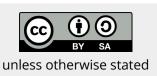
Statistical Methods in Natural Language Processing

8. Hidden Markov Models

Pavel Pecina, Jindřich Helcl

9 December, 2025



Course Segments

- **1.** Introduction, probability, essential information theory
- 2. Statistical language modelling (n-gram)
- **3.** Statistical properties of words
- **4.** Word representations
- **5.** Hidden Markov models, Tagging

Recap from Last Week

Embedding Matrix

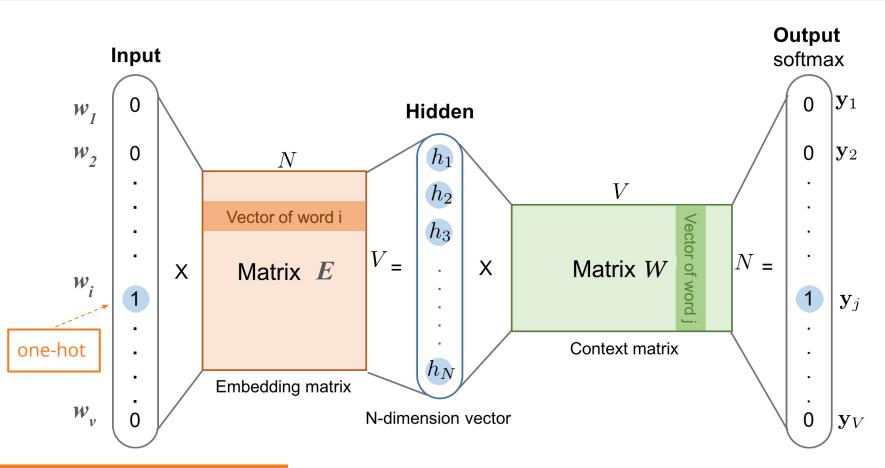
With pre-defined vocabulary V, let $E \in \mathbb{R}^{|V| \times d}$ be an **embedding matrix**

- Each row of E corresponds to a word from the vocabulary
- d is the embedding size (or dimension)
 - o a hyper-parameter and needs to be decided before obtaining the embeddings

hello	-1.2	0.3	5.0	
the	0.1	3.6	2.2	
of	3.3	-1.0	3.1	
dog	-1.0	7.5	7.1	

- OOV words?
 - Usually collapsed into a special <oov> token that will get its embedding

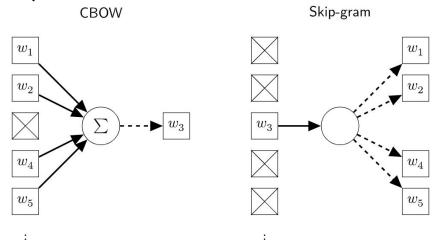
Word2vec Model Architecture



Word2vec Training

Training is done by sampling input and target word(s) from data.

- **CBOW** (continuous bag-of-words): For a given target word *w*, sum embeddings of the context words and predict *w* (one training example).
- Skip-gram: For a given input word w, predict words in its context (one training example per context word)



Word2vec Implementation, cont.

Using sigmoid instead of softmax gives us:

$$-\log\sigma(e^{\top}\cdot c)$$

- This is only for word pairs that do occur together (positive samples)
- For better training we need to also train on negative ones
 - o a process we sample more negative
- Taking into examples than positive, complete the usually around 2-5

do not occur together, we can

loss from the negative example

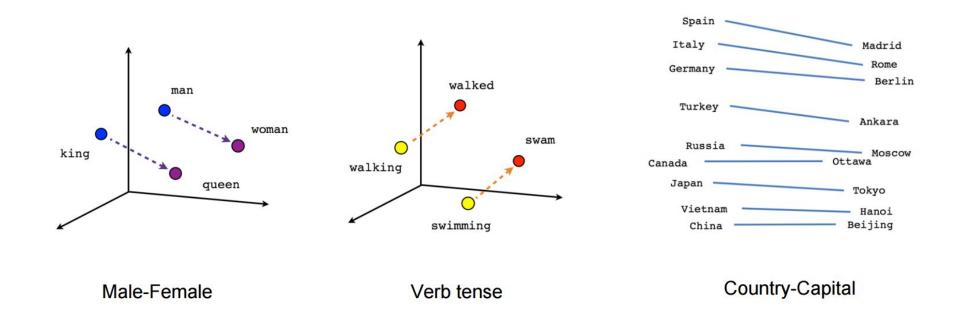
$$L = -\log \sigma(e^{\top} \cdot c_p) - \sum_{c_n} \log(1 - \sigma(e^{\top} \cdot c_n))$$

loss from the positive example

note that the input word *e* stays the same

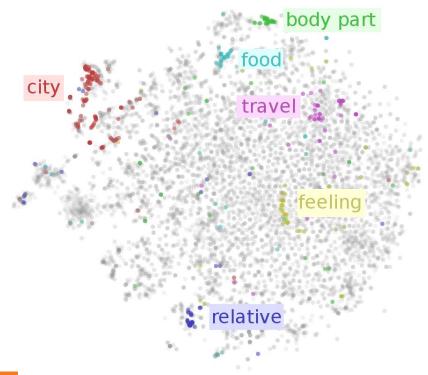
Word2vec Vector Properties I

Word2vec vectors seem to enable meaningful arithmetic operations



Word2vec Vector Properties II

Word2vec vectors encode distributional semantics: similarity in meaning \rightarrow proximity in vector space.



