
Ranking Complete search system Evaluation Benchmarks

NPFL103: Information Retrieval (5)
Ranking, Complete search system, Evaluation, Benchmarks

Pavel Pecina
pecina@ufal.mff.cuni.cz

Lecturer

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.

1 / 73

Ranking Complete search system Evaluation Benchmarks

Contents

Ranking
Motivation
Implementation

Complete search system
Tiered indexes
Query processing

Evaluation
Unranked evaluation
Ranked evaluation
A/B testing

Benchmarks
Standard benchmarks

2 / 73

Ranking Complete search system Evaluation Benchmarks

Ranking

3 / 73

Ranking Complete search system Evaluation Benchmarks

Why is ranking so important?

Problems with unranked retrieval:

▶ Users want to look at a few results – not thousands.

▶ It’s very hard to write queries that produce a few results.

▶ Even for expert searchers.

→ Ranking effectively reduces a large set of results to a very small one.

5 / 73

Ranking Complete search system Evaluation Benchmarks

Empirical investigation of the effect of ranking

▶ How can we measure how important ranking is?

▶ Observe what searchers do while searching in a controlled setting.

▶ Videotape them

▶ Ask them to “think aloud”

▶ Interview them

▶ Eye-track them

▶ Time them

▶ Record and count their clicks

▶ The following slides are from Dan Russell from Google.

6 / 73

Ranking Complete search system Evaluation Benchmarks

CTR: Click-through-rate

▶ CTR: the percentage of searchers that click on a search engine result.

1. The #1 result in Google’s search
results has an average CTR of 27.6

2. The #1 result is 10x more likely to
receive a click compared to a page
in the #10 spot.

3. CTR for positions 8-10 is virtually
the same.

4. Only 0.63% of Google searchers
clicked on something from the
second page.

Findings from backlinko.com (2022, 4 mil results analyzed).

10 / 73

Ranking Complete search system Evaluation Benchmarks

Importance of ranking: Summary

▶ Viewing abstracts: Users are a lot more likely to read the abstracts of
the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower
ranked pages (7, 8, 9, 10).

▶ Clicking: Distribution is even more skewed for clicking

▶ In 1 out of 2 cases (50%!), users click on 1-3 top-ranked pages.

▶ Even if the top-ranked page is not relevant, 30% of users click on it.

→ Getting the ranking right is very important.

→ Getting the top-ranked page right is most important.

11 / 73

Ranking Complete search system Evaluation Benchmarks

We need term frequencies in the index

BRutus −→ 1,2 7,3 83,1 87,2 …

CaesaR −→ 1,1 5,1 13,1 17,1 …

CalpuRnia −→ 7,1 8,2 40,1 97,3

term frequencies

For phrase queries, we also need positions. Not shown here.

13 / 73

Ranking Complete search system Evaluation Benchmarks

Term frequencies in the inverted index

▶ In each posting, store tft,d in addition to docID of d.

▶ Use an integer frequency, not as a (log-)weighted real number …

… because real numbers are difficult to compress.

▶ Additional space requirements are small: a byte per posting or less.

14 / 73

Ranking Complete search system Evaluation Benchmarks

How do we compute the top k in ranking?

▶ In many applications, we don’t need a complete ranking.

▶ We just need the top k for a small k (e.g., k = 100).

▶ Is there an efficient way of computing just the top k?

▶ Naive (not very efficient):

▶ Compute scores for all N documents

▶ Sort

▶ Return the top k

▶ Alternative: min heap

15 / 73

Ranking Complete search system Evaluation Benchmarks

Use min heap for selecting top k ouf of N

▶ A binary min heap is a binary tree in which each node’s value is less
than the values of its children.

0.6

0.85 0.7

0.9 0.97 0.8 0.95

▶ Takes O(N log k) operations to build (N – number of documents)

▶ And then O(k log k) steps to read off k winners.

