NPFL103: Information Retrieval (10)
Document clustering

Pavel Pecina
pecina@ufal.mff.cuni.cz
Lecturer

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.
Contents

Introduction

K-means

Evaluation

How many clusters?

Hierarchical clustering

Variants
Introduction
(Document) clustering is the process of grouping a set of documents into clusters of similar documents.

- Documents within a cluster should be similar.
- Documents from different clusters should be dissimilar.
- Clustering is the most common form of unsupervised learning.
- Unsupervised = there are no labeled or annotated data.
Exercise: Data set with clear cluster structure
Classification vs. Clustering

- Classification: supervised learning

- Clustering: unsupervised learning

- Classification: Classes are human-defined and part of the input to the learning algorithm.

- Clustering: Clusters are inferred from the data without human input.
 - However, there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents, ...
The cluster hypothesis

- **Cluster hypothesis**: Documents in the same cluster behave similarly with respect to relevance to information needs.

- All applications of clustering in IR are based (directly or indirectly) on the cluster hypothesis.

- Van Rijsbergen’s original wording (1979): “closely associated documents tend to be relevant to the same requests”.
Applications of clustering in IR

<table>
<thead>
<tr>
<th>Application</th>
<th>What is clustered?</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>search result clustering</td>
<td>search results</td>
<td>more effective information presentation to user</td>
</tr>
<tr>
<td>collection clustering</td>
<td>collection</td>
<td>effective information presentation for exploratory browsing</td>
</tr>
<tr>
<td>cluster-based retrieval</td>
<td>collection</td>
<td>higher efficiency: faster search</td>
</tr>
</tbody>
</table>
Search result clustering for better navigation

Clustering Results

Top 208 results of at least 20,373,974 retrieved for the query jaguar (Details)

1. **Jag-lovers - THE source for all Jaguar information**
 ![Internet! Serving Enthusiasts since 1993 The Jag-lovers Web Currently with 40661 members The Premier Jaguar Cars web resource for all enthusiasts Lists and Forums Jag-lovers originally evolved around its ...](http://www.jag-lovers.org)
 - Open Directory 2, Wisenut 8, Ask Jeeves 8, MSN 9, Looksmart 12, MSN Search 18

2. **Jaguar Cars**
 ![[...] redirected to www.jaguarcom](http://www.jaguar.com)
 - Looksmart 1, MSN 2, Lycos 3, Wisenut 6, MSN Search 9, MSN 29

3. **http://www.jaguarcom/**
 ![www.jaguarcom - MSN 1, Ask Jeeves 1, MSN Search 3, Lycos 9](http://www.jaguar.com)

4. **Apple - Mac OS X**
 ![Download a technical factsheet.](www.apple.com/macosx - Wisenut 1, MSN 3, Looksmart 26)
Introduction K-means Evaluation How many clusters? Hierarchical clustering Variants

Global navigation: Yahoo

Society and Culture

Directory > Society and Culture

CATEGORIES (What’s This?)

Most Popular Society and Culture

- Crime (5453) NEW
- Cultures and Groups (11025) NEW
- Environment and Nature (8558) NEW
- Families (1215)
- Food and Drink (9776) NEW
- Holidays and Observances (3333)
- Issues and Causes (4642)
- Mythology and Folklore (984)
- People (16351)
- Relationships (595)
- Religion and Spirituality (37533)
- Sexuality (2612) NEW

Additional Society and Culture Categories

- Advice (46)
- Chats and Forums (27)
- Cultural Policy (10)
- Death and Dying (394)
- Disabilities (1293)
- Employment and Work@
- Etiquette (54)
- Events (27)
- Fashion@
- Gender (21)
- Home and Garden (1080) NEW
- Magazines (164)
- Museums and Exhibits (6052)
- Pets@
- Reunions (228)
- Social Organizations (338)
- Web Directories (6)
- Weddings (371)
MeSH Tree Structures - 2008

