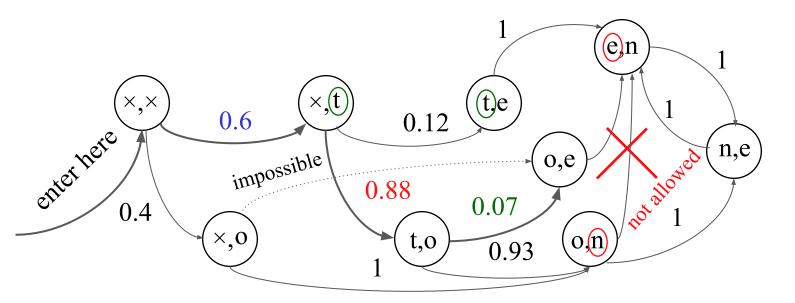
Markov Models: Bigram Case

- Nodes: States, $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1}),\,X_i$ generates s_i



Markov Models: Trigram Case

- Nodes: Pairs of states (s_k, s_l) , $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1})$, X_i generates (s_k,s_l)



$$p(toe) = 0.6 \times 0.88 \times 0.07 = 0.037$$

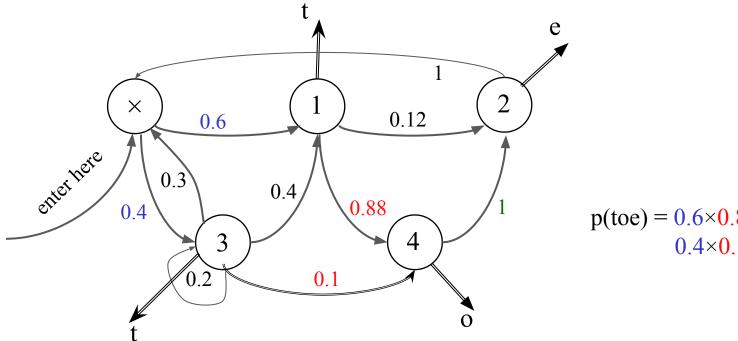
p(one) = ?

Finite State Automaton

- States ~ symbols of the [input / output] alphabet
 - o pairs (or more): last element of the n-tuple
- Arcs ~ transitions (sequence of states)
 - Classical FSA: alphabet symbols on arcs:
 - possible transformation: arcs ↔ nodes
- Possible thanks to the "limited history" Markov Property
- So far: <u>Visible</u> Markov Models (VMM)

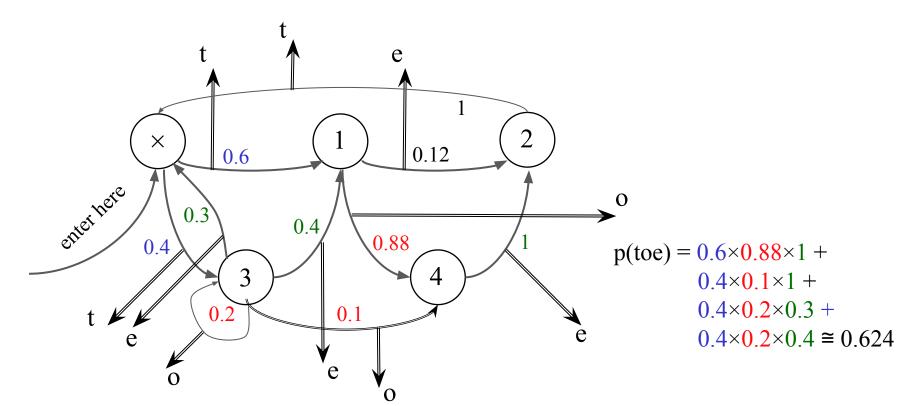
Hidden Markov Models

The simplest HMM: states generate [observable] output (using the "data" alphabet) but remain "invisible"



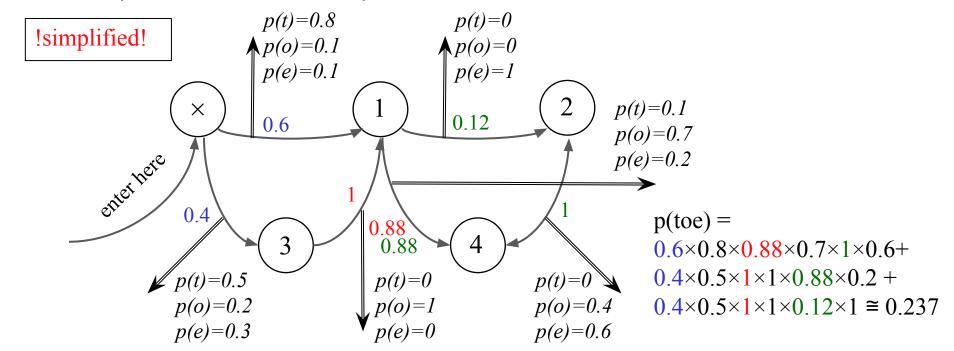
Output from Arcs...