Markov Process (Review)

Bayes formula (chain rule):

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1..T} p(w_i | w_1, w_2, ..., w_{i-n+1}, ..., w_{i-1})$$

Markov Process (Review)

Bayes formula (chain rule):

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1...T} p(w_i | w_1, w_2, ..., w_{i-n+1}, ..., w_{i-1})$$

- n-gram language models:
 - \circ Markov process (chain) of the order n-1:

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1..T} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1})$$

Markov Process (Review)

Bayes formula (chain rule):

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1...T} p(w_i, w_1, w_2, ..., w_{i-n+1}, ..., w_{i-1})$$

- n-gram language models:
 - \circ Markov process (chain) of the order n-1:

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1..T} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1})$$

Using just <u>one</u> distribution (Ex.: trigram model: $p(w_i|w_{i-2},w_{i-1})$):

Words: My car broke down, and within hours Bob 's car broke down, too .

$$p(,|broke\ down) = p(w_5|w_3,w_4) = p(w_{14}|w_{12},w_{13})$$

Markov Properties

- Markov Chain can generalize to any process (not just words):
 - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$
 - Sample space S (*states*), size N: $S = \{s_0, s_1, s_2, ..., s_N\}$

Markov Properties

- Markov Chain can generalize to any process (not just words):
 - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$
 - Sample space S (*states*), size N: $S = \{s_0, s_1, s_2, ..., s_N\}$
- Two properties
 - 1. Limited history (context, horizon):

$$\forall i \in 1..T; P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$$

$$17379067345...$$

$$17379067345...$$

Markov Properties

- Markov Chain can generalize to any process (not just words):
 - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$
 - Sample space S (*states*), size N: $S = \{s_0, s_1, s_2, ..., s_N\}$
- Two properties
 - 1. Limited history (context, horizon):

$$\forall i \in 1..T; P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$$

$$17379067345...$$

$$17379067345...$$

Time invariance (Markov Chain is stationary, homogeneous)

$$\forall i \in 1..T, \ \forall y, x \in S; \ P(X_i = y | X_{i-1} = x) = p(y | x)$$

$$1 \ 7 \ 3 \ 7 \ 9 \ 0 \ 6 \ 7 \ 3 \ 4 \ 5...$$

ok ... same <u>distribution</u>

Long History Possible

What if we want trigrams:

1 7 3 7 9 0 6 7 3 4 5 ...

Long History Possible

What if we want trigrams:

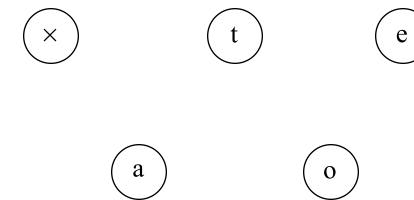
- Formally, use transformation:
 - Define new variables Q_i , such that $X_i = \{Q_{i-1}, Q_i\}$
 - And then $P(X_i|X_{i-1}) = P(Q_{i-1},Q_i|Q_{i-2},Q_{i-1}) = P(Q_i|Q_{i-2},Q_{i-1})$

Long History Possible

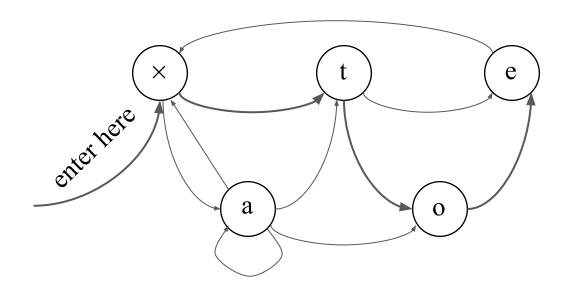
What if we want trigrams:

- Formally, use transformation:
 - o Define new variables Q_i , such that $X_i = \{Q_{i-1}, Q_i\}$
 - $\circ \quad \text{And then } P(X_i|X_{i\text{-}1}) = P(Q_{i\text{-}1},Q_i|Q_{i\text{-}2},Q_{i\text{-}1}) = P(Q_i|Q_{i\text{-}2},Q_{i\text{-}1})$

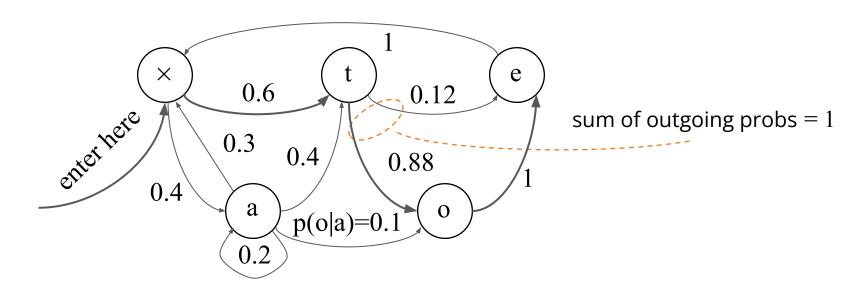
• Nodes: States, $S = \{s_0, s_1, s_2, ..., s_N\}$



