
Web search Web IR Web crawling Duplicate detection Spam detection

NPFL103: Information Retrieval (12)
Web search, Crawling, Spam detection

Pavel Pecina
pecina@ufal.mff.cuni.cz

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University

Original slides are courtesy of Hinrich Schütze, University of Stuttgart.

1 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Contents

Web search

Web IR

Web crawling

Duplicate detection

Spam detection

2 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Web search

3 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Web search overview

4 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Search is a top activity on the web

5 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Without search engines, the web wouldn’t work

▶ Without search, content is hard to find.

→ Without search, there is no incentive to create content.
▶ Why publish something if nobody will read it?

▶ Why publish something if I don’t get ad revenue from it?

▶ Somebody needs to pay for the web.
▶ Servers, web infrastructure, content creation

▶ A large part today is paid by search ads.

▶ Search pays for the web.

6 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

IR on the web vs. IR in general

▶ On the web, search is not just a nice feature.
▶ Search is a key enabler of the web: …

▶ …financing, content creation, interest aggregation etc.

→ look at search ads

▶ The web is a chaotic und uncoordinated collection. → lots of
duplicates – need to detect duplicates

▶ No control / restrictions on who can author content → lots of spam –
need to detect spam

▶ The web is very large. → need to know how big it is

7 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Brief history of the search engine (1)

▶ 1995–1997: Early keyword-based search engines
▶ Altavista, Excite, Infoseek, Inktomi

▶ Second half of 1990s: Goto.com
▶ Paid placement ranking

▶ The highest bidder for a particular query gets the top rank.

▶ The second highest bidder gets rank 2 etc.

▶ This was the only match criterion!

▶ …if there were enough bidders.

8 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Brief history of the search engine (2)

▶ Starting in 1998/1999: Google
▶ Blew away most existing search engines at the time

▶ Link-based ranking was perhaps the most important differentiator.

▶ But there were other innovations: super-simple UI, tiered index,
proximity search etc.

▶ Initially: zero revenue!

▶ Beginning around 2001: Second generation search ads
▶ Strict separation of search results and search ads

▶ The main source of revenue today

9 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Web IR

10 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Web IR: Differences from traditional IR

▶ Links: The web is a hyperlinked document collection.

▶ Queries: Web queries are different, more varied and there are a lot of
them. How many? ≈ 109

▶ Users: Users are different, more varied and there are a lot of them.
How many? ≈ 109

▶ Documents: Documents are different, more varied and there are a lot
of them. How many? ≈ 1011

▶ Context: Context is more important on the web than in many other
IR applications.

▶ Ads and spam

11 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Query distribution (1)

Most frequent queries on a large search engine on 2002.10.26.

1 sex 16 crack 31 juegos 46 Caramail
2 (artifact) 17 games 32 nude 47 msn
3 (artifact) 18 pussy 33 music 48 jennifer lopez
4 porno 19 cracks 34 musica 49 tits
5 mp3 20 lolita 35 anal 50 free porn
6 Halloween 21 britney spears 36 free6 51 cheats
7 sexo 22 ebay 37 avril lavigne 52 yahoo.com
8 chat 23 sexe 38 hotmail.com 53 eminem
9 porn 24 Pamela Anderson 39 winzip 54 Christina Aguilera

10 yahoo 25 warez 40 fuck 55 incest
11 KaZaA 26 divx 41 wallpaper 56 letras de canciones

12 xxx 27 gay 42 hotmail.com 57 hardcore
13 Hentai 28 harry potter 43 postales 58 weather
14 lyrics 29 playboy 44 shakira 59 wallpapers
15 hotmail 30 lolitas 45 traductor 60 lingerie

More than 1/3 of these are queries for adult content.
Exercise: Does this mean that most people are looking for adult content?

12 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Query distribution (2)

▶ Queries have a power law distribution.

▶ Recall Zipf’s law: a few very frequent words, a large number of very
rare words

▶ Same here: a few very frequent queries, a large number of very rare
queries

▶ Examples of rare queries: search for names, towns, books etc

▶ The proportion of adult queries is much lower than 1/3

13 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Types of queries / user needs in web search

▶ Informational user needs: I need information on something. “low
hemoglobin”

▶ We called this “information need” earlier in the class.
▶ On the web, information needs are only a subclass of user needs.
▶ Other user needs: Navigational and transactional
▶ Navigational user needs: I want to go to this web site. “hotmail”,

“facebook”, “United Airlines”
▶ Transactional user needs: I want to make a transaction.

