
Language models Text classification Naive Bayes Evaluation of text classification

NPFL103: Information Retrieval (8)
Language Models for Information Retrieval, Text Classification

Pavel Pecina
pecina@ufal.mff.cuni.cz

Lecturer

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.

1 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Contents

Language models

Text classification

Naive Bayes

Evaluation of text classification

2 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Language models

3 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Using language models for Information Retrieval

View the document d as a generative model that generates the query q.

What we need to do:

1. Define the precise generative model we want to use

2. Estimate parameters (different for each document’s model)

3. Smooth to avoid zeros

4. Apply to query and find document most likely to generate the query

5. Present most likely document(s) to user

4 / 59

Language models Text classification Naive Bayes Evaluation of text classification

What is a language model?

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish I wish I wish …

Cannot generate: “wish I wish” or “I wish I”

Our basic model: each document was generated by a different automaton
like this except that these automata are probabilistic.

5 / 59

Language models Text classification Naive Bayes Evaluation of text classification

A probabilistic language model

q1

w P(w|q1) w P(w|q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

… …

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one state q1.

STOP is a special symbol indicating that the automaton stops.

Example: frog said that toad likes frog STOP

P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.2 = 0.0000000000048

6 / 59

Language models Text classification Naive Bayes Evaluation of text classification

A different language model for each document

language model of d1 language model of d2

w P(w|.) w P(w|.)
STOP .20 toad .01
the .20 said .03
a .10 likes .02
frog .01 that .04

… …

w P(w|.) w P(w|.)
STOP .20 toad .02
the .15 said .03
a .08 likes .02
frog .01 that .05

… …

query: frog said that toad likes frog STOP

P(query|Md1) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.2 = 4.8 · 10−12

P(query|Md2) = 0.01 · 0.03 · 0.05 · 0.02 · 0.02 · 0.01 · 0.2 = 12 · 10−12

P(query|Md1) < P(query|Md2): d2 is more relevant to the query than d1

7 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Using language models in IR (Query likelihood model)

▶ Each document is treated as (the basis for) a language model

▶ Given a query q, rank documents based on P(d|q)

P(d|q) = P(q|d)P(d)
P(q)

▶ P(q) is the same for all documents, so ignore

▶ P(d) is the prior – often treated as the same for all d, but we can give a
higher prior to “high-quality” documents (e.g. by PageRank)

▶ P(q|d) is the probability of q given d.

▶ Under the assumptions we made, ranking documents according
according to P(q|d) and P(d|q) is equivalent.

8 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Where we are

▶ In the LM approach to IR, we model the query generation process.

▶ Then we rank documents by the probability that a query would be
observed as a random sample from the respective document model.

▶ That is, we rank according to P(q|d).

▶ Next: how do we compute P(q|d)?

9 / 59

Language models Text classification Naive Bayes Evaluation of text classification

How to compute P(q|d)

▶ The conditional independence assumption:

P(q|Md) = P(⟨t1, . . . , t|q|⟩|Md) =
∏

1≤k≤|q|

P(tk|Md)

▶ |q|: length of q

▶ tk: the token occurring at position k in q

▶ This is equivalent to:

P(q|Md) =
∏

distinct term t in q

P(t|Md)
tft,q

▶ tft,q: term frequency (# occurrences) of t in q

10 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Parameter estimation

▶ Missing piece: Where do the parameters P(t|Md) come from?

▶ Start with maximum likelihood estimates

P̂(t|Md) =
tft,d
|d|

▶ |d|: length of d

▶ tft,d: # occurrences of t in d

▶ The zero problem (in nominator and denominator)

▶ A single t with P(t|Md) = 0 will make P(q|Md) =
∏

P(t|Md) zero.

▶ Example: for query [Michael Jackson top hits] a document about “top
songs” (but not with the word “hits”) would have P(q|Md) = 0

▶ We need to smooth the estimates to avoid zeros.

11 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Smoothing

▶ Idea: A nonoccurring term is possible (even though it didn’t occur)

…but no more likely than expected by chance in the collection.

▶ We will use P̂(t|Mc) to “smooth” P(t|d) away from zero.

P̂(t|Mc) =
cft
T

▶ Mc: the collection model

▶ cft: the number of occurrences of t in the collection

▶ T =
∑

t cft: the total number of tokens in the collection.

12 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Jelinek-Mercer smoothing

▶ Intuition: Mixing the probability from the document with the general
collection frequency of the word.

P(t|d) = λP(t|Md) + (1− λ)P(t|Mc)

▶ High value of λ: “conjunctive-like” search – tends to retrieve
documents containing all query words.