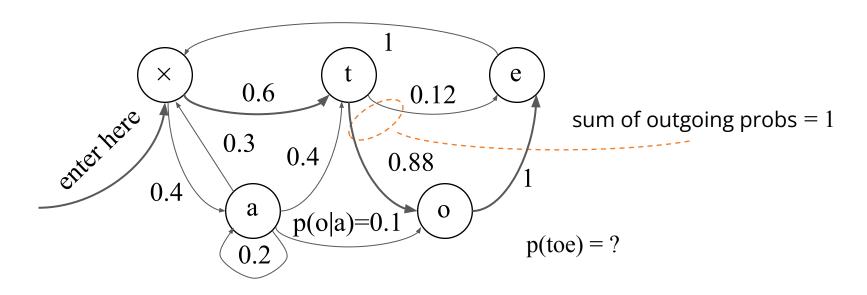
- Nodes: States, $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1})$, X_i generates s_i



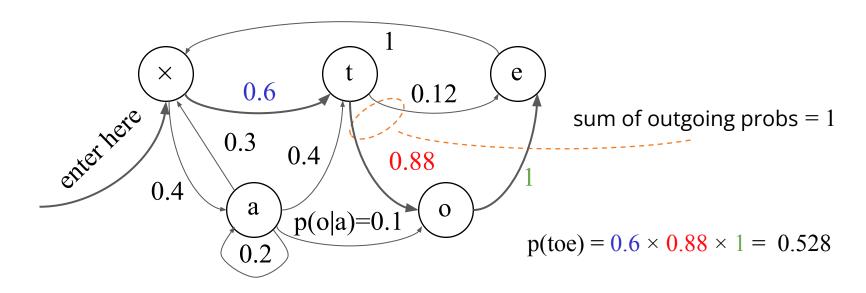
- Nodes: States, $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1})$, X_i generates s_i



- Nodes: States, $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1})$, X_i generates s_i

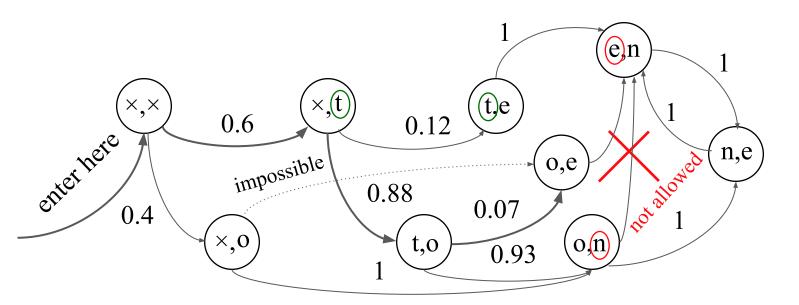


- Nodes: States, $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1})$, X_i generates s_i



The Trigram Case

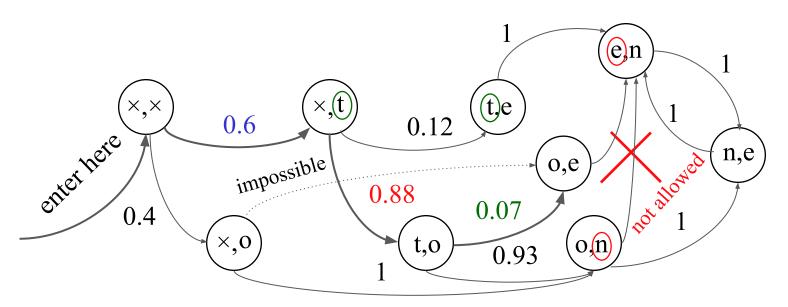
- Nodes: Pairs of states (s_k, s_1) , $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1})$, X_i generates (s_k,s_l)



p(toe) = ?

The Trigram Case

- Nodes: Pairs of states (s_k, s_1) , $S = \{s_0, s_1, s_2, ..., s_N\}$
- Arcs: Transitions with probabilities, $P(X_i|X_{i-1})$, X_i generates (s_k,s_l)