Added flexibility: Generate output from arcs, not states:



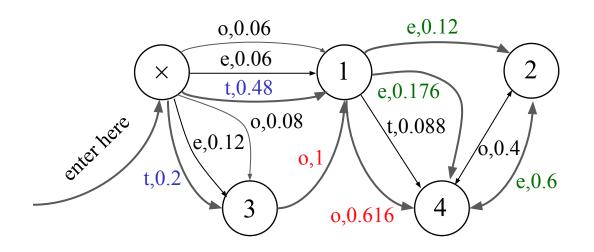
... and Finally, Add Output Probabilities

 Maximum flexibility: [Unigram] distribution (sample space: output alphabet) at each output arc:



Slightly Different View

• Allow for multiple arcs from $s_i \rightarrow s_j$, mark them by output symbols, get rid of output distributions:



$$p(toe) = 0.48 \times 0.616 \times 0.6 + 0.2 \times 1 \times 0.176 + 0.2 \times 1 \times 0.12 \approx 0.237$$

Formalization

- HMM (the general case): five-tuple (S, s_0 , Y, P_S , P_V), where:
 - \circ **S** = { $s_1, s_2, ..., s_T$ } is the set of states, s_0 is the initial state,
 - $\circ \quad \mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{\mathbf{V}}\} \text{ is the output alphabet,}$
 - \circ $P_{s}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - size of P_S : $|S|^2$
 - \circ $P_{Y}(y_{k}|s_{i},s_{i})$ is the set of output (emission) probability distributions
 - size of P_Y : $|S|^2 \times |Y|$
- Example:
 - \circ S = {x, 1, 2, 3, 4}, s₀ = x
 - \circ Y = { t, o, e }

Formalization - Example

• Example (for graph on slide 36):

$$\circ$$
 S = {x, 1, 2, 3, 4}, $s_0 = x$

$$\circ \quad Y = \{ t, o, e \}$$

 \circ P_S :

	×	1	2	3	4
×	0	0.6	0	0.4	0
1	0	0	0.12	0	0.88
2	0	0	0	0	1
3	0	1	0	0	0
4	0	0	1	0	0

I	Y .		e	×	1	2	3	4	
	1	0	×	1	2	3	4		$\Sigma = 1$
	t	×	1	2	3	4		0.2	
	×		0.8		0.5		0.7		
	1					0.1			
	2					0			
	3		0						
	4			0					

HMM: The Two Tasks

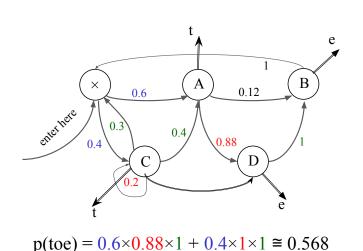
- HMM (the general case): five-tuple (S, S_0, Y, P_S, P_Y) , where:
 - \circ $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $\circ \quad \mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{\mathbf{V}}\} \text{ is the output alphabet,}$
 - \circ $P_{s}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - \circ $P_{Y}(y_{k}|s_{i},s_{j})$ is the set of output (emission) probability distributions
- Given an HMM & an output sequence $Y = \{y_1, y_2, ..., y_k\}$:
 - \circ (Task 1) compute the probability of Y;
 - \circ (Task 2) compute the most likely sequence of states which has generated Y.

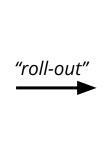
Trellis

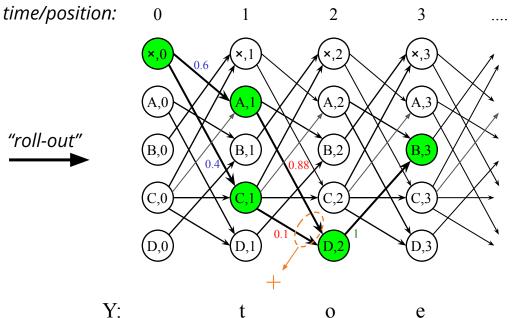
Trellis: HMM "roll-out"

HMM:

Trellis:







- Trellis state: (HMM state, position)
- each state: holds \underline{one} number (prob): α
- probability of Y: $\Sigma \alpha$ in the last state

 $\alpha(A,1) = 0.6 \ \alpha(D,2) = 0.568 \ \alpha(B,3) = 0.568$ $\alpha(\times,0)=1$ $\alpha(C,1) = 0.4$

Creating the Trellis: The Start

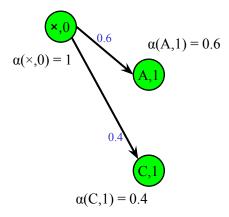
- Start in the start state (×),
 - \circ set its $\alpha(\times, \theta)$ to 1

position/stage:

0

1

- Create the first stage:
 - \circ get the first "output" symbol y_1
 - create the first stage (column)
 - but only those Trellis states
 which generate y₁
 - set their $\alpha(state, 1)$ to the $P_{S}(state|\times) \alpha(\times, 0)$
- ullet and forget about the heta-th stage

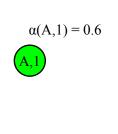


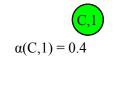
Y:

ι

Trellis: The Next Step

- Suppose we are in stage i
- Creating the next stage: position/stage:
 - create all trellis states in the next stage which generate y_{i+1}, but only those reachable from any of the stage-i states
 - o set their $\alpha(state,i+1)$ to: $P_{s}(state|prev.state) \times \alpha(prev.state,i)$ (add up all such numbers on arcs going to a common Trellis state) ...and forget about stage i





Y: t o

Trellis: The Next Step

- Suppose we are in stage i
- Creating the next stage:
 - \circ create all trellis states in the next stage which generate y_{i+1} , but only those reachable from any of the stage-i states

position/stage:

Y:

• set their $\alpha(state,i+1)$ to: $P_{S}(state|prev.state) \times \alpha(prev.state,i)$ (add up all such numbers on arcs going to a common Trellis state) ...and forget about stage i

 $\alpha(A,1) = 0.6$ $\alpha(C,1) = 0.4$ $\alpha(D,2) = 0.568$ 0

NPFL147 - Statistical methods in NLP

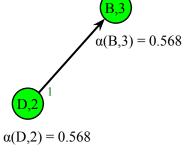
Trellis: The Last Step

- Continue until output exhausted
 - \circ |Y| = 3: until stage 3

position/stage:

- 3

- Add together all the $\alpha(state, |Y|)$
- That's the $\underline{P(Y)}$
- Observation (pleasant):
 - memory usage max: 2|S|
 - \circ multiplications max: $|S|^2|Y|$



Y:

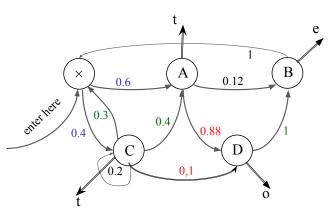
0

Trellis (again)

HMM:

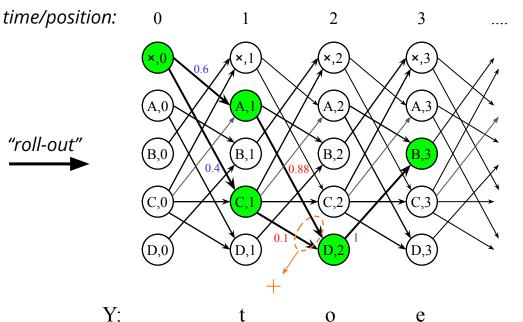
Trellis:

"roll-out"



 $p(toe) = 0.6 \times 0.88 \times 1 + 0.4 \times 1 \times 1 \approx 0.568$

- each state: holds \underline{one} number (prob): α
- probability of Y: $\Sigma \alpha$ in the last state



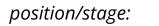
 $\alpha(A,1) = 0.6 \ \alpha(D,2) = 0.568 \ \alpha(B,3) = 0.568$ $\alpha(\times,0)=1$ $\alpha(C,1) = 0.4$

HMM: The Two Tasks

- HMM (the general case): five-tuple (S, S_0, Y, P_S, P_Y) , where:
 - \circ $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $\circ \quad \mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{\mathbf{V}}\} \text{ is the output alphabet,}$
 - \circ $P_{s}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - \circ $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions
- Given an HMM & an output sequence $Y = \{y_1, y_2, ..., y_k\}$:
 - \circ (Task 1) compute the probability of Y;
 - \circ (Task 2) compute the most likely sequence of states which has generated Y.

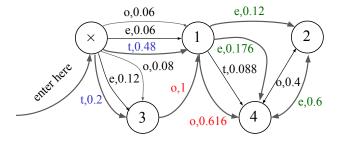
Trellis: The General Case (still, bigrams)

- Start as usual:
 - \circ start state (×), set its α (×, θ) to 1.