16 / 73

Ranking Complete search system Evaluation Benchmarks

Selecting top k scoring documents in O(N log k)

▶ Goal: Keep the top k documents seen so far

▶ Use a binary min heap

▶ To process a new document d′ with score s′:
1. Get current minimum hm of heap (O(1))

2. If s′ ≤ hm skip to next document

3. If s′ > hm heap-delete-root (O(log k))
4. Heap-add d′/s′ (O(log k))

17 / 73

Ranking Complete search system Evaluation Benchmarks

Even more efficient computation of top k?

▶ Ranking has time complexity O(N), N is the number of documents.

▶ Optimizations reduce the constant factor, but are still O(N), N > 1010

▶ Are there sublinear algorithms?

▶ What we’re doing in effect: solving the k-nearest neighbor (kNN)
problem for the query vector (= query point).

▶ There are no general solutions to this problem that are sublinear.

18 / 73

Ranking Complete search system Evaluation Benchmarks

More efficient computation of top k: Heuristics

▶ Idea 1: Reorder postings lists

▶ Instead of ordering according to docID …

… order according to some measure of “expected relevance”.

▶ Idea 2: Heuristics to prune the search space

▶ Not guaranteed to be correct …

… but fails rarely.

▶ In practice, close to constant time.

▶ For this, we’ll need the concepts of document-at-a-time processing and
term-at-a-time processing.

19 / 73

Ranking Complete search system Evaluation Benchmarks

Non-docID ordering of postings lists

▶ So far: postings lists have been ordered according to docID.

▶ Alternative: a query-independent measure of “goodness” of a page

▶ Example: PageRank g(d) of page d, a measure of how many “good”
pages hyperlink to d (later in this course)

▶ Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

▶ Define composite score of a document: s(q, d) = g(d) + cos(q, d)

▶ This scheme supports early termination: We do not have to process
postings lists in their entirety to find topk.

20 / 73

Ranking Complete search system Evaluation Benchmarks

Non-docID ordering of postings lists (2)

▶ Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

▶ Define composite score of a document: s(q, d) = g(d) + cos(q, d)

▶ Suppose:
(i) g → [0, 1];
(ii) g(d) < 0.1 for the document d we’re currently processing;
(iii) smallest top k score we’ve found so far is 1.2

▶ Then all subsequent scores will be < 1.1.

▶ So we’ve already found the top k and can stop processing the
remainder of postings lists.

21 / 73

Ranking Complete search system Evaluation Benchmarks

Document-at-a-time processing

▶ Both docID-ordering and PageRank-ordering impose a consistent
ordering on documents in postings lists.

▶ Computing cosines in this scheme is document-at-a-time:
▶ We complete computation of the query-document similarity score of

document di before starting to compute the query-document similarity
score of di+1.

▶ Alternative: term-at-a-time processing.

22 / 73

Ranking Complete search system Evaluation Benchmarks

Term-at-a-time processing

▶ Simplest case: completely process postings list of the first query term.

▶ Create an accumulator for each docID you encounter.

▶ Then completely process the postings list of the second query term

… and so forth.

23 / 73

Ranking Complete search system Evaluation Benchmarks

Term-at-a-time processing

CosineScoRe(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d) in postings list
6 do Scores[d]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top k components of Scores[]

▶ Accumulators (“Scores[]”) as an array not optimal (or even infeasible).

▶ Thus: Only create accumulators for docs occurring in postings lists.

24 / 73

Ranking Complete search system Evaluation Benchmarks

Accumulators: Example

BRutus −→ 1,2 7,3 83,1 87,2 …

CaesaR −→ 1,1 5,1 13,1 17,1 …

CalpuRnia −→ 7,1 8,2 40,1 97,3

▶ For query: [Brutus Caesar]:

▶ Only need accumulators for 1, 5, 7, 13, 17, 83, 87

▶ Don’t need accumulators for 3, 8 etc.

25 / 73

Ranking Complete search system Evaluation Benchmarks

Enforcing conjunctive search

▶ We can enforce conjunctive search (a la Google): only consider
documents (and create accumulators) if all terms occur.

▶ Example: just one accumulator for [Brutus Caesar] in the example
above because only d1 contains both words.