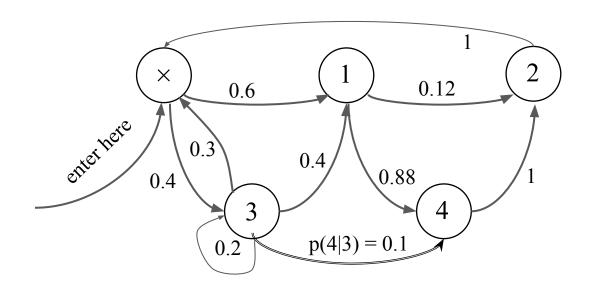


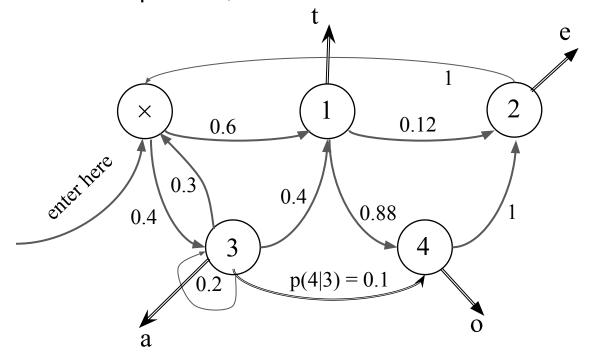
$$p(toe) = 0.6 \times 0.88 \times 0.07 = 0.037$$

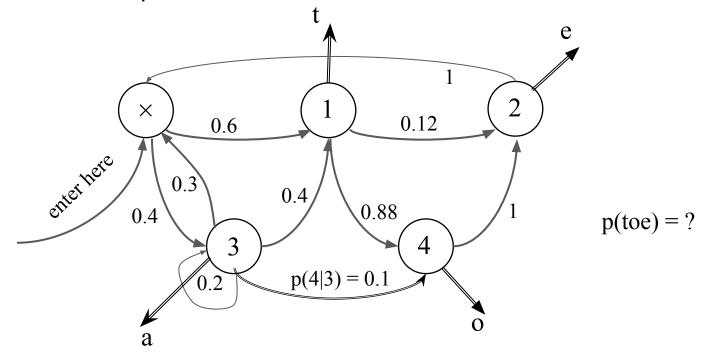
p(one) = ?

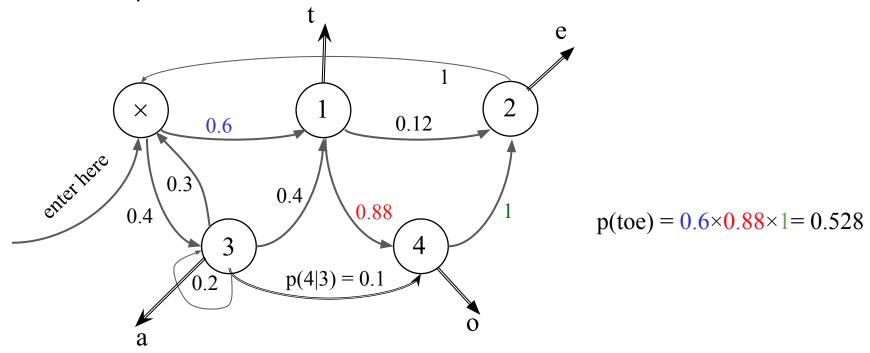
Finite State Automaton

- States ~ symbols of the [input / output] alphabet
 - o pairs (or more): last element of the n-tuple
- Arcs ~ transitions (sequence of states)
 - Classical FSA: alphabet symbols on arcs:
 - possible transformation: arcs ↔ nodes
- Possible thanks to the "limited history" Markov Property
- So far: <u>Visible</u> Markov Models (VMM)



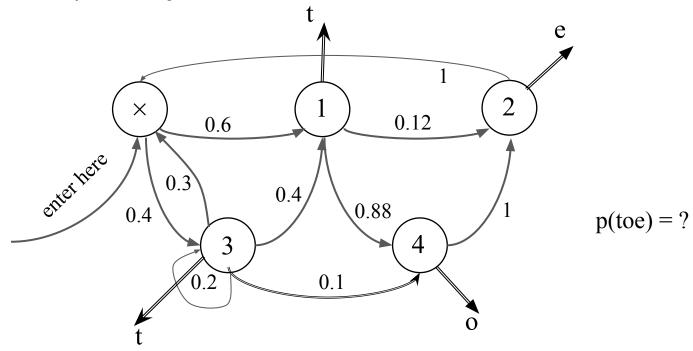






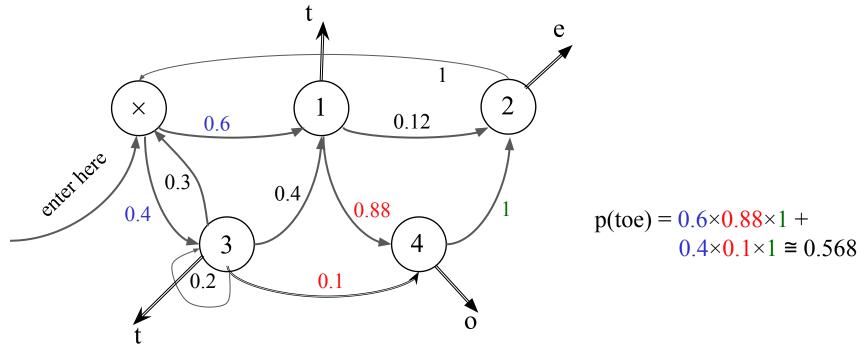
Added Flexibility

 So far, no change; but different states may generate the same output (why not?):