0

$$\alpha(\times,0)=1$$



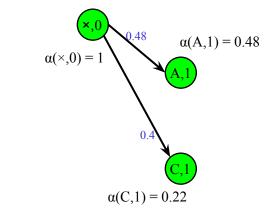
$$p(toe) = 0.48 \times 0.616 \times 0.6 + 0.2 \times 1 \times 0.176 + 0.2 \times 1 \times 0.12 \approx 0.237$$

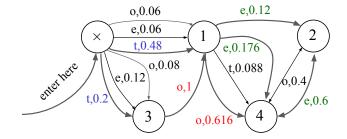
Y:

General Trellis: The Next Step

We are in stage i:

- Generate the next stage i+1 as before (except now <u>arcs</u> generate output, thus use only those arcs marked by the output symbol y_{i+1})
- For each generated *state*, compute $\alpha(state, i+1)$ = $\sum_{\text{inc. arcs}} P_{Y}(y_{i+1}|state, prev.state) \times \alpha(prev.state, i)$



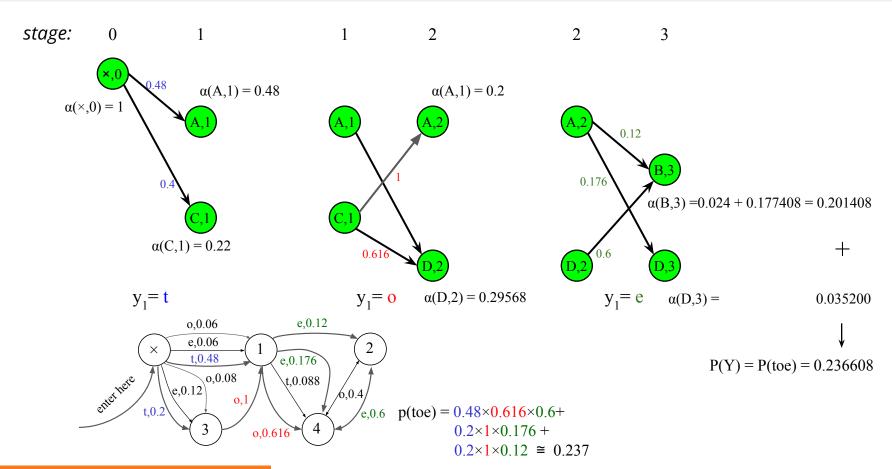


Y:

position/stage:

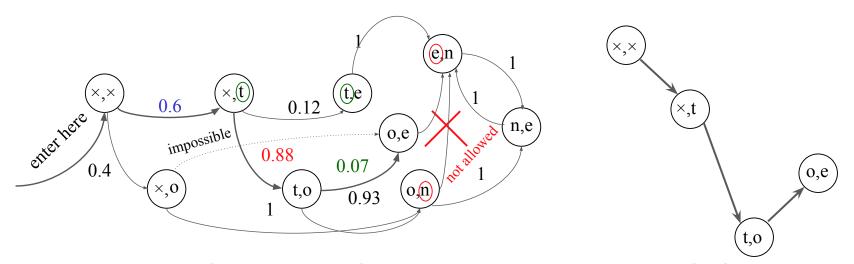
And forget about the previous state ...

Trellis: The Complete Example



The Case of Trigrams

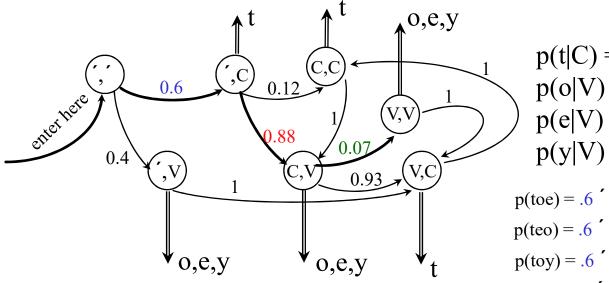
- Like before, but:
 - states correspond to bigrams
 - output function always emits the second output symbol of the pair (state) to which the arc goes:



Multiple paths not possible → trellis not really needed

Trigrams with Classes

- More interesting:
 - n-gram class LM: $p(w_i|w_{i-2},w_{i-1}) = p(w_i|c_i) p(c_i|c_{i-2},c_{i-1})$
 - \rightarrow states are pairs of classes (c_{i-1}, c_i), and emit "words":



(letters in our example)