26 / 73

Ranking Complete search system Evaluation Benchmarks

Complete search system

27 / 73

Ranking Complete search system Evaluation Benchmarks

Complete search system

28 / 73

Ranking Complete search system Evaluation Benchmarks

Tiered indexes

▶ Basic idea:
▶ Create several tiers of indexes, corresponding to importance of

indexing terms.

▶ During query processing, start with highest-tier index.

▶ If highest-tier index returns at least k (e.g., k = 100) results: stop and
return results to user.

▶ If we’ve only found < k hits: repeat for next index in tier cascade.

▶ Example: two-tier system
▶ Tier 1: Index of all titles

▶ Tier 2: Index of the rest of documents

▶ Motivation: Pages containing the search words in the title are better
hits than pages containing the search words in the body of the text.

30 / 73

Ranking Complete search system Evaluation Benchmarks

Tiered index

Tier 1

Tier 2

Tier 3

auto

best

car

insurance

auto

auto

best

car

car

insurance

insurance

best

Doc2

Doc1

Doc2

Doc1

Doc3

Doc3

Doc3

Doc1

Doc2

31 / 73

Ranking Complete search system Evaluation Benchmarks

Tiered indexes

▶ The use of tiered indexes is believed to be one of the reasons that
Google search quality was significantly higher initially (2000/01) than
that of competitors.

▶ (along with PageRank, use of anchor text and proximity constraints)

32 / 73

Ranking Complete search system Evaluation Benchmarks

Query parser

▶ IR systems often guess what the user intended.

▶ The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.

▶ The query 100 Madison Avenue, New York may be interpreted as a
request for a map.

▶ How do we “parse” the query and translate it into a formal
specification containing phrase operators, proximity operators,
indexes to search etc.?

34 / 73

Ranking Complete search system Evaluation Benchmarks

Complete search system

35 / 73

Ranking Complete search system Evaluation Benchmarks

Components we have introduced thus far

▶ Document preprocessing (linguistic and otherwise)

▶ Positional indexes

▶ Tiered indexes

▶ Spelling correction

▶ k-gram indexes for wildcard queries and spelling correction

▶ Query processing

▶ Document scoring

▶ Term-at-a-time processing

36 / 73

Ranking Complete search system Evaluation Benchmarks

Components we haven’t covered yet

▶ Document cache: generating snippets (= dynamic summaries)

▶ Zone indexes: They separate the indexes for different zones: the body
of the document, all highlighted text in the document, anchor text,
text in metadata fields etc

▶ Machine-learned ranking functions

▶ Proximity ranking (e.g., rank documents in which the query terms
occur in the same local window higher than documents in which the
query terms occur far from each other)

37 / 73

Ranking Complete search system Evaluation Benchmarks

Vector space retrieval: Interactions

▶ How do we combine phrase retrieval with vector space retrieval?

▶ We do not want to compute document frequency / idf for every
possible phrase. Why?

▶ How do we combine Boolean retrieval with vector space retrieval?

▶ For example: “+”-constraints and “-”-constraints.

▶ Postfiltering is simple, but can be very inefficient – no easy answer.

▶ How do we combine wild cards with vector space retrieval?

▶ Again, no easy answer.

38 / 73

Ranking Complete search system Evaluation Benchmarks

Evaluation

39 / 73

Ranking Complete search system Evaluation Benchmarks

Measures for a search engine

1. How fast does it index?
▶ e.g., number of bytes per hour

2. How fast does it search?
▶ e.g., latency as a function of queries per second

3. What is the cost per query?
▶ in dollars

41 / 73

Ranking Complete search system Evaluation Benchmarks

Measures for a search engine

▶ All of the preceding criteria are measurable: speed / size / money

▶ However, the key measure for a search engine is user happiness.

▶ Factors of user happiness include:

▶ Speed of response

▶ Size of index

▶ Uncluttered UI

▶ Most important: relevance

▶ (actually, maybe even more important: it’s free)

▶ Note that none of these is sufficient: blindingly fast, but useless
answers won’t make a user happy.

▶ How can we quantify user happiness?

42 / 73

Ranking Complete search system Evaluation Benchmarks

Who is the user?

