Statistical Methods in Natural Language Processing

6. Mutual Information and Word Classes

Pavel Pecina, Jindřich Helcl

18 November, 2025



Course Segments

- **1.** Introduction, probability, essential information theory
- 2. Statistical language modelling (n-gram)
- **3.** Statistical properties of words
- **4.** Word representations
- **5.** Hidden Markov models, Tagging

Recap from Last Week

Collocations

- J. R. Firth (1957):
 - "You shall know a word by the company it keeps."
 - "<u>Collocations</u> of a given word are statements of the habitual or customary places of that word."
- M&S (Chapter 5):
 - "A <u>collocation</u> is an expression consisting of two or more words that correspond to some conventional way of saying things."
- Examples:
 - strong tea, weapons of mass destruction
 - to make up, the rich and powerful
- Valid or invalid?
 - o *a stiff breeze*, but not *a stiff wind*
 - broad daylight, but not bright daylight

Properties of Collocations

- Typical properties/criterions of collocations:
 - non-compositionality
 - non-substitutability
 - non-modifiability
- Collocations usually cannot be translated word-by-word
 - \circ e.g. take a shower \rightarrow osprchovat se, but not vzít sprchu
- A phrase can be a collocation even if it is not consecutive
 - o e.g. knock ... door

How to Find Collocations?

- Frequency (simplest method)
 - o plain
 - filtered
- Mean and variance of the distance between focal word and collocating word
- Hypothesis testing
 - o *t* test
 - \circ $\chi 2$ test
- Pointwise Mutual Information

Hypothesis Testing

- Two words can co-occur by chance
 - High frequency and low variance can be accidental
- <u>Hypothesis Testing</u> measures the confidence that this co-occurrence was really due to association, and not just due to chance.
- Formulate a null hypothesis H_0 that there is no association between the words beyond chance occurrences:
 - \circ H_0 states what should be true if two words do not form a collocation.
 - \circ If $H_{artheta}$ can be rejected, the words do not co-occur by chance, and they <u>form a collocation</u>
- Compute the probability p that the event would occur if H_0 were true:
 - reject H_0 if p is too low (typically beneath a significance level of p < 0.05, 0.01,...)
 - \circ retain H_0 as possible otherwise.

t-test (Student's t-test)

• The test looks at the difference between the observed and expected means, scaled by the variance of the data, and tells us how likely one is to get a sample of that mean and variance, assuming that the sample is drawn from a normal distribution with mean μ .

$$t = \frac{\bar{x} - \mu}{\sqrt{\frac{s^2}{N}}}$$

- Where \bar{x} is the real data mean (observed in data)
- \circ s^2 is the variance
- \circ *N* is the sample size
- \circ μ is the mean of the distribution (expected under H_0)

χ² test: An example

Observed occurrences:

	$w_1 = new$	$w_1 \neq new$
$\overline{w_2 = companies}$	8	4667
	(new companies)	(e.g., old companies)
$\overline{w_2 \neq companies}$	15820	14287181
	(e.g., new machines)	(e.g., old machines)

• The χ^2 statistic sums differences between observed and expected values in all cells of the table, scaled by the magnitude of the expected values:

$$X^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

• where i ranges over rows of the table, j ranges over columns, O_{ij} is the observed value for cell (i, j) and E_{ij} is the expected value.

χ² test: A Simpler Form

• χ^2 test can be applied to tables of any size, but it has a simpler form for <u>2-by-2 tables</u> (i.e. bigram collocations):

$$\chi^2 = \frac{N(O_{11}O_{22} - O_{12}O_{21})^2}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})}$$

Pointwise Mutual Information

- An information-theoretically motivated measure for discovering interesting collocations is pointwise mutual information
- It is a measure of how much one word tells us about the other:

$$ext{PMI}(x,y) = \log rac{P(x,y)}{P(x)\,P(y)}$$
 "expected (under H_0)"

- \circ P(x,y) is the joint probability of x and y occurring together,
- \circ P(x) and P(y) are the individual probabilities of x and y
- PMI is <u>NOT</u> the MI as defined in Information Theory (MI is the average of PMI)

Mutual Information and Word Classes

The Problem

Not enough data:

- Language Modeling: we do not see "correct" n-grams
 - solution so far: smoothing
- suppose we see:
 - short homework, short assignment, simple homework
- but not:
 - simple assignment
- What happens to our (bigram) LM?
 - \circ p(homework | simple) = high probability
 - \circ p(assignment|simple) = low probability (smoothed with p(assignment))
- They should be much closer!