1. Anatomy [A]
2. Organisms [B]
3. Diseases [C]
 - Bacterial Infections and Mycoses [C01] +
 - Virus Diseases [C02] +
 - Parasitic Diseases [C03] +
 - Neoplasms [C04] +
 - Musculoskeletal Diseases [C05] +
 - Digestive System Diseases [C06] +
 - Stomatognathic Diseases [C07] +
 - Respiratory Tract Diseases [C08] +
 - Otorhinolaryngologic Diseases [C09] +
 - Nervous System Diseases [C10] +
 - Eye Diseases [C11] +
 - Male Urogenital Diseases [C12] +
 - Female Urogenital Diseases and Pregnancy Complications [C13] +
 - Cardiovascular Diseases [C14] +
 - Hemic and Lymphatic Diseases [C15] +
 - Congenital, Hereditary, and Neonatal Diseases and Abnormalities [C16] +
 - Skin and Connective Tissue Diseases [C17] +
 - Nutritional and Metabolic Diseases [C18] +
 - Endocrine System Diseases [C19] +
 - Immune System Diseases [C20] +
 - Disorders of Environmental Origin [C21] +
 - Animal Diseases [C22] +
 - Pathological Conditions, Signs and Symptoms [C23] +
4. Chemicals and Drugs [D]
5. Analytical, Diagnostic and Therapeutic Techniques and Equipment [E]
6. Psychiatry and Psychology [F]
7. Biological Sciences [G]
8. Natural Sciences [H]
9. Anthropology, Education, Sociology and Social Phenomena [I]
10. Technology, Industry, Agriculture [J]
11. Humanities [K]
Global navigation: MESH (lower level)

Neoplasms [C04]
 Cysts [C04.182] +
 Hamartoma [C04.445] +
▷ Neoplasms by Histologic Type [C04.557]
 Histiocytic Disorders, Malignant [C04.557.227] +
 Leukemia [C04.557.337] +
 Lymphatic Vessel Tumors [C04.557.375] +
 Lymphoma [C04.557.386] +
 Neoplasms, Complex and Mixed [C04.557.435] +
 Neoplasms, Connective and Soft Tissue [C04.557.450] +
 Neoplasms, Germ Cell and Embryonal [C04.557.465] +
 Neoplasms, Glandular and Epithelial [C04.557.470] +
 Neoplasms, Gonadal Tissue [C04.557.475] +
 Neoplasms, Nerve Tissue [C04.557.580] +
 Neoplasms, Plasma Cell [C04.557.595] +
 Neoplasms, Vascular Tissue [C04.557.645] +
 Nevi and Melanomas [C04.557.665] +
 Odontogenic Tumors [C04.557.695] +
Neoplasms by Site [C04.588] +
 Neoplasms, Experimental [C04.619] +
 Neoplasms, Hormone-Dependent [C04.626]
 Neoplasms, Multiple Primary [C04.651] +
 Neoplasms, Post-Traumatic [C04.666]
 Neoplasms, Radiation-Induced [C04.682] +
 Neoplasms, Second Primary [C04.692]
 Neoplastic Processes [C04.697] +
 Neoplastic Syndromes, Hereditary [C04.700] +
 Paraneoplastic Syndromes [C04.730] +
 Precancerous Conditions [C04.834] +
 Pregnancy Complications, Neoplastic [C04.850] +
 Tumor Virus Infections [C04.925] +
Navigational hierarchies: Manual vs. automatic creation

- Note: Yahoo/MESH are not examples of clustering ...
 but well known examples for using a global hierarchy for navigation.

- Example for global navigation/exploration based on clustering:
 - Google News
Clustering for improving recall

- To improve search recall:
 - Cluster docs in collection a priori
 - When a query matches a doc d, also return other docs in the cluster containing d

- Hope: if we do this: the query “car” will also return docs containing “automobile”
 - Because the clustering algorithm groups together docs containing “car” with those containing “automobile”.
 - Both types of documents contain words like “parts”, “dealer”, “mercedes”, “road trip”.

- Introduction
- K-means
- Evaluation
- How many clusters?
- Hierarchical clustering
- Variants
Goals of clustering

- General goal: put related docs in the same cluster, put unrelated docs in different clusters.
 - We’ll see different ways of formalizing this.

- The number of clusters should be appropriate for the data set we are clustering.
 - Initially, we will assume the number of clusters K is given.
 - Later: Semiautomatic methods for determining K

- Secondary goals in clustering
 - Avoid very small and very large clusters
 - Define clusters that are easy to explain to the user
 - ...
Flat vs. hierarchical clustering

- **Flat algorithms**
 - Usually start with a random (partial) partitioning of docs into groups
 - Refine iteratively
 - Main algorithm: K-means

- **Hierarchical algorithms**
 - Create a hierarchy
 - Bottom-up, agglomerative
 - Top-down, divisive
Hard vs. soft clustering

- Hard clustering: Each document belongs to **exactly one** cluster.
 - More common and easier to do

- Soft clustering: A document can belong to **more than one** cluster.
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put *sneakers* in two clusters: *sports apparel/shoes*
 - You can only do that with a soft clustering approach.