▶ Buy something: “MacBook Air”

▶ Download something: “Acrobat Reader”

▶ Chat with someone: “live soccer chat”

▶ Difficult problem: How can the search engine tell what the user need
or intent for a particular query is?

14 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Search in a hyperlinked collection

▶ Web search in most cases is interleaved with navigation …

▶ …i.e., with following links.

▶ Different from most other IR collections

15 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Bowtie structure of the web

▶ Strongly connected component (SCC) in the center
▶ Lots of pages that get linked to, but don’t link (OUT)
▶ Lots of pages that link to other pages, but don’t get linked to (IN)
▶ Tendrils, tubes, islands

16 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

User intent: Answering the need behind the query

▶ What can we do to guess user intent?

▶ Guess user intent independent of context:
▶ Spell correction

▶ Precomputed “typing” of queries (next slide)

▶ Better: Guess user intent based on context:
▶ Geographic context (slide after next)

▶ Context of user in this session (e.g., previous query)

▶ Context provided by personal profile (Yahoo/MSN do this, Google
claims it doesn’t)

17 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Guessing of user intent by “typing” queries

▶ Calculation: 5+4
▶ Unit conversion: 1 kg in pounds
▶ Currency conversion: 1 euro in kronor
▶ Tracking number: 8167 2278 6764
▶ Flight info: LH 454
▶ Area code: 650
▶ Map: columbus oh
▶ Stock price: msft
▶ Albums/movies etc: coldplay

18 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

The spatial context: Geo-search

▶ Three relevant locations
▶ Server (nytimes.com → New York)
▶ Web page (nytimes.com article about Albania)
▶ User (located in Palo Alto)

▶ Locating the user
▶ IP address
▶ Information provided by user (e.g., in user profile)
▶ Mobile phone

▶ Geo-tagging: Parse text and identify the coordinates of the
geographic entities

▶ Example: East Palo Alto CA → Latitude: 37.47 N, Longitude: 122.14 W
▶ Important NLP problem

19 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

How do we use context to modify query results?

▶ Result restriction: Don’t consider inappropriate results
▶ For user on google.fr only show .fr results, etc.

▶ Ranking modulation: use a rough generic ranking, rerank based on
personal context

▶ Contextualization / personalization is an area of search with a lot of
potential for improvement.

20 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Users of web search

▶ Use short queries (average < 3)

▶ Rarely use operators

▶ Don’t want to spend a lot of time on composing a query

▶ Only look at the first couple of results

▶ Want a simple UI, not a start page overloaded with graphics

▶ Extreme variability in terms of user needs, user expectations,
experience, knowledge, …

▶ Industrial/developing world, English/Estonian, old/young, rich/poor,
differences in culture and class

▶ One interface for hugely divergent needs

21 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

How do users evaluate search engines?

▶ Classic IR relevance (as measured by F) can also be used for web IR.

▶ Equally important: Trust, duplicate elimination, readability, loads
fast, no pop-ups

▶ On the web, precision is more important than recall.
▶ Precision at 1, precision at 10, precision on the first 2-3 pages

▶ But there is a subset of queries where recall matters.

22 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Web information needs that require high recall

▶ Has this idea been patented?

▶ Searching for info on a prospective financial advisor

▶ Searching for info on a prospective employee

▶ Searching for info on a date

23 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Web documents: different from other IR collections

▶ Distributed content creation: no design, no coordination
▶ “Democratization of publishing”

▶ Result: extreme heterogeneity of documents on the web

▶ Unstructured (text, html), semistructured (html, xml),
structured/relational (databases)

▶ Dynamically generated content

24 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Dynamic content

▶ Dynamic pages are generated from scratch when the user requests
them – usually from underlying data in a database.

▶ Example: current status of flight LH 454

25 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Dynamic content (2)

▶ Most (truly) dynamic content is ignored by web spiders.
▶ It’s too much to index it all.