Word Classes

Observation:

- similar words behave in a similar way
- i.e. appear in similar context (the Distributional Hypothesis)
- Assuming trigram language model:
 - o a ... homework (any attribute of homework: short, simple, late, difficult),
 - ... the woods (any verb that has the woods as an object: walk, cut, save)
 - o a (short,long,difficult,...) (homework,assignment,task,job,...)

Solution

Use the Word Classes as the "reliability" measure:

- Example: we see
 - short homework, short assignment, simple homework
- but not:
 - simple assigment
- Cluster into classes:
 - (short, simple) (homework, assignment)
 - covers "simple assignment", too
- Gaining:
 - realistic estimates for unseen n-grams
- Losing:
 - accuracy (level of detail) within classes

The New Model

Rewrite the n-gram LM using classes:

• Original definition: [k = 1...n]

$$p_k(w_i|h_i) = c(h_i,w_i) / c(h_i)$$
 [history: (k-1) words]

Introduce classes:

$$p_k(w_i|h_i) = p(w_i|c_i) p_k(c_i|h_i)$$

- history: classes, too: [for trigram: $h_i = c_{i-2}, c_{i-1}$, bigram: $h_i = c_{i-1}$]
- Smoothing as usual
 - o over $p_k(w_i|h_i)$, where each is defined as above (except uniform which is 1/|V|)

Training Data

- Suppose we already have a mapping:
 - \circ r: V \to C assigning each word its class $(c_i = r(w_i))$
- Expand the training data:
 - \circ T = $(w_1, w_2, ..., w_{|T|})$ into
 - $\circ \quad T_{C} = (\langle w_{1}, r(w_{1}) \rangle, \langle w_{2}, r(w_{2}) \rangle, ..., \langle w_{|T|}, r(w_{|T|}) \rangle)$
- Effectively, we have two streams of data:
 - \circ word stream: $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{|\mathbf{T}|}$
 - o class stream: $c_1, c_2, ..., c_{|T|}$ (def. as $c_i = r(w_i)$)
- Expand Heldout, Test data too

Training the New Model

Using ML estimates (as expected):

- $o p(w_i|c_i) = p(w_i|r(w_i)) = c(w_i) / c(r(w_i)) = c(w_i) / c(c_i)$
 - $!!! c(w_i, c_i) = c(w_i)$ [since c_i determined by w_i]
- \circ $p_k(c_i|h_i)$:
 - $p_3(c_i|h_i) = p_3(c_i|c_{i-2},c_{i-1}) = c(c_{i-2},c_{i-1},c_i) / c(c_{i-2},c_{i-1})$
 - $p_2(c_i|h_i) = p_2(c_i|c_{i-1}) = c(c_{i-1},c_i) / c(c_{i-1})$
 - $p_1(c_i|h_i) = p_1(c_i) = c(c_i) / |T|$
- Then smooth as usual
 - o not the $p(w_i|c_i)$ nor $p_k(c_i|h_i)$ individually, but the $p_k(w_i|h_i)$

Classes: How To Get Them

- We supposed the classes are given
- Maybe there are in (human) dictionaries, but...
 - dictionaries are incomplete
 - dictionaries are unreliable
 - do not define classes as equivalence relation (overlap)
 - do not define classes suitable for LM
 - small, short... maybe; small and difficult?
- \rightarrow we have to construct them <u>from data</u> (again...)

Creating the Word-to-Class Map (Brown's Classes)

- Consider <u>bigram</u> model for now.
- Bigram estimate:

$$p_2(c_i|h_i) = p_2(c_i|c_{i-1}) = c(c_{i-1},c_i) / c(c_{i-1}) = c(r(w_{i-1}),r(w_i)) / c(r(w_{i-1}))$$

- Form of the model:
 - o just raw bigram for now:

$$P(T) = \prod_{i=1..|T|} p(w_i|r(w_i)) \ p_2(r(w_i)|r(w_{i-1})) \qquad (p_2(c_1|c_0) =_{df} p(c_1))$$

- Maximize over r (given $r \rightarrow \text{fixed } p, p_2$):
 - define objective

$$\begin{split} L(r) &= 1/|T| \; \Sigma_{i=1..|T|} log(p(w_i|r(w_i)) \; p_2(r(w_i))|r(w_{i-1}))) \\ r_{best} &= argmax_r \; L(r) \quad (L(r) = norm. \; logprob \; of \; training \; data \; ... \; as \; usual) \end{split}$$