- This class: flat and hierarchical hard clustering

- Next class: latent semantic indexing, a form of soft clustering
Flat algorithms

- Flat algorithms compute a partition of N documents into K clusters.
- Given: a set of documents and the number K
- Find: a partition into K clusters optimizing the chosen criterion
- Global optimization: exhaustively enumerate partitions, pick optimal
 - Not tractable
- Effective heuristic method: K-means algorithm
K-means
K-means

- Perhaps the best known clustering algorithm
- Simple, works well in many cases
- Use as default / baseline for clustering documents
Document representations in clustering

- Vector space model

- As in vector space classification, we measure relatedness between vectors by **Euclidean distance** ...

 ... which is almost equivalent to cosine similarity.

- Almost: centroids are not length-normalized.
K-means: Basic idea

- Each cluster in K-means is defined by a **centroid**.

- **Objective/partitioning criterion:** minimize the average squared difference from the centroid

- Recall definition of centroid (ω denotes a cluster):

$$
\bar{\mu}(\omega) = \frac{1}{|\omega|} \sum_{\tilde{x} \in \omega} \tilde{x}
$$

- We search for minimum avg. squared difference by iterating 2 steps:
 - **reassignment:** assign each vector to its closest centroid
 - **recomputation:** recompute each centroid as the average of the vectors that were assigned to it in reassignment
K-means pseudocode (μ_k is centroid of ω_k)

\text{K-MEANS(} \{ \vec{x}_1, \ldots, \vec{x}_N \}, K) \]

1. \((\vec{s}_1, \vec{s}_2, \ldots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{ \vec{x}_1, \ldots, \vec{x}_N \}, K)\)
2. \text{for } k \leftarrow 1 \text{ to } K
3. \quad \text{do } \vec{\mu}_k \leftarrow \vec{s}_k
4. \text{while stopping criterion has not been met}
5. \quad \text{do for } k \leftarrow 1 \text{ to } K
6. \quad \quad \text{do } ω_k \leftarrow \{\}
7. \quad \quad \text{for } n \leftarrow 1 \text{ to } N
8. \quad \quad \quad \text{do } j \leftarrow \text{arg min}_{j'} |\vec{\mu}_{j'} - \vec{x}_n|
9. \quad \quad \quad \quad \omega_j \leftarrow \omega_j \cup \{\vec{x}_n\} \quad (\text{reassignment of vectors})
10. \quad \quad \text{for } k \leftarrow 1 \text{ to } K
11. \quad \quad \quad \text{do } \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} \quad (\text{recomputation of centroids})
12. \text{return } \{\vec{\mu}_1, \ldots, \vec{\mu}_K\}
Worked Example: Random selection of initial centroids
Worked Example: Assign points to closest center
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids

[Diagram showing a scatter plot with data points labeled with numbers 1 and 2, and cluster centroids indicated by crosses.]
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Assign points to closest centroid
Worked Example: Assignment
Worked Example: Recompute cluster centroids
Worked Example: Centroids and assignments after convergence
K-means is guaranteed to converge: Proof

- **RSS** = sum of all squared distances between document vector and closest centroid
- **RSS decreases during each reassignment step.**
 - because each vector is moved to a closer centroid
- **RSS decreases during each recomputation step.**
 - See the book for a proof.
- There is only a finite number of clusterings.
- Thus: We must reach a fixed point.
- **Assumption:** Ties are broken consistently.
- Finite set & monotonically decreasing \rightarrow convergence
Convergence and Optimality of K-means

- **K-means is guaranteed to converge**
- **But we don’t know how long convergence will take!**
- **If we don’t care about a few docs switching back and forth, then convergence is usually fast (< 10-20 iterations).**
- **However, complete convergence can take many more iterations.**
- **Convergence ≠ optimality**
- **Convergence does not mean that we converge to the optimal clustering!**
- **This is the great weakness of K-means.**
- **If we start with a bad set of seeds, the resulting clustering can be horrible.**
Exercise: Suboptimal clustering

What is the optimal clustering for $K = 2$?