▶ Actually, a lot of “static” content is also assembled on the fly (asp,
php etc.: headers, date, ads etc)

26 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Multilinguality

▶ Documents in a large number of languages

▶ Queries in a large number of languages

▶ First cut: Don’t return English results for a Japanese query

▶ However: Frequent mismatches query/document languages

▶ Many people can understand, but not query in a language

▶ Translation is important.

▶ Google example: “Beaujolais Nouveau -wine”

27 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Duplicate documents

▶ Significant duplication – 30%–40% duplicates in some studies

▶ Duplicates in the search results were common in the early days of the
web.

▶ Today’s search engines eliminate duplicates very effectively.

▶ Key for high user satisfaction

28 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Trust

▶ For many collections, it is easy to assess the trustworthiness of a
document.

▶ A collection of Reuters newswire articles

▶ A collection of TASS (Telegraph Agency of the Soviet Union) newswire
articles from the 1980s

▶ Your Outlook email from the last three years

▶ Web documents are different: In many cases, we don’t know how to
evaluate the information.

▶ Hoaxes abound.

29 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Growth of the web

source: internetlivestats.com

30 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Web crawling

31 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

How hard can crawling be?

▶ Web search engines must crawl their documents.

▶ Getting the content of the documents is easier for many other IR
systems.

▶ E.g., indexing all files on your hard disk: just do a recursive descent on
your file system

▶ Ok: for web IR, getting the content of the documents takes longer …

▶ …because of latency.

▶ But is that really a design/systems challenge?

32 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Basic crawler operation

▶ Initialize queue with URLs of known seed pages

▶ Repeat:

1. Take URL from queue

2. Fetch and parse page

3. Extract URLs from page

4. Add URLs to queue

▶ Fundamental assumption: The web is well linked.

33 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Exercise: What’s wrong with this crawler?

urlqueue := (some carefully selected set of seed urls)
while urlqueue is not empty:

myurl := urlqueue.getlastanddelete()
mypage := myurl.fetch()
fetchedurls.add(myurl)
newurls := mypage.extracturls()
for myurl in newurls:

if myurl not in fetchedurls and not in urlqueue:
urlqueue.add(myurl)

addtoinvertedindex(mypage)

34 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

What’s wrong with the simple crawler

▶ Scale: we need to distribute.

▶ We can’t index everything: we need to subselect. How?

▶ Duplicates: need to integrate duplicate detection

▶ Spam and spider traps: need to integrate spam detection

▶ Politeness: we need to be “nice” and space out all requests for a site
over a longer period (hours, days)

▶ Freshness: we need to recrawl periodically.
▶ Because of the size of the web, we can do frequent recrawls only for a

small subset.

▶ Again, subselection problem or prioritization

35 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Magnitude of the crawling problem

▶ To fetch 20,000,000,000 pages in one month …

▶ …we need to fetch almost 8000 pages per second!

▶ Actually: many more since many of the pages we attempt to crawl
will be duplicates, unfetchable, spam etc.

36 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

What a crawler must do

Be polite

▶ Don’t hit a site too often
▶ Only crawl pages you are allowed to crawl: robots.txt

Be robust

▶ Be immune to spider traps, duplicates, very large pages, very large
websites, dynamic pages etc

37 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Robots.txt

▶ Protocol for giving crawlers (“robots”) limited access to a website,
originally from 1994

▶ Examples:
▶ User-agent: *

Disallow: /yoursite/temp/

▶ User-agent: searchengine
Disallow: /

▶ Important: cache the robots.txt file of each site we are crawling

38 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Example of a robots.txt (nih.gov)

User-agent: PicoSearch/1.0
Disallow: /news/information/knight/
Disallow: /nidcd/
...
Disallow: /news/research_matters/secure/
Disallow: /od/ocpl/wag/

User-agent: *
Disallow: /news/information/knight/
Disallow: /nidcd/
...
Disallow: /news/research_matters/secure/
Disallow: /od/ocpl/wag/
Disallow: /ddir/
Disallow: /sdminutes/

39 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

What any crawler should do

▶ Be capable of distributed operation

▶ Be scalable: need to be able to increase crawl rate by adding more
machines

▶ Fetch pages of higher quality first

▶ Continuous operation: get fresh version of already crawled pages

40 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

URL frontier

URLs crawled
and parsed

URL frontier:
found, but

not yet crawled
unseen URLs

41 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

URL frontier

▶ The URL frontier is the data structure that holds and manages URLs
we’ve seen, but that have not been crawled yet.