Simplifying the Objective Function

• Start from L(r) = $1/|T| \sum_{i=1..|T|} log(p(w_i|r(w_i)) p_2(r(w_i)|r(w_{i-1})))$: $1/|T| \sum_{i=1..|T|} log(p(w_i|r(w_i)) \underline{p(r(w_i))} p_2(r(w_i)|r(w_{i-1})) / \underline{p(r(w_i))}) =$ $1/|T| \sum_{i=1..|T|} log(\underline{p(w_i,r(w_i))} p_2(r(w_i)|r(w_{i-1})) / p(r(w_i))) =$

$$\begin{split} &1/|T| \; \Sigma_{i=1..|T|} log(\underline{p(w_{\underline{i}}.r(w_{\underline{i}}))} \; p_2(r(w_{\underline{i}})|r(w_{\underline{i}-1})) \; / \; p(r(w_{\underline{i}}))) = \\ &1/|T| \; \Sigma_{i=1..|T|} log(\underline{p(w_{\underline{i}})}) + 1/|T| \; \Sigma_{i=1..|T|} log(p_2(r(w_{\underline{i}})|r(w_{\underline{i}-1})) \; / \; p(r(w_{\underline{i}}))) = \\ &-H(W) + 1/|T| \; \Sigma_{i=1..|T|} log(p_2(r(w_{\underline{i}})|r(w_{\underline{i}-1})) \; \underline{p(r(w_{\underline{i}-1}))} \; / \; (\underline{p(r(w_{\underline{i}-1}))} \; \underline{p(r(w_{\underline{i}})))}) = \\ &-H(W) + 1/|T| \; \Sigma_{i=1..|T|} log(\underline{p(r(w_{\underline{i}}).r(w_{\underline{i}-1}))} \; / \; (\underline{p(r(w_{\underline{i}-1}))} \; \underline{p(r(w_{\underline{i}})))}) = \\ &-H(W) + \Sigma_{d,e \in C} \; \underline{p(d,e)} \; log(\; \underline{p(d,e)} \; / \; (\underline{p(d)} \; \underline{p(e)}) \;) = \\ &-H(W) + I(D,E) \qquad \text{(event E picks class adjacent (to the right) to the one picked by D)} \end{split}$$

• Since W does not depend on r, we ended up with I(D,E).

Maximizing Mutual Information (dependent on mapping r)

- Result from previous slide:
 - Maximizing the probability of data amounts to maximizing I(D,E), the Mutual Information of the <u>adjacent classes</u>.

Good:

We know what a MI is, and we know how to maximize.

Bad:

• There is no way how to maximize over so many possible partitionings: $|V|^{|V|}$ - no way to test them all.

Training or Heldout?

- Training:
 - \circ best I(D,E): all words in a class of its own
 - → will not give us anything new.
- Heldout: ok, but:
 - must smooth to test <u>any</u> possible partitioning (unfeasible):
 - → using raw model: 0 probability of heldout (almost) guaranteed
 - → will not be able to compare anything
- Solution:
 - \circ use training anyway, but only keep I(D,E) as large as possible

The Greedy Algorithm

- Define merging operation on the mapping $r: V \to C$:
 - o merge: $R \times C \times C \rightarrow R' \times C-1$: $(r,k,l) \rightarrow r',C'$ such that
 - $C^{-1} = \{C \{k,l\} \cup \{m\}\}\$ (throw out k and l, add new m \notin C)
 - $\begin{array}{ccc} \circ & r\text{'}(w) = m & & \text{for } w \in r_{INV}(\{k,\!l\})\text{,} \\ & r(w) & & \text{otherwise.} \end{array}$
 - 1. Start with each word in its own class (C = V), r = id.
 - 2. Merge two classes k,l into one, m, such that $(k,l) = \operatorname{argmax}_{k,l} I_{\operatorname{merge}(r,k,l)}(D,E)$.
 - 3. Set new (r,C) = merge(r,k,l).
 - 4. Repeat 2 and 3 until |C| reaches predetermined size.