Do we converge on this clustering for arbitrary seeds d_i, d_j?
 Initialization of K-means

- Random seed selection is just one of many ways K-means can be initialized.

- Random seed selection is not very robust: It’s easy to get a suboptimal clustering.

- Better ways of computing initial centroids:
 - Select seeds not randomly, but using some heuristic (e.g., filter out outliers or find a set of seeds that has “good coverage” of the document space)
 - Use hierarchical clustering to find good seeds
 - Select \(i\) (e.g., \(i = 10\)) different random sets of seeds, do a K-means clustering for each, select the clustering with lowest RSS
Time complexity of K-means

- Computing one distance of two vectors is $O(M)$.

- Reassignment step: $O(KNM)$ (we need to compute KN document-centroid distances)

- Recomputation step: $O(NM)$ (we need to add each of the document’s $< M$ values to one of the centroids)

- Assume number of iterations bounded by I

- Overall complexity: $O(INKM)$ – linear in all important dimensions

- However: This is not a real worst-case analysis.

- In pathological cases, complexity can be worse than linear.
Evaluation
What is a good clustering?

- **Internal criteria**
 - Example of an internal criterion: RSS in K-means

- But an internal criterion often does not evaluate the actual utility of a clustering in the application.

- **Alternative: External criteria**
 - Evaluate with respect to a human-defined classification
External criteria for clustering quality

- Based on a gold standard data set, e.g., the Reuters collection we also used for the evaluation of classification
- Goal: Clustering should reproduce the classes in the gold standard
- (But we only want to reproduce how documents are divided into groups, not the class labels.)
- First measure for how well we were able to reproduce the classes: purity
External criterion: Purity

\[
purity(\Omega, C) = \frac{1}{N} \sum_{k} \max_{j} |\omega_k \cap c_j|
\]

- \(\Omega = \{\omega_1, \omega_2, \ldots, \omega_K\} \) is the set of clusters and \(C = \{c_1, c_2, \ldots, c_J\} \) is the set of classes.
- For each cluster \(\omega_k \): find class \(c_j \) with most members \(n_{kj} \) in \(\omega_k \)
- Sum all \(n_{kj} \) and divide by total number of points
Example for computing purity

To compute purity:

5 = \max_j |\omega_1 \cap c_j| \quad (\text{class } x, \text{ cluster 1});

4 = \max_j |\omega_2 \cap c_j| \quad (\text{class } o, \text{ cluster 2}); \text{ and }

3 = \max_j |\omega_3 \cap c_j| \quad (\text{class } \Diamond, \text{ cluster 3}).

Purity is \(\frac{1}{17} \times (5 + 4 + 3) \approx 0.71 \).
Another external criterion: Rand index

- Purity can be increased easily by increasing K – a measure that does not have this problem: Rand index.

\[\text{RI} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{FP} + \text{FN} + \text{TN}} \]

- Based on 2x2 contingency table of all pairs of documents:

<table>
<thead>
<tr>
<th></th>
<th>same cluster</th>
<th>different clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>same class</td>
<td>true positives (TP)</td>
<td>false negatives (FN)</td>
</tr>
<tr>
<td>different classes</td>
<td>false positives (FP)</td>
<td>true negatives (TN)</td>
</tr>
</tbody>
</table>

- Where:
 - $\text{TP} + \text{FN} + \text{FP} + \text{TN}$ is the total number of pairs; $\binom{N}{2}$ for N docs.
 - Each pair is either positive or negative (the clustering puts the two documents in the same or in different clusters) ...
 - ...and either “true” (correct) or “false” (incorrect): the clustering decision is correct or incorrect.
Example: compute Rand Index for the o/◇/x example

➤ We first compute TP + FP. The three clusters contain 6, 6, and 5 points, respectively, so the total number of “positives” or pairs of documents that are in the same cluster is:

\[
TP + FP = \binom{6}{2} + \binom{6}{2} + \binom{5}{2} = 40
\]

➤ Of these, the x pairs in cluster 1, the o pairs in cluster 2, the ◇ pairs in cluster 3, and the x pair in cluster 3 are true positives:

\[
TP = \binom{5}{2} + \binom{4}{2} + \binom{3}{2} + \binom{2}{2} = 20
\]

➤ Thus, FP = 40 − 20 = 20.