$$p(t|C) = 1$$
 usual,

$$p(o|V) = .3$$
 non-

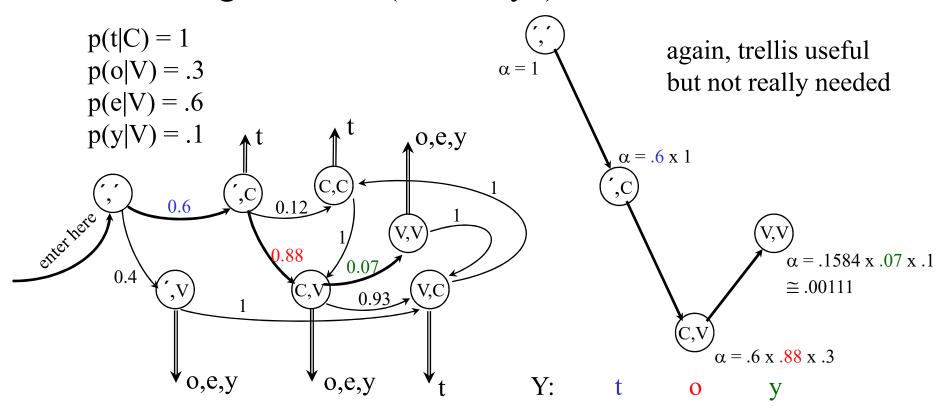
$$p(e|V) = .6$$
 overlapping

$$p(y|V) = .1$$
 classes

$$p(toe) = .6$$
 ' 1 ' .88 ' .3 ' .07 ' .6 \cong .00665
 $p(teo) = .6$ ' 1 ' .88 ' .6 ' .07 ' .3 \cong .00665
 $p(toy) = .6$ ' 1 ' .88 ' .3 ' .07 ' .1 \cong .00111
 $p(tty) = .6$ ' 1 ' .12 ' 1 ' 1 ' .1 \cong .0072

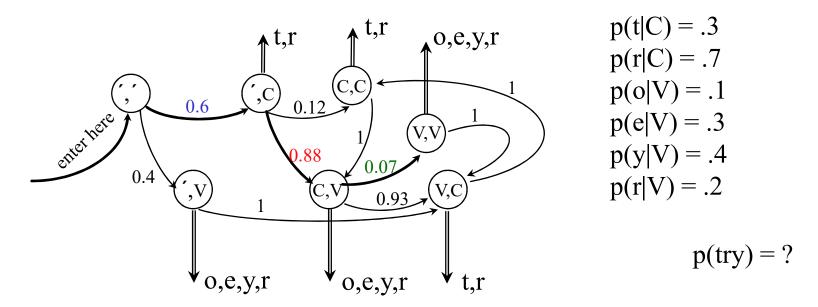
Class Trigrams: the Trellis

• Trellis generation (Y = "toy"):

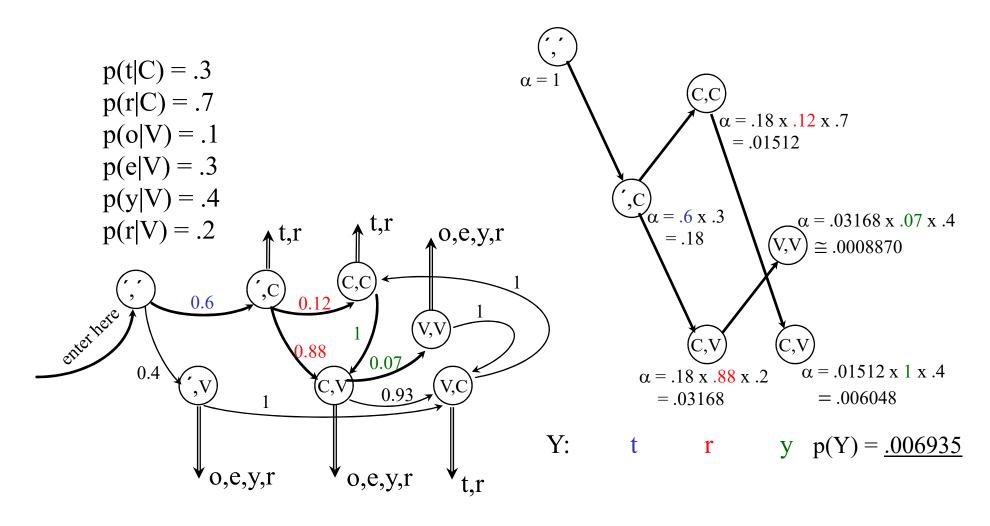


Overlapping Classes

- Imagine that classes may overlap
 - e.g. 'r' is sometimes vowel sometimes consonant,belongs to V as well as C:



Overlapping Classes: Trellis Example



Trellis: Remarks

- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 - supposed we know where to start (finite data)
- In fact, we might start in the middle going left and right
- Important for parameter estimation
 (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers
 & addition problems with many transitions

The Viterbi Algorithm

- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

$$S_{best} = argmax_S P(S|Y)$$

which is equal to (Y is constant and thus P(Y) is fixed):