Brown's Classes: Programming Tips & Tricks

Complexity Issues

Still too complex:

- |V| iterations of the steps 2 and 3.
- $|V|^2$ steps to maximize $\operatorname{argmax}_{k,l}$ (selecting k,l freely from |C|, which is in the order of $|V|^2$)
- $|V|^2$ steps to compute I(D,E) (sum within sum, all classes, also: includes log)
 - \Rightarrow total: $|V|^5$
- i.e., for |V| = 100, about 10^{10} steps (several hours!)
- but $|V| \sim 50,000$ or more

Formula breakdown

• Mutual Information at k^{th} iteration (= k classes):

$$\circ I_{k} = \sum_{l,r \in C} p_{k}(l,r) \log(p_{k}(l,r) / (p_{kl}(l) p_{kr}(r)))$$

• For each pair of classes at iteration k, we define:

$$\circ q_{k}(l,r) = p_{k}(l,r) \log(p_{k}(l,r) / (p_{kl}(l) p_{kr}(r)))$$

• So:

$$\circ \quad I_{k} = \sum_{l,r \in C} q_{k}(l,r)$$

• $q_k(l,r)$ using bigram counts $c_k(l,r)$:

$$q_k(l,r) = c_k(l,r)/N \log(N c_k(l,r)/(c_{kl}(l) c_{kr}(r)))$$

1 \ r	c_1	c_2	c_3	c ₄
\mathbf{c}_1	10	2	0	1
\mathbf{c}_2	0	0	5	2
C3	0	2	0	3
C ₄	2	(3)	0	0

• For test-merging c_2 and c_4 we recompute only rows/columns 2 & 4:

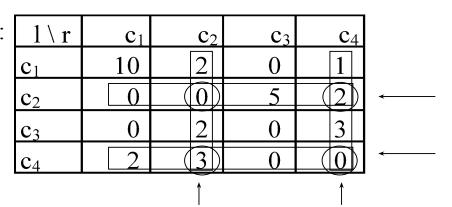
k:	1\r	c_1	c_2	c_3	C 4	
	c_1	10	2	0	1	
	c_2	0	0	5	2	←
	c_3	0	2	0	3	
	c_4	2	3	0	0	←
						-

- For test-merging c_2 and c_4 we recompute only rows/columns 2 & 4:
 - 1. Subtract column/row (2 & 4) $_{\rm k:}$ from the MI sum:

1\r	\mathbf{c}_1	c_2	c_3	c ₄	
c_1	10	2	0	1	
\mathbf{c}_2	0	0	5	2	←
c_3	0	2	0	3	
c_4	2	3	0	0	~
				<u> </u>	-

- For test-merging c_2 and c_4 we recompute only rows/columns 2 & 4:
 - 1. Subtract column/row (2 & 4) from the MI sum:

(be careful at the intersections)

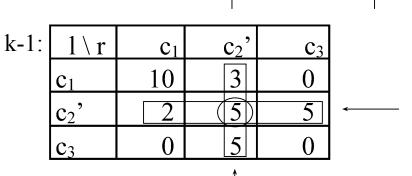


- For test-merging c_2 and c_4 we recompute only rows/columns 2 & 4:
 - 1. Subtract column/row (2 & 4) ₁ from the MI sum:

(be careful at the intersections)

2. Add sums of the merged counts (row & column for (c₂' is the merged class):

(watch the intersection again)



Trick #2: Precompute the Counts-to-be-Subtracted

- Summing loop goes through i,j
 - ... but the single row/column sums do not depend on the (resulting sums after the) merge \Rightarrow can be precomputed
 - $\circ\quad$ only 2k logs to compute at each algorithm iteration, instead of k^2
- Then for each "merge-to-be" compute only add-on sums, plus "intersection adjustment"

Formulas for Tricks #1 and #2

Recap:

$$q_k(l,r) = p_k(l,r) \log(p_k(l,r) / (p_{kl}(l) p_{kr}(r)))$$

the same, but using counts:

$$q_k(l,r) = c_k(l,r)/N \log(N c_k(l,r)/(c_{kl}(l) c_{kr}(r)))$$

• Define further (row+column <u>a</u> sum):

Intersection adjustment

$$s_k(a) = \sum_{l=1..k} q_k(l,a) + \sum_{r=1..k} q_k(a,r) - q_k(a,a)$$

• Then, the subtraction part of Trick #1 amounts to

$$sub_k(a,b) = s_k(a) + s_k(b) - q_k(a,b) - q_k(b,a)$$

precomputed

	, *	1		1
	\mathbf{c}_2	c_3	c_4	
c_2	0	5	2	,
c_3	2	0	3	
c ₄	(3)	0	\bigcirc	<u>.</u>

remaining intersection adjustment

Formulas - cont.