➤ FN and TN are computed similarly.
Rand index for the o/◊/x example

<table>
<thead>
<tr>
<th></th>
<th>same cluster</th>
<th>different clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>same class</td>
<td>TP = 20</td>
<td>FN = 24</td>
</tr>
<tr>
<td>different classes</td>
<td>FP = 20</td>
<td>TN = 72</td>
</tr>
</tbody>
</table>

RI is then \((20 + 72)/(20 + 20 + 24 + 72) \approx 0.68\).
How many clusters?
How many clusters?

- Number of clusters K is given in many applications.
 - E.g., there may be an external constraint on K.

- What if there is no external constraint? Is there a “right” number of clusters?

- One way to go: define an optimization criterion
 - Given docs, find K for which the optimum is reached.
 - What optimization criterion can we use?
 - We can’t use RSS or average squared distance from centroid as criterion: always chooses $K = N$ clusters.
Simple objective function for K: Basic idea

- Start with 1 cluster ($K = 1$)

- Keep adding clusters (= keep increasing K)

- Add a penalty for each new cluster

- Then trade off cluster penalties against average squared distance from centroid

- Choose the value of K with the best tradeoff
Simple objective function for K: Formalization

- Given a clustering, define the cost for a document as (squared) distance to centroid

- Define total *distortion* $\text{RSS}(K)$ as sum of all individual document costs (corresponds to average distance)

- Then: penalize each cluster with a cost λ

- Thus for a clustering with K clusters, total cluster penalty is $K\lambda$

- Define the total cost of a clustering as distortion plus total cluster penalty: $\text{RSS}(K) + K\lambda$

- Select K that minimizes $(\text{RSS}(K) + K\lambda)$

- Still need to determine good value for λ ...
Finding the “knee” in the curve

Pick the number of clusters where curve “flattens”. Here: 4 or 9.
Hierarchical clustering
Hierarchical clustering

Our goal in hierarchical clustering is to create a hierarchy like the one we saw earlier in Reuters:

- Tier 1: Regions
 - Kenya
 - China
 - UK
 - France

- Tier 2: Industries
 - Coffee
 - Poultry
 - Oil & Gas

- Tier 3: TOP

▶ We want to create this hierarchy automatically.
▶ We can do this either top-down or bottom-up.
▶ The best known bottom-up method is hierarchical agglomerative clustering.
Hierarchical agglomerative clustering (HAC)

- HAC creates a hierarchy in the form of a binary tree.
- Assumes a similarity measure for determining similarity of two clusters.
- Up to now, our similarity measures were for documents.
- We will look at four different cluster similarity measures.
HAC: Basic algorithm

- Start with *each document in a separate cluster*
- Then *repeatedly merge* the two clusters that are most similar
- Until there is only one cluster.
- The history of merging is a hierarchy in the form of a binary tree.
- The standard way of depicting this history is a **dendrogram**.
A dendrogram

- The history of mergers can be read off from bottom to top.
- The horizontal line of each merger tells us what the similarity of the merger was.
- We can cut the dendrogram at a particular point (e.g., at 0.1 or 0.4) to get a flat clustering.
Divisive clustering

- Divisive clustering is top-down.

- Alternative to HAC (which is bottom up).

- Divisive clustering:
 - Start with all docs in one big cluster
 - Then recursively split clusters
 - Eventually each node forms a cluster on its own.

- → Bisecting K-means at the end

- For now: HAC (= bottom-up)
Naive HAC algorithm

\[
\text{\textsc{SimpleHAC}}(d_1, \ldots, d_N)
\]

1. \textbf{for} \(n \leftarrow 1 \) \textbf{to} \(N \)
2. \textbf{do for} \(i \leftarrow 1 \) \textbf{to} \(N \)
3. \quad \textbf{do} \(C[n][i] \leftarrow \text{SIM}(d_n, d_i) \)
4. \quad \(I[n] \leftarrow 1 \) \textit{(keeps track of active clusters)}
5. \quad \(A \leftarrow [] \) \textit{(collects clustering as a sequence of merges)}
6. \textbf{for} \(k \leftarrow 1 \) \textbf{to} \(N - 1 \)
7. \quad \textbf{do} \(\langle i, m \rangle \leftarrow \text{arg max}\{\langle i, m \rangle: i \neq m \land I[i] = 1 \land I[m] = 1\} \) \(C[i][m] \)
8. \quad \text{A.APPEND}(\langle i, m \rangle) \textit{(store merge)}
9. \textbf{for} \(j \leftarrow 1 \) \textbf{to} \(N \)
10. \quad \textbf{do} \textit{(use i as representative for} \langle i, m \rangle \textit{)}
11. \quad \(C[i][j] \leftarrow \text{SIM}(\langle i, m \rangle, j) \)
12. \quad \(C[j][i] \leftarrow \text{SIM}(\langle i, m \rangle, j) \)
13. \quad \(I[m] \leftarrow 0 \) \textit{(deactivate cluster)}
14. \textbf{return} \(A \)
Computational complexity of the naive algorithm

- First, we compute the similarity of all $N \times N$ pairs of documents.

