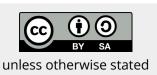
Statistical Methods in Natural Language Processing

1. Introduction, Probability

Pavel Pecina, Jindřich Helcl

7 October, 2025



Lecturers

Pavel Pecina - lectures, practicals ÚFAL MFF UK, Room S422 pecina@ufal.mff.cuni.cz

Jindřich Helcl – homework assignments, exam ÚFAL MFF UK, office N233 helcl@ufal.mff.cuni.cz

Course Logistics

- Webpage: https://ufal.cz/courses/npfl147
- Lectures on Tuesdays @ 12:20, Room S9
- Practicals on Tuesdays @ 14:00, Room \$1 (Moodle Quizzes, Q&A's)
- First lecture Oct 7
- No lecture/practicals Oct 28 (national holiday)
- No lecture/practicals Nov 25
- Homework projects assigned during the semester
- Exam date (probable) Jan 13, 2026

Homework Assignments

- Three homework assignments with fixed deadlines
- To be worked on independently
- Require a substantial amount of programming/experimentation/reporting
- The assignments will be awarded by 0–100 points each
- Late submissions up to 2 weeks → 50% point reduction
- Submissions received later than 2 weeks → 0 points

Exam

- Open-book written test
- The maximum duration of the test is 90 minutes.
- The test will be graded by 0–100 points.

Passing Requirements

- Completion of both the homework assignments and exam is required
- Students need to earn at least 50 points for each assignment (before late submission penalization) and at least 50 points for the test.
- The points received for the assignments and test will be available in SIS.
- The **final grade** will be based on the average results of the exam test and the three homework assignments, **all four weighted equally**.

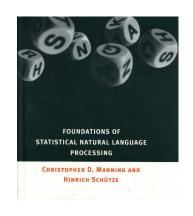
Readings

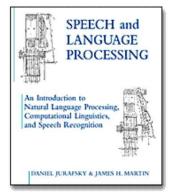
Foundations of Statistical Natural Language Processing

Manning, C. D. and H. Schütze. *MIT Press*. 1999. ISBN 0-262-13360-1.

Speech and Language Processing

Jurafsky, D. and J. H. Martin. Prentice-Hall. 2000. ISBN 0-13-095069-6





Course Segments

- **1.** Introduction, probability, essential information theory
- 2. Statistical language modelling (n-gram)
- **3.** Statistical properties of words
- **4.** Word embeddings
- **5.** Hidden Markov models, Tagging

NPFL147 - Statistical methods in NLP

Summary

- The course materials will be available on the course webpage.
- If you have questions, drop us a line.

https://ufal.mff.cuni.cz/courses/npfl147

Introduction

Why is NLP difficult?

- many "words", many "phenomena" → many "rules"
 - OED: 400k words; Finnish lexicon (of forms): ~2 . 107
 - sentences, clauses, phrases, constituents, coordination, negation, imperatives/questions, inflections, parts of speech, pronunciation, topic/focus, and much more!
- irregularity (exceptions, exceptions to the exceptions, ...)
 - plural forms
 - potato \rightarrow potato es (tomato, hero,...); photo \rightarrow photo s
 - \blacksquare and even: **both mango -> mango s or** \rightarrow **mango es**
 - Adjective / Noun order
 - new book, electrical engineering, general regulations, flower garden, garden flower
 - but Governor General

Other difficulties in NLP

Ambiguity

- books
 - NOUN or VERB?
 - you need many books vs. she books her flights online
- No left turn weekdays 4-6 pm / except transit vehicles
 - when may transit vehicles turn: Always? Never?
- Thank you for not smoking, drinking, eating or playing radios without earphones.
 - Thank you for not eating without earphones??
 - or even: Thank you for not drinking without earphones!?
- My neighbor's hat was taken by wind. He tried to catch it.
 - ...catch the wind or ...catch the hat?

(Categorical) Rules or Statistics?