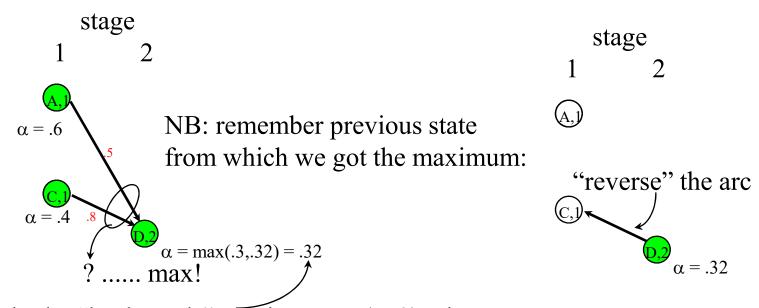
$$S_{best} = argmax_S P(S,Y) =$$

$$= argmax_S P(s_0,s_1,s_2,...,s_k,y_1,y_2,...,y_k) =$$

$$= argmax_S \Pi_{i=1,k} p(y_i|s_i,s_{i-1})p(s_i|s_{i-1})$$

The Crucial Observation

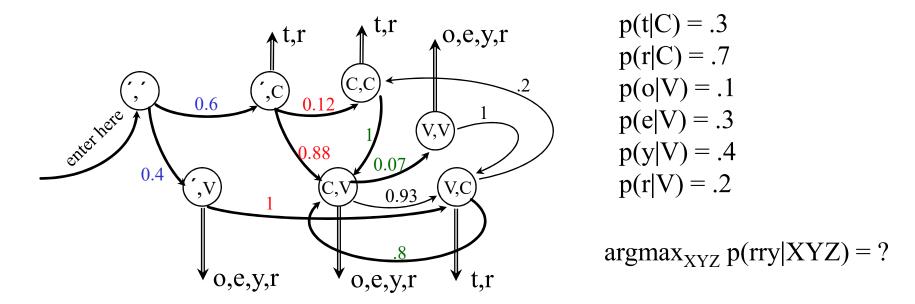
• Imagine the trellis build as before (but do not compute the αs yet; assume they are o.k.); stage *i*:



this is certainly the "backwards" maximum to (D,2)... but it cannot change even whenever we go forward (M. Property: Limited History)

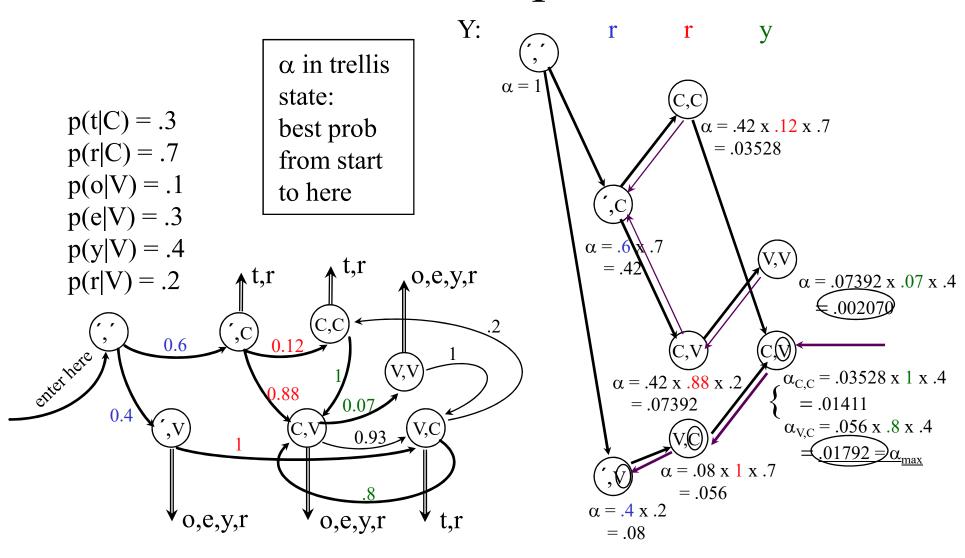
Viterbi Example

• 'r' classification (C or V?, sequence?):



Possible state seq.: (',v)(v,c)(c,v)[VCV], (',c)(c,c)(c,v)[CCV], (',c)(c,v)(v,v)[CVV]

Viterbi Computation

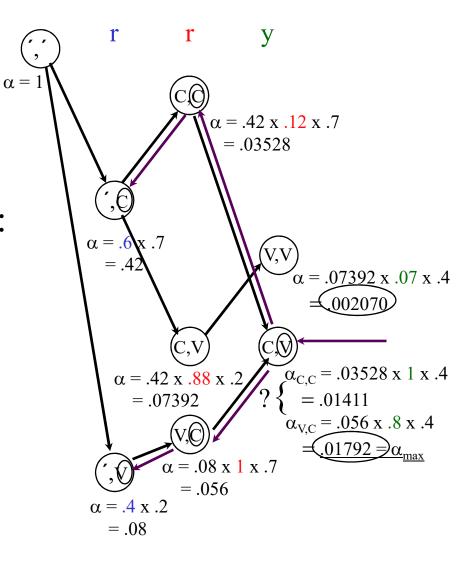


n-best State Sequences

Keep trackof <u>n</u> best"back pointers":

Y:

Ex.: n= 2:
Two "winners":
VCV (best)
CCV (2nd best)