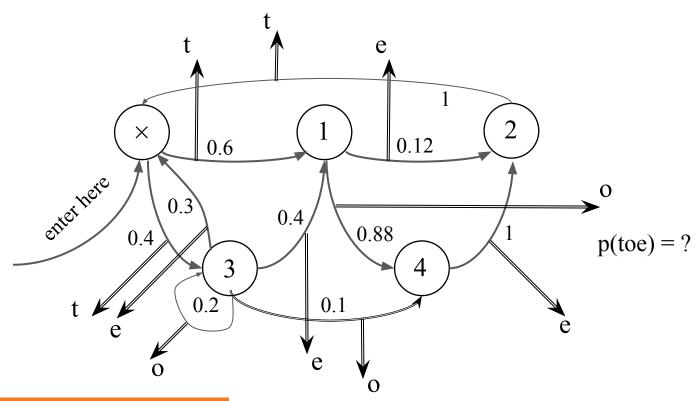
Added Flexibility

 So far, no change; but different states may generate the same output (why not?):



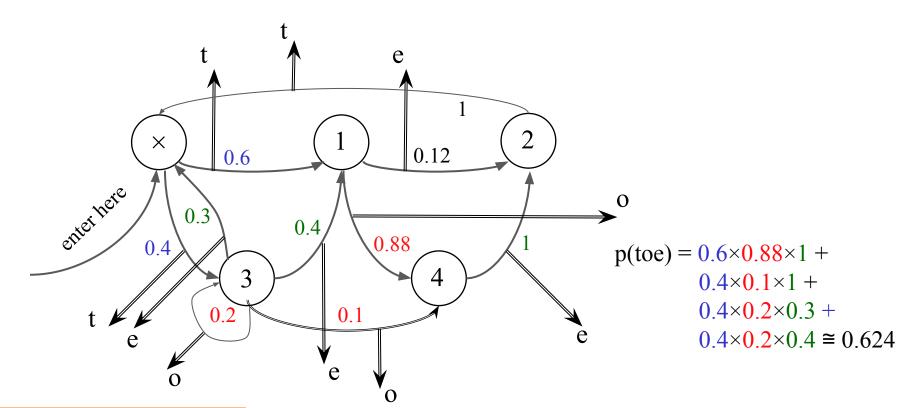
Output from Arcs...

Added flexibility: Generate output from <u>arcs</u>, not states:



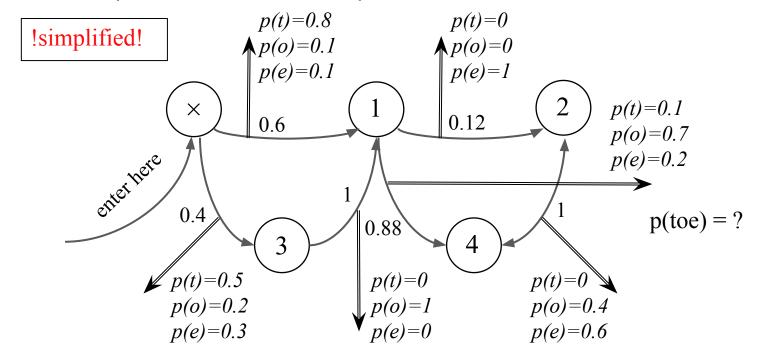
Output from Arcs...

Added flexibility: Generate output from arcs, not states:



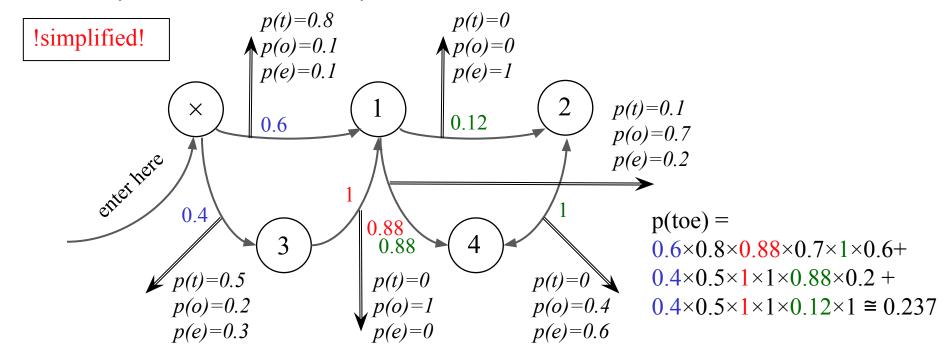
... and Finally, Add Output Probabilities

 Maximum flexibility: [Unigram] distribution (sample space: output alphabet) at each output arc:



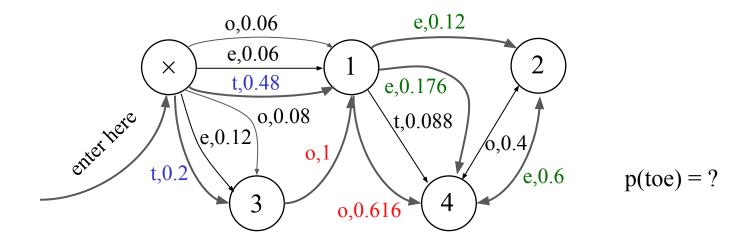
... and Finally, Add Output Probabilities