- Then, in each of N iterations:
 - We scan the $O(N \times N)$ similarities to find the maximum similarity.
 - We merge the two clusters with maximum similarity.
 - We compute the similarity of the new cluster with all other (surviving) clusters.

- There are $O(N)$ iterations, each performing a $O(N \times N)$ “scan” operation.

- Overall complexity is $O(N^3)$.

- We’ll look at more efficient algorithms later.
Key question: How to define cluster similarity

- **Single-link:** Maximum similarity
 - Maximum similarity of any two documents

- **Complete-link:** Minimum similarity
 - Minimum similarity of any two documents

- **Centroid:** Average “intersimilarity”
 - Average similarity of all document pairs (but excluding pairs of docs in the same cluster)
 - This is equivalent to the similarity of the centroids.

- **Group-average:** Average “intrasimilarity”
 - Average similarity of all document pairs, including pairs of docs in the same cluster
Cluster similarity: Example
Single-link: Maximum similarity
Complete-link: Minimum similarity
Centroid: Average intersimilarity

\textit{intersimilarity} = similarity of two documents in different clusters
Group average: Average intrasimilarity

\[
\text{intrasimilarity} = \text{similarity of any pair}, \text{ including cases in the same cluster}
\]
Cluster similarity: Larger Example
Single-link: Maximum similarity

![Graph showing single-link clustering](image-url)
Complete-link: Minimum similarity
Centroid: Average intersimilarity
Group average: Average intrasimilarity
Single link HAC

- The similarity of two clusters is the maximum intersimilarity – the maximum similarity of a document from the first cluster and a document from the second cluster.

- Once we have merged two clusters, how do we update the similarity matrix?

- This is simple for single link:

\[\text{SIM}(\omega_i, (\omega_{k1} \cup \omega_{k2})) = \max(\text{SIM}(\omega_i, \omega_{k1}), \text{SIM}(\omega_i, \omega_{k2})) \]
This dendrogram was produced by single-link clustering.

- Notice: many small clusters (1 or 2 members) being added to the main cluster.

- There is no balanced 2-cluster or 3-cluster clustering that can be derived by cutting the dendrogram.
Complete link HAC

- The similarity of two clusters is the \textit{minimum} intersimilarity – the minimum similarity of a document from the first cluster and a document from the second cluster.

- Once we have merged two clusters, how do we update the similarity matrix?

- Again, this is simple:

 \[
 \text{SIM}(\omega_i, (\omega_{k_1} \cup \omega_{k_2})) = \min(\text{SIM}(\omega_i, \omega_{k_1}), \text{SIM}(\omega_i, \omega_{k_2}))
 \]

- We measure the similarity of two clusters by computing the diameter of the cluster that we would get if we merged them.
Complete-link dendrogram

- Notice that this dendrogram is much more balanced than the single-link one.

- We can create a 2-cluster clustering with two clusters of about the same size.
Exercise: Compute single and complete link clusterings
Single-link clustering
Complete link clustering

![Diagram of complete link clustering](image)
Single-link vs. Complete link clustering

- Single-link clustering
 - Clusters with short connections
 - Agglomerative (bottom-up)

- Complete-link clustering
 - Clusters with long connections
 - Divisive (top-down)

Examples:

1. Single-link: Short connections
2. Complete-link: Long connections
Single-link: Chaining

Single-link clustering often produces long, straggly clusters. For most applications, these are undesirable.
What 2-cluster clustering will complete-link produce?

Coordinates: \(1 + 2 \times \epsilon, 4, 5 + 2 \times \epsilon, 6, 7 - \epsilon \).
The complete-link clustering of this set splits d_2 from its right neighbors – clearly undesirable.

The reason is the outlier d_1.

This shows that a single outlier can negatively affect the outcome of complete-link clustering.