▶ Can include multiple pages from the same host

▶ Must avoid trying to fetch them all at the same time

▶ Must keep all crawling threads busy

42 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Basic crawl architecture

www

fetch

DNS

parse

URL frontier

content
seen?

�
�

�
���

doc
FPs �

�
�
���

robots
templates �

�
�
���

URL
set

URL
filter

dup
URL
elim-

�

-

6

�-

?
6

- - -

�

6
?

6
?

6
?

43 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

URL normalization

▶ Some URLs extracted from a document are relative URLs.

▶ E.g., at http://mit.edu, we may have aboutsite.html
▶ This is the same as: http://mit.edu/aboutsite.html

▶ During parsing, we must normalize (expand) all relative URLs.

44 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Content seen

▶ For each page fetched: check if the content is already in the index

▶ Check this using document fingerprints or shingles

▶ Skip documents whose content has already been indexed

45 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Distributing the crawler

▶ Run multiple crawl threads, potentially at different nodes
▶ Usually geographically distributed nodes

▶ Partition hosts being crawled into nodes

46 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Distributed crawler

www

fetch

DNS

parse

URL frontier

content
seen?

�
�

�
��

doc
FPs �

�
�
��

URL
set

URL
filter

host
splitter

to
other
nodes

from
other
nodes

dup
URL
elim-

�

-

6

�-

?
6

- - - -

�

6? 6?666

47 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

URL frontier: Two main considerations

▶ Politeness: Don’t hit a web server too frequently
▶ E.g., insert a time gap between successive requests to the same server

▶ Freshness: Crawl some pages (e.g., news sites) more often than others

▶ Not an easy problem: simple priority queue fails.

48 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Mercator URL frontier

b. queue selector

f. queue selector & b. queue router

prioritizer

p p p pB back queues:
single host on each

p p p

p

pF front queues

1 F

1 B

XXXXXXz
XXXXXXz

������9

������9
������9
XXXXXXz

������)
������)

PPPPPPq

HHHHHj

HHHHHj

������

?

?

-� heap

▶ URLs flow in from the top
into the frontier.

▶ Front queues manage
prioritization.

▶ Back queues enforce
politeness.

▶ Each queue is FIFO.

49 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Mercator URL frontier: Front queues

▶ Prioritizer assigns to URL
an integer priority
between 1 and F.

▶ Then appends URL to
corresponding queue

▶ Heuristics for assigning
priority: refresh rate,
PageRank etc

▶ Selection from front
queues is initiated by
back queues

▶ Pick a front queue from
which to select next URL:
Round robin, randomly,
or more sophisticated
variant

▶ But with a bias in favor
of high-priority front
queues

f. queue selector & b. queue router

prioritizer

q q q qF front queues

1 F

�������)

�������)

PPPPPPPq

HHHHHHHj

HHHHHHHj

��������

?

50 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Mercator URL frontier: Back queues

b. queue selector

f. queue selector & b. queue router

q q q qB back queues
Single host on each

1 B

XXXXXXXz
XXXXXXXz

�������9

��������9

��������9

XXXXXXXXz

?

-� heap

▶ Invariant 1. Each back
queue is kept non-empty
while the crawl is in
progress.

▶ Invariant 2. Each back
queue only contains
URLs from a single host.

▶ Maintain a table from
hosts to back queues.

▶ In the heap:

▶ One entry for each back
queue

▶ The entry is the earliest
time te at which the host
corresponding to the
back queue can be hit
again.

▶ The earliest time te is
determined by (i) last
access to that host (ii)
time gap heuristic

▶ How fetcher interacts
with back queue:

▶ Repeat (i) extract current
root q of the heap (q is a
back queue)

▶ and (ii) fetch URL u at
head of q …

▶ …until we empty the q
we get.

▶ (i.e.: u was the last URL
in q)

▶ When we have emptied a
back queue q:

▶ Repeat (i) pull URLs u
from front queues and (ii)
add u to its
corresponding back
queue …

▶ …until we get a u whose
host does not have a back
queue.