 Maximum flexibility: [Unigram] distribution (sample space: output alphabet) at each output arc:



Slightly Different View

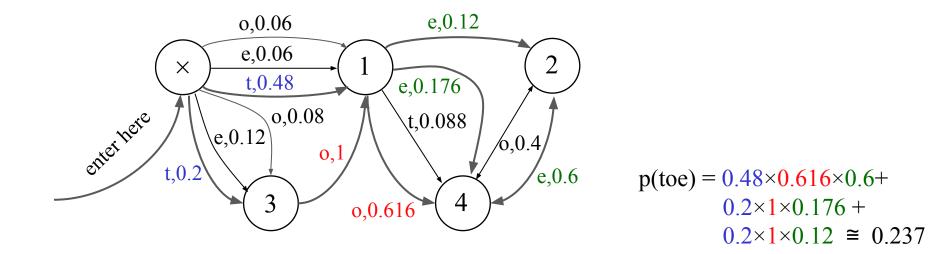
• Allow for multiple arcs from $s_i \rightarrow s_j$, mark them by output symbols, get rid of output distributions:



In the future, we will use the view more convenient for the problem at hand.

Slightly Different View

• Allow for multiple arcs from $s_i \rightarrow s_j$, mark them by output symbols, get rid of output distributions:



In the future, we will use the view more convenient for the problem at hand.

Formalization

- HMM (the general case): five-tuple (S, s_0 , Y, P_S , P_V), where:
 - \circ $S = \{s_1, s_2, ..., s_T\}$ is the set of states, s_0 is the initial state,
 - $\circ \quad \mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{\mathbf{V}}\} \text{ is the output alphabet,}$
 - \circ $P_{s}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - size of P_S : $|S|^2$
 - \circ $P_{Y}(y_{k}|s_{i},s_{i})$ is the set of output (emission) probability distributions
 - size of P_Y : $|S|^2 \times |Y|$
- Example:
 - $\circ S = \{x, 1, 2, 3, 4\}, s_0 = x$
 - \circ Y = { t, o, e }

Formalization - Example

• Example (for graph on slide 36):

$$\circ$$
 S = {x, 1, 2, 3, 4}, $s_0 = x$

$$\circ \quad Y = \{ t, o, e \}$$

o P_S:

	×	1	2	3	4
×	0	0.6	0	0.4	0
1	0	0	0.12	0	0.88
2	0	0	0	0	1
3	0	1	0	0	0
4	0	0	1	0	0

									-
I	Y'		e	×	1	2	3	4	
_		0	×	1	2	3	4	1	$\Sigma = 1$
	t	×	1	2	3	4		0.2	
	×		0.8		0.5		0.7		
	1					0.1			
	2					0			
	3		0						
	4			0					

Using the HMM

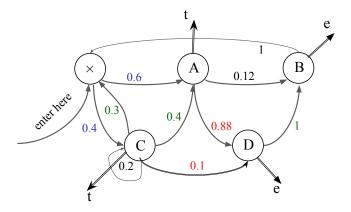
- The generation algorithm (of limited value :-)):
 - 1. Start in $s = s_0$
 - 2. Move from s to s' with probability $P_s(s'|s)$
 - 3. Output (emit) symbol y_k with probability $P_S(y_k|s,s')$
 - 4. Repeat from step 2 (until somebody says enough)
- More interesting usage:
 - 1. Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute its probability.
 - 2. Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute the most likely sequence of states which has generated it.
 - ...plus variations: e.g., n best state sequences

Trellis

HMM: The Two Tasks

- HMM (the general case): five-tuple (S, S_0, Y, P_S, P_V) , where:
 - \circ S = {s₁,s₂,...,s_T} is the set of states, S₀ is the initial state,
 - $Y = \{y_1, y_2, ..., y_V\}$ is the output alphabet,
 - \circ $P_{s}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - \circ $P_{Y}(y_{k}|s_{i},s_{i})$ is the set of output (emission) probability distributions
- Given an HMM & an output sequence $Y = \{y_1, y_2, ..., y_k\}$:
 - \circ (Task 1) compute the probability of Y;
 - \circ (Task 2) compute the most likely sequence of states which has generated Y.