Single-link clustering does better in this case.
Centroid HAC

- The similarity of two clusters is the average intersimilarity – the average similarity of documents from the first cluster with documents from the second cluster.

- A naive implementation of this definition is inefficient ($O(N^2)$), but the definition is equivalent to computing the similarity of the centroids:

 \[\text{SIM-CENT}(\omega_i, \omega_j) = \mu(\omega_i) \cdot \mu(\omega_j) \]

- Hence the name: centroid HAC

- Note: this is the dot product, not cosine similarity!
Exercise: Compute centroid clustering
Centroid clustering
Inversion in centroid clustering

▶ In an inversion, the similarity increases during a merge sequence. Results in an “inverted” dendrogram.

▶ Below: Similarity of the first merger \((d_1 \cup d_2)\) is -4.0, similarity of second merger \(((d_1 \cup d_2) \cup d_3)\) is \(\approx -3.5\).
Inversions

- Hierarchical clustering algorithms that allow inversions are inferior.

- The rationale for hierarchical clustering is that at any given point, we’ve found the most coherent clustering for a given K.

- Intuitively: smaller clusterings should be more coherent than larger clusterings.

- An inversion contradicts this intuition: we have a large cluster that is more coherent than one of its subclusters.

- The fact that inversions can occur in centroid clustering is a reason not to use it.
Group-average agglomerative clustering (GAAC)

- GAAC also has an “average-similarity” criterion, but does not have inversions.
- The similarity of two clusters is the average *intrasimilarity* – the average similarity of all document pairs (including those from the same cluster).
- But we exclude self-similarities.
Group-average agglomerative clustering (GAAC)

- Again, a naive implementation is inefficient ($O(N^2)$) and there is an equivalent, more efficient, centroid-based definition:

$$
\text{SIM-GA}(\omega_i, \omega_j) = \frac{1}{(N_i + N_j)(N_i + N_j - 1)} \left[\sum_{d_m \in \omega_i \cup \omega_j} \vec{d}_m^2 - (N_i + N_j) \right]
$$

- Again, this is the dot product, not cosine similarity.
Which HAC clustering should I use?

- Don’t use centroid HAC because of inversions.

- In most cases: GAAC is best since it isn’t subject to chaining and sensitivity to outliers.

- However, we can only use GAAC for vector representations.

- For other types of document representations (or if only pairwise similarities for documents are available): use complete-link.

- There are also some applications for single-link (e.g., duplicate detection in web search).
Flat or hierarchical clustering?

- For high efficiency, use flat clustering (or perhaps bisecting \(k\)-means)
- For deterministic results: HAC
- When a hierarchical structure is desired: hierarchical algorithm
- HAC also can be applied if \(K\) cannot be predetermined (can start without knowing \(K\))
Variants
Bisecting K-means: A top-down algorithm

- Start with all documents in one cluster
- Split the cluster into 2 using K-means
- Of the clusters produced so far, select one to split (e.g. select the largest one)
- Repeat until we have produced the desired number of clusters
Bisecting K-means

\[
\text{BisectingKMeans}(d_1, \ldots, d_N)
\]

1. \(\omega_0 \leftarrow \{ \vec{d}_1, \ldots, \vec{d}_N \} \)
2. \(\text{leaves} \leftarrow \{ \omega_0 \} \)
3. \(\text{for } k \leftarrow 1 \text{ to } K - 1 \)
4. \(\text{do } \omega_k \leftarrow \text{PickClusterFrom}(\text{leaves}) \)
5. \(\{ \omega_i, \omega_j \} \leftarrow \text{KMeans}(\omega_k, 2) \)
6. \(\text{leaves} \leftarrow \text{leaves} \setminus \{ \omega_k \} \cup \{ \omega_i, \omega_j \} \)
7. \(\text{return } \text{leaves} \)
Bisecting K-means

- If we don’t generate a complete hierarchy, then a top-down algorithm like bisecting K-means is **much more efficient** than HAC algorithms.

- But bisecting K-means is not deterministic.