▶ Low value of λ: more disjunctive, suitable for long queries.

▶ Correctly setting λ is very important for good performance.

13 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Jelinek-Mercer smoothing: Summary

P(q|d) ∝
∏

1≤k≤|q|

(λP(tk|Md) + (1− λ)P(tk|Mc))

▶ What we model: The user has a document in mind and generates the
query from this document.

▶ The equation represents the probability that the document that the
user had in mind was in fact this one.

14 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Example

▶ Collection: d1 and d2
▶ d1: Jackson was one of the most talented entertainers of all time.

▶ d2: Michael Jackson anointed himself King of Pop.

▶ Query q:
▶ q: Michael Jackson

▶ Use mixture model with λ = 1/2
▶ P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003

▶ P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

▶ Ranking: d2 > d1

15 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Dirichlet smoothing

▶ Intuition: Before having seen any part of the document we start with
the background distribution as our estimate.

P̂(t|d) = tft,d + µP̂(t|Mc)

Ld + µ

▶ The background distribution P̂(t|Mc) is the prior for P̂(t|d).

▶ As we read the document and count terms we update the background
distribution.

▶ The weight factor µ determines how strong an effect the prior has.

16 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Jelinek-Mercer or Dirichlet?

▶ Dirichlet performs better for keyword queries

▶ Jelinek-Mercer performs better for verbose queries.

▶ Both models are sensitive to the smoothing parameters – you
shouldn’t use these models without parameter tuning.

17 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Sensitivity of Dirichlet to smoothing parameter

18 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Language model vs. Vector space model: Example

Precision
Recall TF-IDF LM %∆ significant
0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.4 0.2093 0.2572 +22.9 *
0.6 0.1024 0.1405 +37.1 *
0.8 0.0160 0.0432 +169.6 *
1.0 0.0028 0.0050 +76.9
average 0.1868 0.2233 +19.6 *

The language modeling approach always does better in these experiments

…but significant gains are shown at higher levels of recall.

19 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Language model vs. Vector space model: Things in common

1. Term frequency is directly in the model.
▶ But it is not scaled in LMs.

2. Probabilities are inherently “length-normalized”.
▶ Cosine normalization does something similar for vector space.

3. Mixing document/collection frequencies has an effect similar to idf.
▶ Terms rare in the general collection, but common in some documents

will have a greater influence on the ranking.

20 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Language model vs. Vector space model: Differences

1. Language model: based on probability theory

2. Vector space: based on similarity, a geometric/linear algebra notion

3. Collection frequency vs. document frequency

4. Details of term frequency, length normalization etc.

21 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Language models for IR: Assumptions

1. Queries and documents are objects of the same type.
▶ There are other LMs for IR that do not make this assumption.

▶ The vector space model makes the same assumption.

2. Terms are conditionally independent.
▶ Vector space model (and Naive Bayes) make the same assumption.

▶ Language models have cleaner statement of assumptions and better
theoretical foundation than vector space

… but “pure” LMs perform much worse than “tuned” LMs.

22 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Text classification

23 / 59

Language models Text classification Naive Bayes Evaluation of text classification

A text classification task: Email spam filtering

From: ``'' <takworlld@hotmail.com>
Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the
methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

===
Click Below to order:
http://www.wholesaledaily.com/sales/nmd.htm
===

How would you write a program that would automatically detect and delete this type of message?

24 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Formal definition of TC: Training

Given:
▶ A document space X

▶ Documents are represented in this space – typically some type of
high-dimensional space.

▶ A fixed set of classes C = {c1, c2, . . . , cJ}
▶ The classes are human-defined for the needs of an application (e.g.,

spam vs. nonspam).

▶ A training set D of labeled documents. Each labeled document
⟨d, c⟩ ∈ X× C

Using a learning method or learning algorithm, we then wish to learn a
classifier γ that maps documents to classes:

γ : X→ C

25 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Formal definition of TC: Application/Testing

Given: a description d ∈ X of a document

Determine: γ(d) ∈ C, that is, the class that is most appropriate for d

26 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Topic classification

classes:

training
set:

test
set:

Regions industRies subject aReas

γ(d′) =China

fiRst
pRivate
Chinese
aiRline

UK China poultry coffee elections sports

London

congestion

Big Ben

PaRliament

the Queen

WindsoR

Beijing

Olympics

GReat Wall

touRism

communist

Mao

chicKen

feed

ducKs

pate

tuRKey

biRd flu

beans

Roasting

Robusta

aRabica

haRvest

Kenya

votes

Recount

Run-off

seat

campaign

TV ads

baseball

diamond

socceR

foRwaRd

captain

team

d′

27 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Examples of how search engines use classification

▶ Language identification (English vs. French, etc.)