HMM:

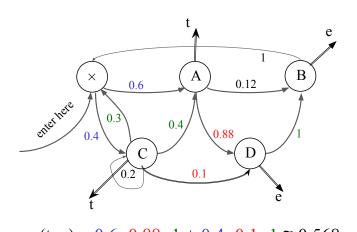


$$p(toe) = 0.6 \times 0.88 \times 1 + 0.4 \times 0.1 \times 1 \approx 0.568$$

HMM:

Trellis:

"roll-out"



time/position:

0

(×,

(A,0)

(B,0)

(C,0

(D,0)

 $p(toe) = 0.6 \times 0.88 \times 1 + 0.4 \times 0.1 \times 1 \approx 0.568$

- Trellis state: (HMM state, position)

Y:

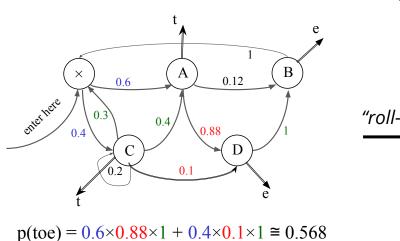
t

0

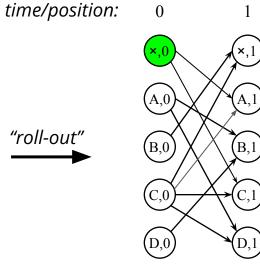
e

HMM:

Trellis:



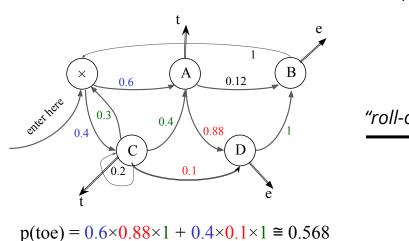
- Trellis state: (HMM state, position)



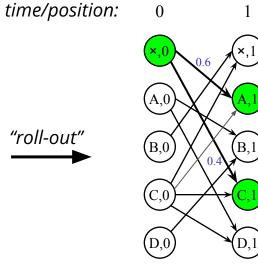
Y: t o e

HMM:

Trellis:



- Trellis state: (HMM state, position)



Y:

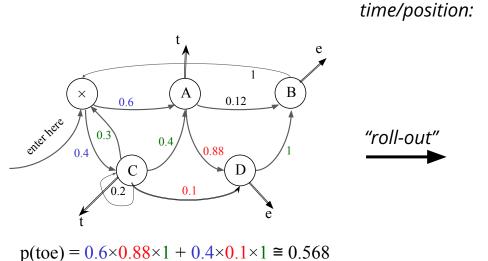
t

0

e

HMM:

Trellis:



- Trellis state: (HMM state, position)

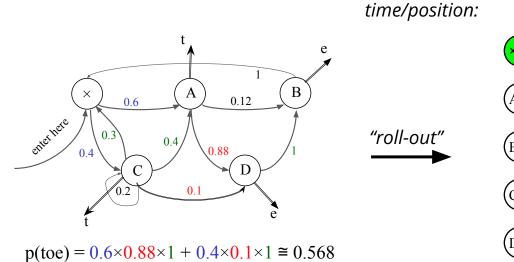
Y:

(B,0

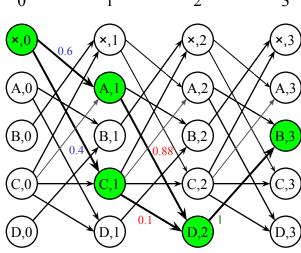
0

HMM:

Trellis:



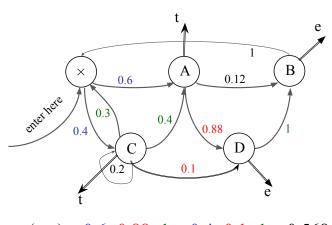
- Trellis state: (HMM state, position)



Y: t o e

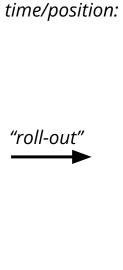
HMM:

Trellis:



 $p(toe) = 0.6 \times 0.88 \times 1 + 0.4 \times 0.1 \times 1 \approx 0.568$

- Trellis state: (HMM state, position)



0 1 2 3 x,0 0.6 x,1 x,2 x,3 A,1 A,2 A,3 B,0 0.4 B,1 0.88 B,2 B,3 C,0 C,1 C,2 C,3

Y:

t

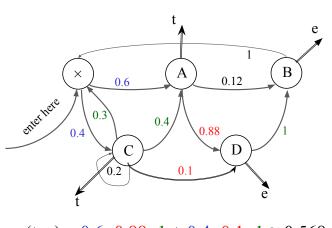
0

•

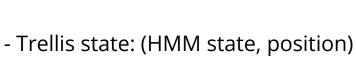
HMM:

Trellis:

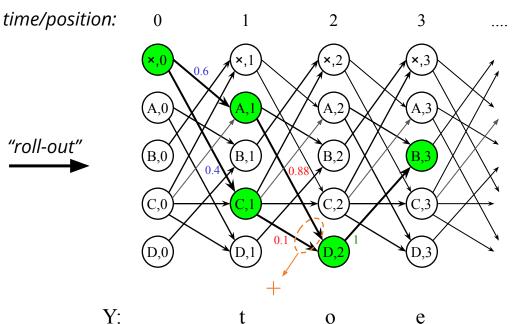
"roll-out"



 $p(toe) = 0.6 \times 0.88 \times 1 + 0.4 \times 0.1 \times 1 \approx 0.568$



- each state: holds \underline{one} number (prob): α
- probability of Y: $\Sigma \alpha$ in the last state