Preferences:

- clear cases: context clues: she books → books is a verb
 - rule: if an ambiguous word (verb/nonverb) is preceded by a matching personal pronoun
 → word is a verb
- less clear cases: pronoun reference
 - she/he/it refers to the most recent noun or pronoun (?) (but maybe we can specify exceptions)
- selectional:
 - catching hat >> catching wind (but why not?)
- semantic:
 - never thank for drinking in a bus! (but what about the earphones?)

Solutions

- Don't guess if you know:
 - morphology (inflections)
 - lexicons (lists of words)
 - unambiguous names
 - perhaps some (really) fixed phrases
 - syntactic rules?

Use statistics (based on real-world data!) for preferences

• (Combination also possible)

Statistical NLP

Imagine:

- Each sentence $W = \{ w_1, w_2, ..., w_n \}$ gets a probability P(W|X) in a context X (think of it in the intuitive sense for now)
- For every possible context X, sort all the imaginable sentences W according to P(W|X):
- Ideal situation:

Statistical NLP

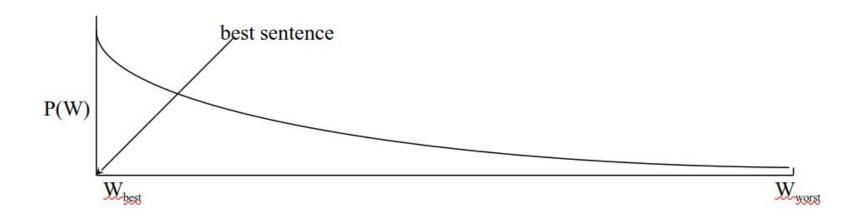
Imagine:

- Each sentence $W = \{ w_1, w_2, ..., w_n \}$ gets a probability P(W|X) in a context X (think of it in the intuitive sense for now)
- For every possible context X, sort all the imaginable sentences W according to P(W|X):
- Ideal situation:



Real World Situation

- Unable to specify set of grammatical sentences today using fixed "categorical" rules (maybe never, cf. arguments in M&S)
- Use statistical "model" based on **real world data** and care about the best sentence only (disregarding the "grammaticality" issue)



Probability

Experiments & (Finite) Sample Spaces

Sample space Ω – set of possible basic **outcomes**

- coin toss
- two 6-sided dice roll
- binary opinion poll, quality test
- lottery
- spelling errors
- next word

Experiments & (Finite) Sample Spaces

Sample space Ω – set of possible basic **outcomes**

- coin toss
- two 6-sided dice roll
- binary opinion poll, quality test
- lottery
- spelling errors
- next word

$$\Omega = \{H, T\}$$

$$\Omega = \{2 ... 12\}$$

$$\Omega$$
 = {yes, no}, Ω = {good, bad}

$$\Omega = \{an \ awful \ lot \ of \ stuff\}$$

$$\Omega$$
 = Z* where Z is alphabet

$$\Omega = V$$
 (supported vocabulary)

Event A – set of basic outcomes (A $\subseteq \Omega$)

- Certain event
- Impossible event

Event A – set of basic outcomes (A $\subseteq \Omega$)

- Certain event, $A = \Omega$
- Impossible event, A = ∅

Example: 3x coin toss

• $\Omega = ?$

Event A – set of basic outcomes (A $\subseteq \Omega$)

- Certain event, $A = \Omega$
- Impossible event, A = ∅

Example: 3x coin toss

• $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}, |\Omega| = 8$

Event A – set of basic outcomes (A $\subseteq \Omega$)

- Certain event, $A = \Omega$
- Impossible event, $A = \emptyset$

Example: 3x coin toss

- $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}, |\Omega| = 8$
- Possible events: "two heads", "all tails"
 - o A = ?
 - \circ A = ?

Event A – set of basic outcomes (A $\subseteq \Omega$)

- Certain event, $A = \Omega$
- Impossible event, $A = \emptyset$

Example: 3x coin toss

- $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}, |\Omega| = 8$
- Possible events: "two heads", "all tails"
 - A = {HHT, HTH, THH}
 - A = {TTT} (elementary event)

... what is the probability that these events happen?