▶ Then put u in q and
create heap entry for it.

51 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Mercator URL frontier

b. queue selector

f. queue selector & b. queue router

prioritizer

p p p pB back queues:
single host on each

p p p

p

pF front queues

1 F

1 B

XXXXXXz
XXXXXXz

������9

������9
������9
XXXXXXz

������)
������)

PPPPPPq

HHHHHj

HHHHHj

������

?

?

-� heap

▶ URLs flow in from the top
into the frontier.

▶ Front queues manage
prioritization.

▶ Back queues enforce
politeness.

▶ Each queue is FIFO.

52 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Spider trap

▶ Malicious server that generates an infinite sequence of linked pages

▶ Sophisticated spider traps generate pages that are not easily
identified as dynamic.

53 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Duplicate detection

54 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Duplicate detection

▶ The web is full of duplicated content.

▶ More so than many other collections

▶ Exact duplicates
▶ Easy to eliminate

▶ E.g., use hash/fingerprint

▶ Near-duplicates
▶ Abundant on the web

▶ Difficult to eliminate

▶ For the user, it’s annoying to get a search result with near-identical
documents.

▶ Marginal relevance is zero: even a highly relevant document becomes
nonrelevant if it appears below a (near-)duplicate.

▶ We need to eliminate near-duplicates.
55 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Near-duplicates: Example

56 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Detecting near-duplicates

▶ Compute similarity with an edit-distance measure
▶ We want “syntactic” (as opposed to semantic) similarity.

▶ True semantic similarity (similarity in content) is too difficult to
compute.

▶ We do not consider documents near-duplicates if they have the same
content, but express it with different words.

▶ Use similarity threshold θ to make the call “is/isn’t a near-duplicate”.
▶ E.g., two documents are near-duplicates if similarity > θ = 80%.

57 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Represent each document as set of shingles

▶ A shingle is simply a word n-gram.
▶ Shingles are used as features to measure syntactic similarity of

documents.
▶ For example, for n = 3, “a rose is a rose is a rose” would be

represented as this set of shingles:
▶ { a-rose-is, rose-is-a, is-a-rose }

▶ We can map shingles to 1..2m (e.g., m = 64) by fingerprinting.
▶ From now on: sk refers to the shingle’s fingerprint in 1..2m.
▶ We define the similarity of two documents as the Jaccard coefficient

of their shingle sets.

58 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Recall: Jaccard coefficient

▶ A commonly used measure of overlap of two sets
▶ Let A and B be two sets
▶ Jaccard coefficient:

jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(A ̸= ∅ or B ̸= ∅)
▶ jaccard(A,A) = 1

▶ jaccard(A,B) = 0 if A ∩ B = 0

▶ A and B don’t have to be the same size.
▶ Always assigns a number between 0 and 1.

59 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Jaccard coefficient: Example

▶ Three documents:
d1: “Jack London traveled to Oakland”
d2: “Jack London traveled to the city of Oakland”
d3: “Jack traveled from Oakland to London”

▶ Based on shingles of size 2 (2-grams or bigrams), what are the Jaccard
coefficients J(d1, d2) and J(d1, d3)?

▶ J(d1, d2) = 3/8 = 0.375

▶ J(d1, d3) = 0

▶ Note: very sensitive to dissimilarity

60 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Represent each document as a sketch

▶ The number of shingles per document is large.

▶ To increase efficiency, we will use a sketch, a cleverly chosen subset of
the shingles of a document.

▶ The size of a sketch is, say, n = 200 …

▶ …and is defined by a set of permutations π1 . . . π200.

▶ Each πi is a random permutation on 1..2m

▶ The sketch of d is defined as:
< mins∈d π1(s),mins∈d π2(s), . . . ,mins∈d π200(s) >
(a vector of 200 numbers).