 $\alpha(A,1) = 0.6 \ \alpha(D,2) = 0.568 \ \alpha(B,3) = 0.568$ $\alpha(\times,0)=1$ $\alpha(C,1) = 0.4$

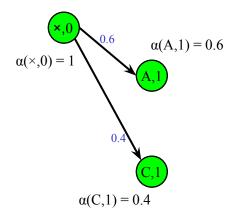
Creating the Trellis: The Start

- Start in the start state (×),
 - \circ set its $\alpha(\times, \theta)$ to 1

position/stage:

1

- Create the first stage:
 - \circ get the first "output" symbol y_1
 - create the first stage (column)
 - but only those Trellis states
 which generate y₁
 - set their $\alpha(state, 1)$ to the $P_{S}(state|\times) \alpha(\times, 0)$
- ullet and forget about the heta-th stage

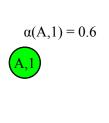


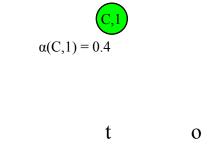
Y:

ι

Trellis: The Next Step

- Suppose we are in stage i
- Creating the next stage: position/stage:
 - \circ create all trellis states in the next stage which generate y_{i+1} , but only those reachable from any of the stage-i states
 - o set their $\alpha(state, i+1)$ to: $P_{S}(state|prev.state) \times \alpha(prev.state, i)$ (add up all such numbers on arcs going to a common Trellis state)
 ...and forget about stage i





Trellis: The Next Step

- Suppose we are in stage i
- Creating the next stage:
 - create all trellis states in the next stage which generate y_{i+1}, but only those reachable from any of the stage-i states

position/stage:

Y:

o set their $\alpha(state, i+1)$ to: $P_{S}(state|prev.state) \times \alpha(prev.state, i)$ (add up all such numbers on arcs going to a common Trellis state)
...and forget about stage i

 $\alpha(A,1) = 0.6$ $\alpha(C,1) = 0.4$ $\alpha(D,2) = 0.568$ 0

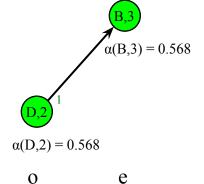
Trellis: The Last Step

- Continue until output exhausted
 - \circ |Y| = 3: until stage 3

position/stage:

- 3

- Add together all the $\alpha(state, |Y|)$
- That's the $\underline{P(Y)}$
- Observation (pleasant):
 - o memory usage max: 2|S|
 - \circ multiplications max: $|S|^2|Y|$



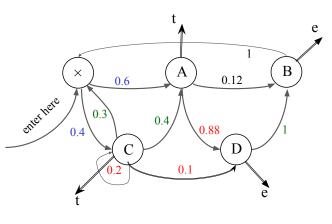
Y:

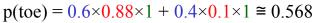
Trellis (again)

HMM:

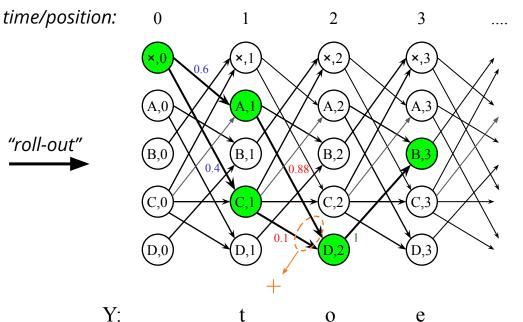
Trellis:

"roll-out"





- each state: holds \underline{one} number (prob): α
- probability of Y: $\Sigma \alpha$ in the last state



 $\alpha(A,1) = 0.6 \ \alpha(D,2) = 0.568 \ \alpha(B,3) = 0.568$ $\alpha(\times,0)=1$ $\alpha(C,1) = 0.4$

HMM: The Two Tasks

- HMM (the general case): five-tuple (S, S_0, Y, P_S, P_Y) , where:
 - \circ $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $\circ \quad \mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{\mathbf{V}}\} \text{ is the output alphabet,}$
 - \circ $P_{s}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - \circ $P_{Y}(y_{k}|s_{i},s_{j})$ is the set of output (emission) probability distributions
- Given an HMM & an output sequence $Y = \{y_1, y_2, ..., y_k\}$:
 - \circ (Task 1) compute the probability of Y;
 - \circ (Task 2) compute the most likely sequence of states which has generated Y.

Moodle Quiz

Moodle Quiz

https://dl1.cuni.cz/course/view.php?id=18547

Trellis: The General Case (still, bigrams)

General Trellis: The Next Step

Trellis: The Complete Example

The Case of Trigrams

• B

Trigrams with Classes

Class Trigrams: the Trellis

Overlapping Classes

• B

Overlapping Classes: Trellis Example

Trellis: Remarks

- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 - supposed we know where to start (finite data)
- In fact, we might start in the middle going left <u>and</u> right
- Important for parameter estimation
 - (Forward-Backward Algorithm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers & addition problems with many transitions