- There are deterministic versions of bisecting K-means (see resources at the end), but they are much less efficient.
Efficient single link clustering

SingleLinkClustering \((d_1, \ldots , d_N, K)\)

1. \textbf{for} \(n \leftarrow 1 \) \textbf{to} \(N\)
2. \textbf{do for} \(i \leftarrow 1 \) \textbf{to} \(N\)
3. \textbf{do} \(C[n][i].\text{sim} \leftarrow \text{SIM}(d_n, d_i)\)
4. \hspace{1em} \(C[n][i].\text{index} \leftarrow i\)
5. \hspace{1em} \(l[n] \leftarrow n\)
6. \hspace{1em} \(NBM[n] \leftarrow \arg \max_{X \in \{C[n][i]: n \neq i\}} X.\text{sim}\)
7. \hspace{1em} \(A \leftarrow []\)
8. \textbf{for} \(n \leftarrow 1 \) \textbf{to} \(N - 1\)
9. \textbf{do} \(i_1 \leftarrow \arg \max_{\{i: l[i]=i\}} NBM[i].\text{sim}\)
10. \hspace{1em} \(i_2 \leftarrow l[NBM[i_1].\text{index}]\)
11. \hspace{1em} \(A.\text{APPEND}(\langle i_1, i_2 \rangle)\)
12. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(N\)
13. \textbf{do if} \(l[i] = i \land i \neq i_1 \land i \neq i_2\)
14. \hspace{1em} \textbf{then} \(C[i_1][i].\text{sim} \leftarrow C[i][i_1].\text{sim} \leftarrow \max(C[i_1][i].\text{sim}, C[i_2][i].\text{sim})\)
15. \hspace{1em} \textbf{if} \(l[i] = i_2\)
16. \hspace{1em} \textbf{then} \(l[i] \leftarrow i_1\)
17. \hspace{1em} \(NBM[i_1] \leftarrow \arg \max_{X \in \{C[i_1][i]: l[i]=i \land i \neq i_1\}} X.\text{sim}\)
18. \textbf{return} \(A\)

Note: The code snippet provided is a simplified version of the algorithm to illustrate the concept of efficient single link clustering. The actual implementation may differ in terms of optimization and efficiency.
Time complexity of HAC

- The single-link algorithm we just saw is $O(N^2)$.
- Much more efficient than the $O(N^3)$ algorithm we looked at earlier!
- There is no known $O(N^2)$ algorithm for complete-link, centroid and GAAC.
- Best time complexity for these three is $O(N^2 \log N)$: See book.
- In practice: little difference between $O(N^2 \log N)$ and $O(N^2)$.

\[\text{Time complexity of HAC}\]
Combination similarities of the four algorithms

<table>
<thead>
<tr>
<th>Clustering Algorithm</th>
<th>(\text{sim}(\ell, k_1, k_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-link</td>
<td>(\max(\text{sim}(\ell, k_1), \text{sim}(\ell, k_2)))</td>
</tr>
<tr>
<td>Complete-link</td>
<td>(\min(\text{sim}(\ell, k_1), \text{sim}(\ell, k_2)))</td>
</tr>
<tr>
<td>Centroid</td>
<td>(\frac{1}{N_m} \vec{v}m \cdot \frac{1}{N\ell} \vec{v}_\ell)</td>
</tr>
<tr>
<td>Group-average</td>
<td>(\frac{1}{(N_m+N_\ell)(N_m+N_\ell-1)} \left[(\vec{v}m + \vec{v}\ell)^2 - (N_m + N_\ell) \right])</td>
</tr>
</tbody>
</table>
Comparison of HAC algorithms

<table>
<thead>
<tr>
<th>method</th>
<th>combination similarity</th>
<th>time compl.</th>
<th>optimal?</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-link</td>
<td>max intersimilarity of any 2 docs</td>
<td>$\Theta(N^2)$</td>
<td>yes</td>
<td>chaining effect</td>
</tr>
<tr>
<td>complete-link</td>
<td>min intersimilarity of any 2 docs</td>
<td>$\Theta(N^2 \log N)$</td>
<td>no</td>
<td>sensitive to outliers</td>
</tr>
<tr>
<td>group-average</td>
<td>average of all sims</td>
<td>$\Theta(N^2 \log N)$</td>
<td>no</td>
<td>best choice for most applications</td>
</tr>
<tr>
<td>centroid</td>
<td>average intersimilarity</td>
<td>$\Theta(N^2 \log N)$</td>
<td>no</td>
<td>inversion can occur</td>
</tr>
</tbody>
</table>
What to do with the hierarchy?

- Use as is (e.g., for browsing as in Yahoo hierarchy)
- Cut at a predetermined threshold
- Cut to get a predetermined number of clusters K
 - Ignores hierarchy below and above cutting line.