▶ Web search engine: searcher
▶ Success: Searcher finds what she was looking for
▶ Measure: rate of return to this search engine

▶ Web search engine: advertiser
▶ Success: Searcher clicks on ad
▶ Measure: clickthrough rate

▶ Ecommerce: buyer
▶ Success: Buyer buys something
▶ Measures: purchase time, fraction of searchers-to-buyers “conversions”

▶ Ecommerce: seller
▶ Success: Seller sells something
▶ Measure: profit per item sold

▶ Enterprise: CEO
▶ Success: Employees are more productive (because of effective search)
▶ Measure: profit of the company

43 / 73

Ranking Complete search system Evaluation Benchmarks

Most common definition of user happiness: Relevance

▶ User happiness equated with relevance of search results to the query.

▶ But how do you measure relevance?

▶ Standard methodology in IR consists of three elements:

1. A benchmark document collection.

2. A benchmark suite of queries.

3. An assessment of the relevance of each query-document pair.

44 / 73

Ranking Complete search system Evaluation Benchmarks

Relevance to what?

“Relevance to the query” is very problematic:

▶ Information need i: “I am looking for information on whether
drinking red wine is more effective at reducing your risk of heart
attacks than white wine.”

(This is an information need, not a query.)

▶ Query q: [red wine white wine heart attack]

▶ Consider document d′:
At heart of his speech was an attack on the wine industry lobby for
downplaying the role of red and white wine in drunk driving.

▶ d′ is an excellent match for query q but not relevant to the
information need i.

45 / 73

Ranking Complete search system Evaluation Benchmarks

Relevance: query vs. information need

▶ User happiness can only be measured by relevance to an information
need, not by relevance to queries.

▶ Our terminology is sloppy – though we mean
information-need-document relevance judgments.

46 / 73

Ranking Complete search system Evaluation Benchmarks

Precision and Recall

document retrieved not retrieved

relevant relevant retrieved relevant missed

not relevant false alarm irrelevant rejected

All

All

Relevant

All

Relevant

Retrieved

Precision=
|relevant retrieved|

|retrieved|
Recall=

|relevant retrieved|
|relevant|

47 / 73

Ranking Complete search system Evaluation Benchmarks

Precision and Recall cont’d

▶ Precision (P) is the fraction of retrieved documents that are relevant:

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)

▶ Recall (R) is the fraction of relevant documents that are retrieved:

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)

48 / 73

Ranking Complete search system Evaluation Benchmarks

Precision and recall: confusion matrix

Relevant Nonrelevant

Retrieved true positives (TP) false positives (FP)

Not retrieved false negatives (FN) true negatives (TN)

P =
TP

TP+ FP
R =

TP
TP+ FN

49 / 73

Ranking Complete search system Evaluation Benchmarks

Precision/recall tradeoff

▶ You can increase recall by returning more docs.

▶ Recall is a non-decreasing function of the number of docs retrieved.

▶ A system that returns all docs has 100% recall!

▶ The converse is also true (usually): It’s easy to get high precision for
very low recall.

▶ Suppose the document with the largest score is relevant. How can we
maximize precision?

50 / 73

Ranking Complete search system Evaluation Benchmarks

A combined measure: F

▶ The F measure allows us to trade off precision against recall.

F =
1

α1
P + (1− α) 1R

=
(β2 + 1)PR
β2P+ R

where β2 =
1− α

α

▶ α ∈ [0, 1] and thus β2 ∈ [0,∞]

▶ Most frequently used: balanced F with β = 1 or α = 0.5

▶ This is the harmonic mean of P and R: 1
F = 1

2(
1
P + 1

R)

▶ What value range of β weights recall higher than precision?

51 / 73

Ranking Complete search system Evaluation Benchmarks

F measure: Example

relevant not relevant

retrieved 20 40 60

not retrieved 60 1,000,000 1,000,060

80 1,000,040 1,000,120

▶ P = 20/(20 + 40) = 1/3

▶ R = 20/(20 + 60) = 1/4

▶ F1 = 2 1
1
1
3

+ 1
1
4

= 2/7

52 / 73

Ranking Complete search system Evaluation Benchmarks

Accuracy

▶ Why do we use complex measures like precision, recall, and F?