61 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Permutation and minimum: Example

document 1: {sk} document 2: {sk}

-

-

-

-

-

-

-

-

1

1

1

1

1

1

1

1

2m

2m

2m

2m

2m

2m

2m

2ms
s1

s
s1

s
s2

s
s5

s
s3

s
s3

s
s4

s
s4

xk = π(sk) xk = π(sk)s ss ss ss s
x3
c

x3
c

x1
c

x1
c

x4
c

x4
c

x2
c

x5
c

x3
c

x3
c

x1
c

x1
c

x4
c

x5
c

x2
c

x2
cxk xk

x3
c

x3
cminsk π(sk) minsk π(sk)

We use mins∈d1 π(s) = mins∈d2 π(s) as a test for: are d1 and d2
near-duplicates? In this case: permutation π says: d1 ≈ d2

62 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Computing Jaccard for sketches

▶ Sketches: Each document is now a vector of n = 200 numbers.

▶ Much easier to deal with than the very high-dimensional space of
shingles

▶ But how do we compute Jaccard?

63 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Computing Jaccard for sketches (2)

▶ How do we compute Jaccard?

▶ Let U be the union of the set of shingles of d1 and d2 and I the
intersection.

▶ There are |U|! permutations on U.

▶ For s′ ∈ I, for how many permutations π do we have
argmins∈d1 π(s) = s′ = argmins∈d2 π(s)?

▶ Answer: (|U| − 1)!

▶ There is a set of (|U| − 1)! different permutations for each s in I. ⇒
|I|(|U| − 1)! permutations make argmins∈d1 π(s) = argmins∈d2 π(s)
true

▶ Thus, the proportion of permutations that make
mins∈d1 π(s) = mins∈d2 π(s) true is:

|I|(|U| − 1)!

|U|!
=

|I|
|U|

= J(d1, d2)
64 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Estimating Jaccard

▶ Thus, the proportion of successful permutations is the Jaccard
coefficient.

▶ Permutation π is successful iff mins∈d1 π(s) = mins∈d2 π(s)

▶ Picking a permutation at random and outputting 1 (successful) or 0
(unsuccessful) is a Bernoulli trial.

▶ Estimator of probability of success: proportion of successes in n
Bernoulli trials. (n = 200)

▶ Our sketch is based on a random selection of permutations.

▶ Thus, to compute Jaccard, count the number k of successful
permutations for < d1, d2 > and divide by n = 200.

▶ k/n = k/200 estimates J(d1, d2).

65 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Implementation

▶ We use hash functions as an efficient type of permutation:
hi : {1..2m} → {1..2m}

▶ Scan all shingles sk in union of two sets in arbitrary order

▶ For each hash function hi and documents d1, d2, . . .: keep slot for
minimum value found so far

▶ If hi(sk) is lower than minimum found so far: update slot

66 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Example

d1 d2
s1 1 0
s2 0 1
s3 1 1
s4 1 0
s5 0 1
h(x) = x mod 5
g(x) = (2x+ 1) mod 5

min(h(d1)) = 1 ̸= 0 =
min(h(d2))

min(g(d1)) = 2 ̸= 0 =
min(g(d2))

Ĵ(d1, d2) = 0+0
2 = 0

d1 slot d2 slot
h ∞ ∞
g ∞ ∞
h(1) = 1 1 1 – ∞
g(1) = 3 3 3 – ∞
h(2) = 2 – 1 2 2
g(2) = 0 – 3 0 0
h(3) = 3 3 1 3 2
g(3) = 2 2 2 2 0
h(4) = 4 4 1 – 2
g(4) = 4 4 2 – 0
h(5) = 0 – 1 0 0
g(5) = 1 – 2 1 0

final sketches

67 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Exercise

d1 d2 d3
s1 0 1 1
s2 1 0 1
s3 0 1 0
s4 1 0 0

h(x) = 5x+ 5 mod 4
g(x) = (3x+ 1) mod 4

Estimate Ĵ(d1, d2), Ĵ(d1, d3), Ĵ(d2, d3)

68 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Solution (1)

d1 d2 d3
s1 0 1 1
s2 1 0 1
s3 0 1 0
s4 1 0 0

h(x) = 5x+ 5 mod 4
g(x) = (3x+ 1) mod 4

d1 slot d2 slot d3 slot
∞ ∞ ∞
∞ ∞ ∞

h(1) = 2 – ∞ 2 2 2 2
g(1) = 0 – ∞ 0 0 0 0
h(2) = 3 3 3 – 2 3 2
g(2) = 3 3 3 – 0 3 0
h(3) = 0 – 3 0 0 – 2
g(3) = 2 – 3 2 0 – 0
h(4) = 1 1 1 – 0 – 2
g(4) = 1 1 1 – 0 – 0

final sketches

69 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Solution (2)