• After-merge add-on:

$$add_k(a,b) = \sum_{l=1..k,l \neq a,b} q_k(l,a+b) + \sum_{r=1..k,r \neq a,b} q_k(a+b,r) + q_k(a+b,a+b)$$

- <u>a+b</u> is the <u>new (merged) class</u>
 - \circ Hint: use the definition of $q_{\mathbf{k}}$ as a "macro", and then:

$$p_k(a+b,r) = p_k(a,r) + p_k(b,r)$$
 (same for other sums, equivalent)

- The above sums cannot be precomputed
- Mutual Information after merge of class a,b:
 - $I_{k-1}(a,b) = I_k \sup_{k} (a,b) + add_k(a,b)$
 - \circ I_k is the "old" MI, kept from previous iteration of the algorithm

Trick #3: Ignore Zero Counts

- Many bigrams are 0
 - \circ e.g. in the Canadian Hansards corpus, < 0.1 % of bigrams are non-zero)
- Consider non-zero bigrams only:
 - e.g. create linked lists of non-zero counts in columns and rows
 - similar effect: use hashes (store non-zero-count bigrams)
- Update links after merge (after step 3)

Trick #4: Use Updated Loss of MI

• We are now down to $|V|^4$: |V| merges, each merge takes $|V|^2$ "test-merges", each test-merge involves order-of-|V| operations (add_k(i,j) term, slide 34)

• Observation:

o many numbers (s_k, q_k) needed to compute the mutual information loss due to a merge of i+j **do not change:** namely, those which are not in the vicinity of neither i nor j.

• Idea:

keep the MI loss matrix for all pairs of classes, and (after a merge)
update only those cells which have been influenced by the merge.

Formulas for Trick #4 (s_{k-1}, L_{k-1})

- Keep a matrix of "losses" $L_k(d,e)$ [symmetry: $L_k(d,e) = L_k(e,d)$]
- Init: $L_k(d,e) = sub_k(d,e)$ $add_k(d,e)$ [then $I_{k-1}(d,e) = I_k$ $L_k(d,e)$]
- Suppose a,b are now the two classes merged into a
- Update (k-1: index used for the next iteration; $i,j \neq a,b$):

$$\begin{split} s_{k-1}(i) &= s_k(i) - q_k(i,a) - q_k(a,i) - q_k(i,b) - q_k(b,i) + q_{k-1}(a,i) + q_{k-1}(i,a) \\ L_{k-1}(i,j) &= L_k(i,j) - s_k(i) + s_{k-1}(i) - s_k(j) + s_{k-1}(j) + \\ &+ q_k(i+j,a) + q_k(a,i+j) + q_k(i+j,b) + q_k(b,i+j) - \\ &- q_{k-1}(i+j,a) - q_{k-1}(a,i+j) \end{split}$$

Completing Trick #4

- $s_{k-1}(a)$ must be computed using the "Init" sum (see the prev. slide).
- $L_{k-1}(a,i) = L_{k-1}(i,a)$ must be computed in a similar way, for all $i \neq a,b$.
- $s_{k-1}(b)$, $L_{k-1}(b,i)$, $L_{k-1}(i,b)$ are not needed anymore (keep track of such data, i.e. mark every class already merged into some other class and do not use it anymore).
- Keep track of the minimal loss during the $L_k(i,j)$ update process (so that the next merge to be taken is obvious immediately after finishing the update step).

Efficient Implementation

Data Structures: (N - # of bigrams in data [fixed])

- Hist(k) history of merges
 - Hist(k) = (a,b) merged when the remaining number of classes was k
- ullet $c_k(i,j)$ bigram class counts [updated after merge]
- $c_{kl}(i), c_{kr}(i)$ unigram (marginal) counts [updated]
- $L_k(a,b)$ table of losses; upper-right triangle [updated]
- $s_k(a)$ "subtraction" subterms [optionally updated]
- $q_k(i,j)$ subterms involving a log [optionally updated]

The optionally updated data structures will give linear improvement only in the subsequent steps, but at least $s_k(i)$ is necessary in the initialization phase (1st iteration)

Implementation: the Initialization Phase

- 1. Read data in, set k=|V|, init counts $c_k(l,r)$; then $\forall l,r,a,b; a < b$:
- 2. Init unigram counts $c_{kl}(1)$, $c_{kr}(r)$:

$$c_{kl}(1) = \sum_{r=1..k} c_k(1,r), \qquad c_{kr}(r) = \sum_{l=1..k} c_k(1,r)$$

[must take care of start & end of data!]