▶ Detection of spam pages (spam vs. nonspam)

▶ Detection of sexually explicit content (sexually explicit vs. not)

▶ Topic-specific or vertical search (relevant to vertical vs. not)

▶ Sentiment detection (positive vs. negative)

▶ Machine-learned ranking function in ad hoc (relevant vs. nonrelevant)

28 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Classification methods: 1. Manual

▶ Manual classification used by Yahoo in the beginning of the web

▶ Domain-specific classification, e.g. PubMed/MeSH

▶ Very accurate if job is done by experts

▶ Consistent when the problem size and team is small

▶ Scaling manual classification is difficult and expensive.

→ We need automatic methods for classification.

29 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Classification methods: 2. Rule-based

▶ E.g., Google Alerts is rule-based classification.

▶ There are IDE-type development enviroments for writing very
complex rules efficiently. (e.g., Verity)

▶ Often: Boolean combinations (as in Google Alerts)

▶ Accuracy is very high if a rule has been carefully refined over time by
a subject expert.

▶ Building and maintaining rule-based classification systems is
cumbersome and expensive.

30 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Classification methods: 3. Statistical/Probabilistic

▶ This was our original definition of the classification problem –
text classification as a learning problem

▶ Tasks:
i. Supervised learning of a the classification function γ

ii. application of γ to classifying new documents

▶ Examples of methods for doing this: Naive Bayes and SVMs

▶ No free lunch: requires hand-classified training data

▶ But this manual classification can be done by non-experts.

31 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes

32 / 59

Language models Text classification Naive Bayes Evaluation of text classification

The Naive Bayes classifier

▶ The Naive Bayes classifier is a probabilistic classifier.

▶ We compute the probability of a document d being in a class c as:

P(c|d) ∝ P(c)
∏

1≤k≤nd

P(tk|c)

▶ nd – length of the document (number of tokens)

▶ P(tk|c) – the probability of tk occurring in a document of class c

▶ P(c) – the prior probability of c

▶ P(tk|c) measures how much evidence the term tk contributes that c is
the correct class of the document d.

▶ If a document’s terms do not provide clear evidence for one class vs.
another, we choose the c with highest P(c).

33 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Maximum a posteriori class

▶ Our goal in Naive Bayes classification is to find the “best” class.

▶ The best class is the most likely or maximum a posteriori class (MAP):

cmap = argmax
c∈C

P̂(c|d) = argmax
c∈C

P̂(c)
∏

1≤k≤nd

P̂(tk|c)

▶ We write P̂ for P since these values are estimates from the training set.

34 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Taking the log

▶ Multiplying lots of small probabilities can result in floating point
underflow.

▶ Since log(xy) = log(x) + log(y), we can sum log probabilities instead
of multiplying probabilities.

▶ Since log is a monotonic function, the class with the highest score
does not change.

▶ So what we usually compute in practice is:

cmap = argmax
c∈C

[log P̂(c) +
∑

1≤k≤nd

log P̂(tk|c)]

35 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes classifier

▶ Classification rule:

cmap = argmax
c∈C

[log P̂(c) +
∑

1≤k≤nd

log P̂(tk|c)]

▶ Simple interpretation:
▶ Each conditional parameter log P̂(tk|c) is a weight that indicates how

good an indicator tk is for c.

▶ The prior log P̂(c) is a weight indicating the relative frequency of c.

▶ The sum of log prior and term weights is then a measure of how much
evidence there is for the document being in the class.

▶ We select the class with the most evidence.

36 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Parameter estimation take 1: Maximum likelihood

▶ Estimate parameters P̂(c) and P̂(tk|c) from train data: How?

▶ Prior:
P̂(c) =

Nc

N

▶ Nc: number of docs in class c

▶ N: total number of docs

▶ Conditional:
P̂(t|c) = Tct∑

t′∈V Tct′

▶ Tct is the number of tokens of t in training documents from class c

▶ We’ve made a Naive Bayes independence assumption here:
P̂(tk|c) = P̂(tk|c), independent of position.

37 / 59

Language models Text classification Naive Bayes Evaluation of text classification

The problem with maximum likelihood estimates: Zeros

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

P(China|d) ∝ P(China) · P(Beijing|China) · P(and|China)
· P(Taipei|China) · P(join|China) · P(WTO|China)

▶ If WTO never occurs in class China in the train set:

P̂(WTO|China) =
TChina,WTO∑
t′∈V TChina,t′

=
0∑

t′∈V TChina,t′
= 0

38 / 59

Language models Text classification Naive Bayes Evaluation of text classification

The problem with maximum likelihood estimates: Zeros (cont)

▶ If there are no occurrences of WTO in documents in class China, we
get a zero estimate:

P̂(WTO|China) =
TChina,WTO∑
t′∈V TChina,t′

= 0

→ We will get P(China|d) = 0 for any document that contains WTO!