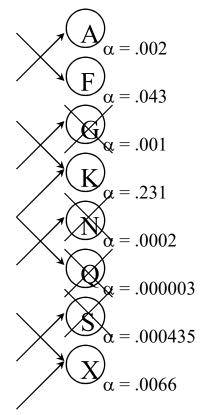


Tracking Back the n-best paths

- Backtracking-style algorithm:
 - Start at the end, in the best of the n states (s_{best})
 - Put the other n-1 best nodes/back pointer pairs on stack, except those leading from \mathbf{s}_{best} to the same best-back state.
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the <u>best</u> back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the top-most node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

Pruning

• Sometimes, too many trellis states in a stage:



criteria: (a) α < threshold

- (b) $\Sigma \pi$ < threshold
- (c) # of states > threshold (get rid of smallest α)

HMM Parameter Estimation: the Baum-Welch Algorithm

HMM: The Tasks

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_S , P_Y), where:
 - $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $Y = \{y_1, y_2, ..., y_V\}$ is the output alphabet,
 - $P_S(s_i|s_i)$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_i)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence $Y = \{y_1, y_2, ..., y_k\}$:
 - \checkmark (Task 1) compute the probability of Y;
 - ✓ (Task 2) compute the most likely sequence of states which has generated Y.

(Task 3) Estimating the parameters (transition/output distributions)

A Variant of EM

- Idea (~ EM, for another variant see LM smoothing):
 - Start with (possibly random) estimates of P_S and P_Y .
 - Compute (fractional) "counts" of state transitions/emissions taken, from P_S and P_Y, given data Y.
 - Adjust the estimates of P_S and P_Y from these "counts" (using the MLE, i.e. relative frequency as the estimate).

• Remarks:

- many more parameters than the simple four-way smoothing
- no proofs here; see Jelinek, Chapter 9

Setting

- HMM (without P_S, P_Y) (S, S_0, Y), and data $T = \{y^i \in Y\}_{i=1..|T|}$
 - will use $T \sim |T|$
 - HMM structure is given: (S, S_0)
 - P_S:Typically, one wants to allow "fully connected" graph
 - (i.e. no transitions forbidden \sim no transitions set to hard 0)
 - why? → we better leave it on the learning phase, based on the data!
 - sometimes possible to remove some transitions ahead of time
 - P_Y: should be restricted (if not, we will not get anywhere!)
 - restricted \sim hard 0 probabilities of p(y|s,s')
 - "Dictionary": states ↔ words, "m:n" mapping on S × Y (in general)

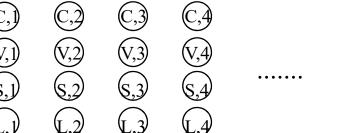
Initialization

- For computing the initial expected "counts"
- Important part
 - EM guaranteed to find a <u>local</u> maximum only (albeit a good one in most cases)
- P_Y initialization more important
 - fortunately, often easy to determine
 - together with dictionary \leftrightarrow vocabulary mapping, get counts, then MLE
- P_S initialization less important
 - e.g. uniform distribution for each p(.|s)

Data Structures

- Will need storage for:
 - The predetermined structure of the HMM
 (unless fully connected → need not to keep it!)
 - The parameters to be estimated (P_S, P_Y)
 - The expected counts (same size as P_S , P_Y)
 - The training data $T = \{y^i \in Y\}_{i=1..T}$
 - The trellis (if f.c.):
 ↑ T Size: T 'S (Precisely, |T| '|S|)

Each trellis state: two [float] numbers (forward/backward)



The Algorithm Part I

- 1. Initialize P_S , P_Y
- 2. Compute "forward" probabilities:
 - follow the procedure for trellis (summing), compute $\alpha(s,i)$
 - use the current values of P_S , P_Y (p(s'|s), p(y|s,s')):

$$\alpha(s',i) = \sum_{s \to s'} \alpha(s,i-1) \times p(s'|s) \times p(y_i|s,s')$$

- NB: do not throw away the previous stage!
- 3. Compute "backward" probabilities
 - start at all nodes of the last stage, proceed backwards, $\beta(s,i)$
 - i.e., probability of the "tail" of data from stage i to the end of data

$$\beta(s',i) = \sum_{s \leftarrow s'} \beta(s,i+1) \times p(s|s') \times p(y_{i+1}|s',s)$$

• also, keep the $\beta(s,i)$ at all trellis states

The Algorithm Part II

4. Collect counts:

for each output/transition pair compute

$$c(y,s,s') = \sum_{i=0..k-1,y=y_{i+1}} \alpha(s,i) \ p(s'|s) \ p(y_{i+1}|s,s') \ \beta(s',i+1)$$
 one pass through data, only stop at (output) y output prob

$$c(s,s') = \sum_{y \in Y} c(y,s,s')$$
 (assuming all observed y_i in Y)
 $c(s) = \sum_{s' \in S} c(s,s')$

- 5. Reestimate: p'(s'|s) = c(s,s')/c(s) p'(y|s,s') = c(y,s,s')/c(s,s')
- 6. Repeat 2-5 until desired convergence limit is reached.