▶ Why not something simple like accuracy?

▶ Accuracy is the fraction of correct decisions (relevant/nonrelevant)

▶ In terms of the contingency table above:

A =
TP+ TN

TP+ FP+ FN+ TN

▶ Why is accuracy not a useful measure for web information retrieval?

53 / 73

Ranking Complete search system Evaluation Benchmarks

Why accuracy is a useless measure in IR

▶ The number of relavant and non-relevant documents is unbalanced.

▶ A trick to maximize accuracy in IR: always say no and return nothing.

▶ You then get 99.99% accuracy on most queries (0.01% docs relevant).

▶ Searchers on the web (and in IR in general) want to find something
and have a certain tolerance for junk.

▶ It’s better to return some bad hits as long as you return something.

→ We use precision, recall, and F for evaluation, not accuracy.

54 / 73

Ranking Complete search system Evaluation Benchmarks

F measure: Why harmonic mean?

▶ Why don’t we use a different mean of P and R as a measure?
▶ e.g., the arithmetic mean

▶ The simple (arithmetic) mean is 50% for “return-everything” search
engine (P = 0%, R = 100%), which is too high.

▶ Desideratum: Punish bad performance on either precision or recall.

▶ Taking the minimum achieves this.

▶ But minimum is not smooth and hard to weight.

▶ F (harmonic mean) is a kind of smooth minimum.

55 / 73

Ranking Complete search system Evaluation Benchmarks

F1 and other averages

0

20

40

60

80

100

0 20 40 60 80 100

Precision (Recall fixed at 70%)

Minimum

Maximum

Arithmetic

Geometric

Harmonic

▶ We can view the harmonic mean as a kind of soft minimum.

56 / 73

Ranking Complete search system Evaluation Benchmarks

Difficulties in using precision, recall and F measure

▶ We should always average over a large set of queries.

▶ We need relevance judgments for information-need-document pairs –
but they are expensive to produce.

▶ Alternatives to using precision/recall and having to produce relevance
judgments exists (A/B testing).

57 / 73

Ranking Complete search system Evaluation Benchmarks

Precision-recall curve

▶ Precision/recall/F are measures for unranked sets.

▶ We can easily turn set measures into measures of ranked lists.

▶ Just compute the set measure for each “prefix” of the ranked list:
the top 1, top 2, top 3, top 4 etc. results.

▶ Doing this for precision and recall gives you a precision-recall curve.

59 / 73

Ranking Complete search system Evaluation Benchmarks

A precision-recall curve

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall

P
re
c
is
io
n

▶ Each point corresponds to a result for top k ranked hits (k=1,2,3,…)

▶ Interpolation (in red): Take maximum of all future points.

▶ Rationale for interpolation: The user is willing to look at more stuff if
both precision and recall get better.

60 / 73

Ranking Complete search system Evaluation Benchmarks

11-point interpolated average precision

Recall Interpolated
Precision

0.0 1.00
0.1 0.67
0.2 0.63
0.3 0.55
0.4 0.45
0.5 0.41
0.6 0.36
0.7 0.29
0.8 0.13
0.9 0.10
1.0 0.08

11-point average: ≈ 0.425

How can precision at 0.0 be > 0?

61 / 73

Ranking Complete search system Evaluation Benchmarks

Averaged 11-point precision/recall graph

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is
io
n

▶ Compute interpolated precision at recall levels 0.0, 0.1, 0.2, …

▶ Do this for each of the queries in the evaluation benchmark.

▶ Average over queries.

▶ This measure measures performance at all recall levels.

62 / 73

Ranking Complete search system Evaluation Benchmarks

Average precision

▶ Combines recall and precision for ranked results for one query
▶ Mean of the precision scores after each relevant document is

retrieved.

AP =

∑
P@r
R

where
▶ r is the rank of each relevant document

▶ R is the total number of relevant documents

▶ P@r is the precision of the top-r retrieved documents.

63 / 73

Ranking Complete search system Evaluation Benchmarks

Mean average precision

▶ Average precision averaged over multiple queries.