39 / 59

Language models Text classification Naive Bayes Evaluation of text classification

To avoid zeros: Add-one smoothing

▶ Before:
P̂(t|c) = Tct∑

t′∈V Tct′

▶ Now, add one to each count to avoid zeros:

P̂(t|c) = Tct + 1∑
t′∈V(Tct′ + 1)

=
Tct + 1

(
∑

t′∈V Tct′) + B

▶ B is (in this case) the number of different words or the size of the
vocabulary |V| = M.

▶ For BIM we used ”add 0.5” or ELE – we could also use that here.

40 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes: Summary

▶ Estimate parameters from the training corpus by add-one smoothing

▶ For a new document, for each class, compute sum of
(i) log of prior and

(ii) logs of conditional probabilities of the terms

▶ Assign the document to the class with the largest score.

41 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes: Training

TRainMultinomialNB(C,D)
1 V← ExtRactVocabulaRy(D)
2 N← CountDocs(D)
3 for each c ∈ C
4 do Nc ← CountDocsInClass(D, c)
5 prior[c]← Nc/N
6 textc ← ConcatenateTextOfAllDocsInClass(D, c)
7 for each t ∈ V
8 do Tct ← CountToKensOfTeRm(textc, t)
9 for each t ∈ V

10 do condprob[t][c]← Tct+1∑
t′ (Tct′+1)

11 return V, prior, condprob

42 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes: Testing

ApplyMultinomialNB(C,V, prior, condprob, d)
1 W← ExtRactToKensFRomDoc(V, d)
2 for each c ∈ C
3 do score[c]← log prior[c]
4 for each t ∈ W
5 do score[c]+ = log condprob[t][c]
6 return argmaxc∈C score[c]

43 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Time complexity of Naive Bayes

mode time complexity
training Θ(|D|Lave + |C||V|)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

▶ Lave: average length of a training doc, La: length of the test doc, Ma:
number of distinct terms in the test doc, D: training set, V:
vocabulary, C: set of classes

▶ Training time is linear:
▶ Θ(|D|Lave) – time it takes to compute all counts.
▶ Θ(|C||V|) – time to compute the parameters from the counts.
▶ Generally: |C||V| < |D|Lave

▶ Test time is also linear (in the length of the test document).

▶ Thus: Naive Bayes is linear in the size of the training set (training)
and the test document (testing). This is optimal.

44 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Derivation of Naive Bayes rule

▶ We want to find the class that is most likely given the document:

cmap = argmax
c∈C

P(c|d)

▶ Apply Bayes rule P(A|B) = P(B|A)P(A)
P(B) :

cmap = argmax
c∈C

P(d|c)P(c)
P(d)

▶ Drop denominator since P(d) is the same for all classes:

cmap = argmax
c∈C

P(d|c)P(c)

45 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Too many parameters / sparseness

cmap = argmax
c∈C

P(d|c)P(c)

= argmax
c∈C

P(⟨t1, . . . , tk, . . . , tnd⟩|c)P(c)

▶ There are too many parameters P(⟨t1, . . . , tk, . . . , tnd⟩|c), one for each
unique combination of a class and a sequence of words.

▶ We would need a very, very large number of training examples to
estimate that many parameters.

▶ This is the problem of data sparseness.

46 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes conditional independence assumption

▶ To reduce the number of parameters to a manageable size, we make
the Naive Bayes conditional independence assumption:

P(d|c) = P(⟨t1, . . . , tnd⟩|c) =
∏

1≤k≤nd

P(Xk = tk|c)

▶ We assume that the probability of observing the conjunction of
attributes is equal to the product of the individual probabilities
P(Xk = tk|c).

▶ Recall from earlier the estimates for these conditional probabilities:
P̂(t|c) = Tct+1

(
∑

t′∈V Tct′)+B

▶ Difference to BIM? Will be discussed later.

47 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Generative model

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

P(c|d) ∝ P(c)
∏

1≤k≤nd

P(tk|c)

▶ Generate a class with probability P(c)

▶ Generate each of the words (in their respective positions), conditional
on the class, but independent of each other, with probability P(tk|c)

▶ To classify docs, we “reengineer” this process and find the class that
is most likely to have generated the doc.

48 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Second independence assumption

P̂(Xk1 = t|c) = P̂(Xk2 = t|c)

▶ For example, for a document in the class UK, the probability of
generating queen in the first position of the document is the same as
generating it in the last position.