Baum-Welch: Tips & Tricks

- Normalization badly needed
 - long training data \rightarrow extremely small probabilities
- Normalize α, β using the same norm. factor:

$$N(i) = \sum_{s \in S} \alpha(s, i)$$

as follows:

- compute $\alpha(s,i)$ as usual (Step 2 of the algorithm), computing the sum N(i) at the given stage i as you go.
- at the end of each stage, recompute all αs (for each state s):

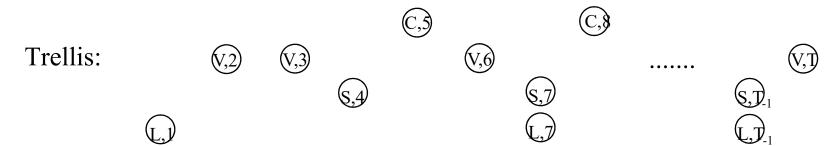
$$\square \qquad \alpha^*(\mathbf{s},\mathbf{i}) = \alpha(\mathbf{s},\mathbf{i}) / \mathbf{N}(\mathbf{i})$$

• use the same N(i) for βs at the end of each backward (Step 3) stage:

$$\beta^*(\mathbf{s},\mathbf{i}) = \beta(\mathbf{s},\mathbf{i}) / \mathbf{N}(\mathbf{i})$$

Example

- Task: pronunciation of "the"
- Solution: build HMM, fully connected, 4 states:
 - S short article, L long article, C,V starting w/consonant, vowel
 - thus, only "the" is ambiguous (a, an, the not members of C,V)
- Output from states only (p(w|s,s') = p(w|s'))
- Data Y: an egg and a piece of the big the end



Example: Initialization

• Output probabilities:

$$p_{init}(w|c) = c(c,w) / c(c)$$
; where $c(S,the) = c(L,the) = c(the)/2$ (other than that, everything is deterministic)

- Transition probabilities:
 - $-p_{init}(c'|c) = 1/4$ (uniform)
- Don't forget:
 - about the space needed
 - initialize $\alpha(X,0) = 1$ (X: the never-occurring front buffer st.)
 - initialize $\beta(s,T) = 1$ for all s (except for s = X)

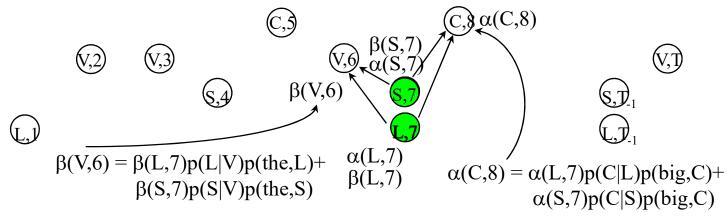
Fill in alpha, beta

• Left to right, alpha:

$$\alpha(s',i) = \sum_{s \to s'} \alpha(s,i-1) \times p(s'|s) \times p(w_i|s')$$
output from states

- Remember normalization (N(i)).
- Similarly, beta (on the way back from the end).

an egg and a piece of the big the end

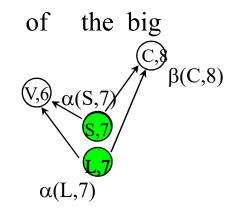


Counts & Reestimation

- One pass through data
- At each position i, go through all pairs (s_i, s_{i+1})
- Increment appropriate counters by frac. counts (Step 4):
 - $inc(y_{i+1},s_i,s_{i+1}) = a(s_i,i) p(s_{i+1}|s_i) p(y_{i+1}|s_{i+1}) b(s_{i+1},i+1)$
 - $c(y,s_i,s_{i+1}) += inc (for y at pos i+1)$
 - $c(s_i, s_{i+1}) += inc (always)$
 - $c(s_i) += inc (always)$

$$inc(big,L,C) = \alpha(L,7)p(C|L)p(big,C)\beta(C,8)$$
$$inc(big,S,C) = \alpha(S,7)p(C|S)p(big,C)\beta(C,8)$$

- Reestimate p(s'|s), p(y|s)
 - and hope for increase in p(C|S) and p(V|L)...!!



HMM: Final Remarks

- Parameter "tying":
 - keep certain parameters same (~ just one "counter" for all of them)
 - any combination in principle possible
 - ex.: smoothing (just one set of lambdas)
- Real Numbers Output
 - Y of infinite size (R, R^n):
 - parametric (typically: few) distribution needed (e.g., "Gaussian")
- "Empty" transitions: do not generate output
 - ~ vertical arcs in trellis; do not use in "counting"