Probability

Repeat experiment, count occurrences of event A

- Repeat in series, note the final count
- Divide by number of trials per series
- Result close to some unknown but constant value
- Call this probability of A, denote p(A)

Estimating Probability

- True probability unknown
- We can estimate from our observations
 - Either from a single series,
 - .. or take (weighted) average from each series
 - .. or concatenate all series

Estimating Probability

- True probability unknown
- We can estimate from our observations
 - Either from a single series,
 - .. or take (weighted) average from each series
 - .. or concatenate all series

$$p(A) = \frac{1}{N} \sum_{i=1}^{N} c_i / T_i = \frac{\sum_{i=1}^{N} c_i}{\sum_{i=1}^{N} T_i}$$

Maximum Likelihood Estimate

... this is the **best** estimate

Probability Estimation

Example

- 3x coin toss
 - \circ $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}, <math>|\Omega| = 8$
 - Count occurrences of the "two heads" event.
 - A = {HHT, HTH, THH}
- Experiment outcomes
 - First series: run 1000 times, get 386 occurrences of A
 - \circ Estimate p(A) = 0.386
 - Subsequent series results (all 1000 trials): 373, 399, 382, 355, 372, 406, 359
 - \circ Estimate p(A) = 0.379
 - Assuming **uniform** distribution, p(A) = 3 / 8 = 0.375

Properties of Probability

Basic properties (also formal definition):

1. $0 \le p(A) \le 1$

probability is between 0 and 1

2. $p(\Omega) = 1$

probability of certain event is 1

3. $p(\bigcup(A_i)) = \sum p(A_i)$

(only for disjoint events!)

Consequences

- $p(\varnothing) = 0$
- $p(\bar{A}) = 1 p(A)$
- $A \subseteq B \rightarrow p(A) \le p(B)$ (what about proper subset?)
- $\sum_{a} p(a) = 1$

Joint and Conditional Probability

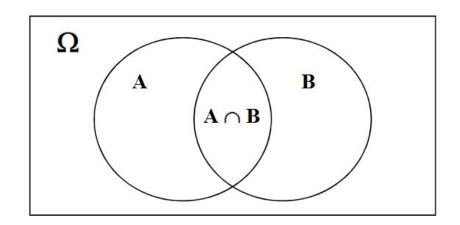
Combining probabilities of **multiple** events

- **Joint** probability: $p(A, B) = p(A \cap B)$
- **Conditional** probability: p(A | B) = p(A, B) / p(B)

When estimating from counts,

$$p(A | B) = p(A, B) / p(B)$$

= $(c(A \cap B) / T) / (c(B) / T)$
= $c(A \cap B) / c(B)$



Note: A and B can even be from different $\Omega s!$

Bayes Rule

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

.. follows from symmetry of joint probability.

Computing joint probability from the marginal distributions

Can we calculate p(A,B) from p(A) and p(B)?

Computing joint probability from the marginal distributions

- Can we calculate p(A,B) from p(A) and p(B)?
- Using Bayes rule, we have

```
p(A | B) = p(B | A) p(A) / p(B)

p(A | B) p(B) = p(B | A) p(A)

p(A, B) = p(B | A) p(A)
```

Computing joint probability from the marginal distributions

- Can we calculate p(A,B) from p(A) and p(B)?
- Using Bayes rule, we have

```
p(A | B) = p(B | A) p(A) / p(B)

p(A | B) p(B) = p(B | A) p(A)

p(A, B) = p(B | A) p(A)
```

How does p(B|A) relate to p(B)?