▶ The two independence assumptions amount to the bag of words
model.

49 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Violation of Naive Bayes independence assumptions

▶ Conditional independence:

P(⟨t1, . . . , tnd⟩|c) =
∏

1≤k≤nd

P(Xk = tk|c)

▶ Positional independence:

P̂(Xk1 = t|c) = P̂(Xk2 = t|c)

▶ The independence assumptions do not really hold of documents
written in natural language.

▶ How can Naive Bayes work if it makes such inappropriate
assumptions?

50 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Why does Naive Bayes work?

▶ Naive Bayes can work well even though conditional independence
assumptions are badly violated.

▶ Example:
c1 c2 class selected

true probability P(c|d) 0.6 0.4 c1
P̂(c)

∏
1≤k≤nd

P̂(tk|c) 0.00099 0.00001
NB estimate P̂(c|d) 0.99 0.01 c1

▶ Double counting of evidence causes underestimation (0.01) and
overestimation (0.99).

▶ Classification is about predicting the correct class and not about
accurately estimating probabilities.

▶ Naive Bayes is terrible for correct estimation but if often performs
well at accurate prediction (choosing the correct class).

51 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes is not so naive

▶ More robust to nonrelevant features than some more complex
learning methods

▶ More robust to concept drift (changing of definition of class over
time) than some more complex learning methods

▶ Better than methods like decision trees when we have many equally
important features

▶ A good dependable baseline for text classification (but not the best)

▶ Optimal if independence assumptions hold (never true for text, but
true for some domains)

▶ Very fast

▶ Low storage requirements

52 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Evaluation of text classification

53 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Evaluation on Reuters

classes:

training
set:

test
set:

Regions industRies subject aReas

γ(d′) =China

fiRst
pRivate
Chinese
aiRline

UK China poultry coffee elections sports

London

congestion

Big Ben

PaRliament

the Queen

WindsoR

Beijing

Olympics

GReat Wall

touRism

communist

Mao

chicKen

feed

ducKs

pate

tuRKey

biRd flu

beans

Roasting

Robusta

aRabica

haRvest

Kenya

votes

Recount

Run-off

seat

campaign

TV ads

baseball

diamond

socceR

foRwaRd

captain

team

d′

54 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Example: The Reuters collection

symbol statistic value
N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

type of class number examples
region 366 UK, China
industry 870 poultry, coffee
subject area 126 elections, sports

55 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Evaluating classification

▶ Evaluation must be done on test data that are independent of the
training data, i.e., training and test sets are disjoint.

▶ It’s easy to get good performance on a test set that was available to
the learner during training (e.g., just memorize the test set).

▶ Measures: Precision, recall, F1, classification accuracy

56 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Precision P, recall R, and F1 measure

in the class not in the class
predicted to be in the class true positives (TP) false positives (FP)
predicted to not be in the class false negatives (FN) true negatives (TN)

▶ TP, FP, FN, TN are counts of documents

▶ The sum of these four counts is the total number of documents.

P =
TP

TP+ FP

R =
TP

TP+ FN

F1 =
1

1
2
1
P + 1

2
1
R

=
2PR
P+ R

▶ F1 allows us to trade off precision against recall.

57 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Averaging: Micro vs. Macro

▶ We now have an evaluation measure (F1) for one class.

▶ But we also want a single number that measures the aggregate
performance over all classes in the collection.

▶ Macroaveraging
▶ Compute F1 for each of the C classes

▶ Average these C numbers

▶ Microaveraging
▶ Compute TP, FP, FN for each of the C classes

▶ Sum these C numbers (e.g., all TP to get aggregate TP)

▶ Compute F1 for aggregate TP, FP, FN

58 / 59

Language models Text classification Naive Bayes Evaluation of text classification

Naive Bayes vs. other methods (F1)

(a) NB Rocchio kNN SVM
micro-avg-L (90 classes) 80 85 86 89
macro-avg (90 classes) 47 59 60 60

(b) NB Rocchio kNN trees SVM
earn 96 93 97 98 98
acq 88 65 92 90 94
money-fx 57 47 78 66 75
grain 79 68 82 85 95
crude 80 70 86 85 89
trade 64 65 77 73 76
interest 65 63 74 67 78
ship 85 49 79 74 86
wheat 70 69 77 93 92
corn 65 48 78 92 90
micro-avg (top 10) 82 65 82 88 92
micro-avg-D (118 classes) 75 62 n/a n/a 87

59 / 59

	Language models
	Text classification
	Naive Bayes
	Evaluation of text classification