0.0

0.2

0.4

0.6

0.8

1.0

1 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 28 29 30 31 32 33 34 36 37 38 39 40

Query

A
ve

ra
ge

 P
re

ci
si

on 0.477

0.0

0.2

0.4

0.6

0.8

1.0

1 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 28 29 30 31 32 33 34 36 37 38 39 40

Query

A
ve

ra
ge

 P
re

ci
si

on

Mean Average Precision = 0.188

0.477

64 / 73

Ranking Complete search system Evaluation Benchmarks

Evaluation at large search engines

▶ Recall is difficult to measure on the web.

▶ Search engines often use precision at top k, e.g., k = 10 or use
measures that reward you more for getting rank 1 right than for
getting rank 10 right.

▶ Search engines also use non-relevance-based measures.
▶ Example 1: clickthrough on first result

Not very reliable if you look at a single clickthrough (you may realize
after clicking that the summary was misleading and the document is
nonrelevant but pretty reliable in the aggregate.)

▶ Example 2: Ongoing studies of user behavior in the lab

▶ Example 3: A/B testing

66 / 73

Ranking Complete search system Evaluation Benchmarks

A/B testing

▶ Purpose: Test a single innovation

▶ Prerequisite: You have a large search engine up and running

▶ Steps:
1. Have most users use the old system.

2. Divert a small proportion of traffic (e.g., 1%) to the new system.

3. Evaluate with an automatic measure like clickthrough on first result.

4. Directly see if the innovation does improve user happiness.

▶ Probably the eval. methodology that large search engines trust most.

▶ Variant: Give users the option to switch to new algorithm/interface.

67 / 73

Ranking Complete search system Evaluation Benchmarks

Benchmarks

68 / 73

Ranking Complete search system Evaluation Benchmarks

What we need for a benchmark

1. A collection of documents
▶ Must be representative of the documents we expect to see in reality.

2. A collection of information needs
▶ (which we will often incorrectly refer to as queries)

▶ Must be representative of the inform. needs we expect to see in reality.

3. Human relevance assessments
▶ We need to hire/pay “judges” or assessors to do this.

▶ Expensive, time-consuming.

▶ Judges must be representative of the users we expect to see in reality.

69 / 73

Ranking Complete search system Evaluation Benchmarks

Standard relevance benchmark: Cranfield

▶ Pioneering: first testbed allowing precise quantitative measures of
information retrieval effectiveness.

▶ Late 1950s, UK.

▶ 1398 abstracts of aerodynamics journal articles, a set of 225 queries,
exhaustive relevance judgments of all query-document-pairs.

▶ Too small, too untypical for serious IR evaluation today.

71 / 73

Ranking Complete search system Evaluation Benchmarks

Standard relevance benchmark: TREC

▶ TREC = Text Retrieval Conference (TREC)

▶ Organized by National Institute of Standards and Technology (NIST)

▶ TREC is actually a set of several different relevance benchmarks.

▶ Best known: TREC Ad Hoc, used for TREC evaluations in 1992 – 1999

▶ 1.89 M documents, mainly newswire articles, 450 information needs

▶ No exhaustive relevance judgments – too expensive

▶ Rather, NIST assessors’ relevance judgments are available only for the
documents that were among the top k returned for some system
which was entered in the TREC evaluation for which the information
need was developed.

72 / 73

Ranking Complete search system Evaluation Benchmarks

Standard relevance benchmarks: Others

▶ GOV2
▶ Another TREC/NIST collection

▶ 25 million web pages

▶ Used to be largest collection that is easily available

▶ But still 3 orders of magnitude smaller than what Google/Bing index

▶ NTCIR
▶ East Asian language and cross-language information retrieval

▶ Cross Language Evaluation Forum (CLEF)
▶ This evaluation series has concentrated on European languages and

cross-language information retrieval.

▶ Many others

73 / 73

	Ranking
	Motivation
	Implementation

	Complete search system
	Tiered indexes
	Query processing

	Evaluation
	Unranked evaluation
	Ranked evaluation
	A/B testing

	Benchmarks
	Standard benchmarks