Ĵ(d1, d2) =
0 + 0

2
= 0

Ĵ(d1, d3) =
0 + 0

2
= 0

Ĵ(d2, d3) =
0 + 1

2
= 1/2

70 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Shingling: Summary

▶ Input: N documents

▶ Choose n-gram size for shingling, e.g., n = 5

▶ Pick 200 random permutations, represented as hash functions

▶ Compute N sketches: 200× N matrix shown on previous slide, one
row per permutation, one column per document

▶ Compute N·(N−1)
2 pairwise similarities

▶ Transitive closure of documents with similarity > θ

▶ Index only one document from each equivalence class

71 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Efficient near-duplicate detection

▶ Now we have an extremely efficient method for estimating a Jaccard
coefficient for a single pair of two documents.

▶ But we still have to estimate O(N2) coefficients where N is the
number of web pages.

▶ Still intractable

▶ One solution: locality sensitive hashing (LSH)

▶ Another solution: sorting (Henzinger 2006)

72 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Spam detection

73 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

The goal of spamming on the web

▶ You have a page that will generate lots of revenue for you if people
visit it.

▶ Therefore, you would like to direct visitors to this page.

▶ One way of doing this: get your page ranked highly in search results.

▶ Exercise: How can I get my page ranked highly?

74 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Spam technique: Keyword stuffing / Hidden text

▶ Misleading meta-tags, excessive repetition

▶ Hidden text with colors, style sheet tricks etc.

▶ Used to be very effective, most search engines now catch these

75 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Spam technique: Doorway and lander pages

▶ Doorway page: optimized for a single keyword, redirects to the real
target page

▶ Lander page: optimized for a single keyword or a misspelled domain
name, designed to attract surfers who will then click on ads

76 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Spam technique: Duplication

▶ Get good content from somewhere (steal it or produce it yourself)

▶ Publish a large number of slight variations of it

▶ For example, publish the answer to a question with the spelling
variations

77 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Spam technique: Cloaking

▶ Serve fake content to search engine spider
▶ So do we just penalize this always?
▶ No: legitimate uses (e.g., different content to US vs. European users)

78 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Spam technique: Link spam

▶ Create lots of links pointing to the page you want to promote

▶ Put these links on pages with high (or at least non-zero) PageRank
▶ Newly registered domains (domain flooding)

▶ A set of pages that all point to each other to boost each other’s
PageRank (mutual admiration society)

▶ Pay somebody to put your link on their highly ranked page

▶ Leave comments that include the link on blogs

79 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

SEO: Search engine optimization

▶ Promoting a page in the search rankings is not necessarily spam.

▶ It can also be a legitimate business – which is called SEO.

▶ You can hire an SEO firm to get your page highly ranked.

▶ There are many legitimate reasons for doing this
▶ For example, Google bombs like Who is a failure?

▶ And there are many legitimate ways of achieving this:
▶ Restructure your content in a way that makes it easy to index

▶ Talk with influential bloggers and have them link to your site

▶ Add more interesting and original content

80 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

The war against spam

▶ Quality indicators
▶ Links, statistically analyzed (PageRank etc)

▶ Usage (users visiting a page)

▶ No adult content (e.g., no pictures with flesh-tone)

▶ Distribution and structure of text (e.g., no keyword stuffing)

▶ Combine all of these indicators and use machine learning

▶ Editorial intervention
▶ Blacklists

▶ Top queries audited

▶ Complaints addressed

▶ Suspect patterns detected

81 / 82

Web search Web IR Web crawling Duplicate detection Spam detection

Webmaster guidelines

▶ Major search engines have guidelines for webmasters.

▶ These guidelines tell you what is legitimate SEO and what is
spamming.

▶ Ignore these guidelines at your own risk

▶ Once a search engine identifies you as a spammer, all pages on your
site may get low ranks (or disappear from the index entirely).

▶ There is often a fine line between spam and legitimate SEO.

▶ Scientific study of fighting spam on the web: adversarial information
retrieval

82 / 82

	Web search
	Web IR
	Web crawling
	Duplicate detection
	Spam detection