3. Init $q_k(l,r)$: use the 2nd formula (count-based) on slide 27,

$$q_k(l,r) = c_k(l,r)/N \log(N c_k(l,r)/(c_{kl}(l) c_{kr}(r)))$$

- 4. Init $s_k(a) = \sum_{l=1..k} q_k(l,a) + \sum_{r=1..k} q_k(a,r) q_k(a,a)$
- 5. Init $L_k(a,b) = s_k(a) + s_k(b) q_k(a,b) q_k(b,a) q_k(a+b,a+b) +$ $\sum_{l=1}^{\infty} \sum_{k=1}^{\infty} q_k(l,a+b) \sum_{r=1}^{\infty} \sum_{k=1}^{\infty} q_k(a+b,r)$

Implementation: Select & Update

- 6. Select the best pair $(\underline{a},\underline{b})$ to merge into \underline{a} watch the candidates when computing $L_k(a,b)$; save to Hist(k)
- 7. Optionally, update $q_k(i,j)$ for all $i,j \neq b$, get $q_{k-1}(i,j)$ remember those $q_k(i,j)$ values needed for the updates below
- 8. Optionally, update $s_k(i)$ for all $i \neq b$, to get $s_{k-1}(i)$ again, remember the $s_k(i)$ values for the "loss table" update
- 9. Update the loss table, $L_k(i,j)$, to $L_{k-1}(i,j)$, using the tabulated q_k , q_{k-1} , s_k and s_{k-1} values, or compute the needed $q_k(i,j)$ and $q_{k-1}(i,j)$ values dynamically from the counts:

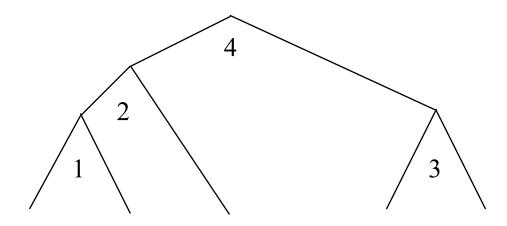
$$c_k(i+j,b) = c_k(i,b) + c_k(j,b); c_{k-1}(a,i) = c_k(a+b,i)$$

Towards the Next Iteration

- 10. During the $L_k(i,j)$ update, keep track of the minimal loss of MI, and the two classes which caused it.
- 11. Remember such best merge in Hist(k).
- 12. Get rid of all s_k , q_k , L_k values.
- 13. Set k = k 1; stop if k = 1.
- 14. Start the next iteration
 - $\circ\quad$ either by the optional updates (steps 7 and 8), or
 - directly updating Lk(i,j) again (step 9).

Using the Hierarchy

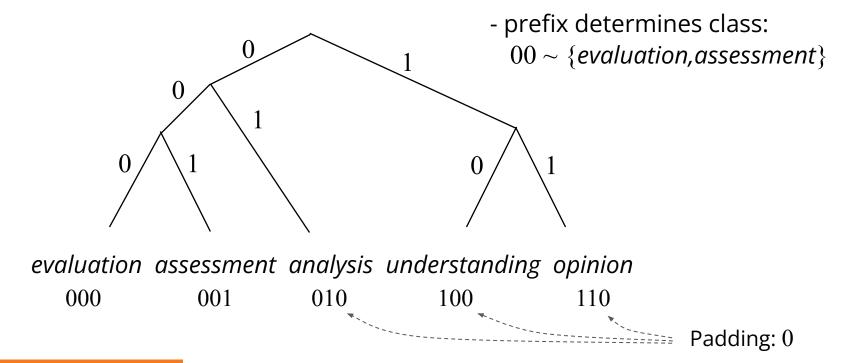
- Natural Form of Classes
- follows from the sequence of merges:



evaluation assessment analysis understanding opinion

Numbering the Classes (within the Hierarchy)

- Binary branching
- Assign 0/1 to the left/right branch at every node:



Word Classes in Applications

- Even in the era of neural embeddings, Brown classes have modern, practical applications (such as POS tagging)
- Especially useful in low-resource and domain-specific scenarios (tens of millions words)
- Provide compact, interpretable word classes that can replace sparse one-hot or n-gram features.

Moodle Quiz

Moodle Quiz

https://dl1.cuni.cz/course/view.php?id=18547