Computing joint probability from the marginal distributions

- Can we calculate p(A,B) from p(A) and p(B)?
- Using Bayes rule, we have

```
p(A | B) = p(B | A) p(A) / p(B)

p(A | B) p(B) = p(B | A) p(A)

p(A, B) = p(B | A) p(A)
```

- How does p(B|A) relate to p(B)?
 - Does knowing A tell us something about B?
 - o If **not**, p(B|A) = p(B), and we say that A and B are **independent**.
 - o In this case, p(A, B) = p(A) * p(B)

Independence

Computing joint probability from the marginal distributions

- Can we calculate p(A,B) from p(A) and p(B)?
- Using Bayes rule, we have

```
p(A | B) = p(B | A) p(A) / p(B)

p(A | B) p(B) = p(B | A) p(A)

p(A, B) = p(B | A) p(A)
```

- How does p(B|A) relate to p(B)?
 - Does knowing A tell us something about B?
 - o If **not**, p(B|A) = p(B), and we say that A and B are **independent**.
 - o In this case, p(A, B) = p(A) * p(B)

Examples: two coin tosses, weather conditions years apart, ...

Chain Rule

Joint and conditional probabilities for many events

$$p(A_1, A_2, \dots, A_n) = p(A_1 | A_2, A_3, \dots, A_n) \times$$
$$\times p(A_2 | A_3, \dots, A_n) \times \dots \times p(A_{n-1} | A_n) \times p(A_n)$$

.. useful in NLP where we can approximate some of the terms

The "Golden Rule" of Classic Statistical NLP

P(A|B) in NLP applications

- Speech recognition, machine translation, language modeling
 - B = audio signal, source sentence, previous word
 - A = transcription, target sentence, next word

The "Golden Rule" of Classic Statistical NLP

P(A|B) in NLP applications

- Speech recognition, machine translation, language modeling
 - B = audio signal, source sentence, previous word
 - A = transcription, target sentence, next word
- Goal is to find A that maximizes P(A|B)

$$A^* = \operatorname{argmax}_A p(A|B)$$

The "Golden Rule" of Classic Statistical NLP

P(A|B) in NLP applications

- Speech recognition, machine translation, language modeling
 - B = audio signal, source sentence, previous word
 - A = transcription, target sentence, next word
- Goal is to find A that maximizes P(A|B)

$$A^* = \operatorname{argmax}_A p(A|B)$$

When estimating P(A|B) directly is not desirable, use Bayes rule

$$A^* = \operatorname{argmax}_A p(B|A)p(A)/p(B)$$

• Ignore the p(B) term which is **constant**

Random Variables

Statistical outcomes with **numeric values**

- **X** is a function from Ω , returns a value, typically a real number
- Simplify real world into a model (throwing wooden dice → numbers)
- Can also return items from finite set \rightarrow discrete R.V.

Random Variables

Statistical outcomes with **numeric values**

- **X** is a function from Ω , returns a value, typically a real number
- Simplify real world into a model (throwing wooden dice → numbers)
- Can also return items from finite set \rightarrow discrete R.V.

Examples

- 6-sided die → numbers from 1 to 6
- Coin toss → 0 or 1

Random Variables

Statistical outcomes with **numeric values**

- X is a function from Ω , returns a value, typically a real number
- Simplify real world into a model (throwing wooden dice → numbers)
- Can also return items from finite set \rightarrow discrete R.V.

Examples

- 6-sided die → numbers from 1 to 6
- Coin toss \rightarrow 0 or 1

Notation: $p_x(x)$, p(X=x), or just p(x) if the context is clear.

Joint and Conditional Distributions for RVs

Properties of joint and conditional RVs similar to events

•
$$p_{X|Y}(x, y) = p_{XY}(x|y) = p(x|y)$$
 (various notation)

•
$$p(x|y) = p(y|x) p(x) / p(y)$$
 Bayes rule

•
$$p(x,y,z) = p(x|y,z) p(y|z) p(z)$$
 Chain rule

Expectation

Mean value of a random variable

Average of all possible values, weighted by their probabilities

$$E(X) = \sum_{x \in X(\Omega)} x \cdot p(X = x)$$

Examples

- 6-sided die \rightarrow 3.5
- two dice \rightarrow 7
- coin toss \rightarrow 0.5

Binomial Distribution

- trial outcome: 0 or 1 (thus: binomial)
- make n trials
- interested in the number of successes r or probability of a success p
- Formally: *B*(*n*,*p*)

Moodle Quiz

Moodle Quiz

https://dl1.cuni.cz/course/view.php?id=18547