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Why is ranking so important?

Problems with unranked retrieval:

▶ Users want to look at a few results – not thousands.

▶ It’s very hard to write queries that produce a few results.

▶ Even for expert searchers.

→ Ranking effectively reduces a large set of results to a very small one.
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Empirical investigation of the effect of ranking

▶ How can we measure how important ranking is?

▶ Observe what searchers do while searching in a controlled setting.

▶ Videotape them

▶ Ask them to “think aloud”

▶ Interview them

▶ Eye-track them

▶ Time them

▶ Record and count their clicks

▶ The following slides are from Dan Russell from Google.
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CTR: Click-through-rate

▶ CTR: the percentage of searchers that click on a search engine result.

1. The #1 result in Google’s search
results has an average CTR of 27.6

2. The #1 result is 10x more likely to
receive a click compared to a page
in the #10 spot.

3. CTR for positions 8-10 is virtually
the same.

4. Only 0.63% of Google searchers
clicked on something from the
second page.

Findings from backlinko.com (2022, 4 mil results analyzed).
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Importance of ranking: Summary

▶ Viewing abstracts: Users are a lot more likely to read the abstracts of
the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower
ranked pages (7, 8, 9, 10).

▶ Clicking: Distribution is even more skewed for clicking

▶ In 1 out of 2 cases (50%!), users click on 1-3 top-ranked pages.

▶ Even if the top-ranked page is not relevant, 30% of users click on it.

→ Getting the ranking right is very important.

→ Getting the top-ranked page right is most important.
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We need term frequencies in the index

BRutus −→ 1,2 7,3 83,1 87,2 …

CaesaR −→ 1,1 5,1 13,1 17,1 …

CalpuRnia −→ 7,1 8,2 40,1 97,3

term frequencies

For phrase queries, we also need positions. Not shown here.
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Term frequencies in the inverted index

▶ In each posting, store tft,d in addition to docID of d.

▶ Use an integer frequency, not as a (log-)weighted real number …

… because real numbers are difficult to compress.

▶ Additional space requirements are small: a byte per posting or less.
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How do we compute the top k in ranking?

▶ In many applications, we don’t need a complete ranking.

▶ We just need the top k for a small k (e.g., k = 100).

▶ Is there an efficient way of computing just the top k?

▶ Naive (not very efficient):

▶ Compute scores for all N documents

▶ Sort

▶ Return the top k

▶ Alternative: min heap
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Use min heap for selecting top k ouf of N

▶ A binary min heap is a binary tree in which each node’s value is less
than the values of its children.

0.6

0.85 0.7

0.9 0.97 0.8 0.95

▶ Takes O(N log k) operations to build (N – number of documents)

▶ And then O(k log k) steps to read off k winners.
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Selecting top k scoring documents in O(N log k)

▶ Goal: Keep the top k documents seen so far

▶ Use a binary min heap

▶ To process a new document d′ with score s′:
1. Get current minimum hm of heap (O(1))

2. If s′ ≤ hm skip to next document

3. If s′ > hm heap-delete-root (O(log k))
4. Heap-add d′/s′ (O(log k))
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Even more efficient computation of top k?

▶ Ranking has time complexity O(N), N is the number of documents.

▶ Optimizations reduce the constant factor, but are still O(N), N > 1010

▶ Are there sublinear algorithms?

▶ What we’re doing in effect: solving the k-nearest neighbor (kNN)
problem for the query vector (= query point).

▶ There are no general solutions to this problem that are sublinear.
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More efficient computation of top k: Heuristics

▶ Idea 1: Reorder postings lists

▶ Instead of ordering according to docID …

… order according to some measure of “expected relevance”.

▶ Idea 2: Heuristics to prune the search space

▶ Not guaranteed to be correct …

… but fails rarely.

▶ In practice, close to constant time.

▶ For this, we’ll need the concepts of document-at-a-time processing and
term-at-a-time processing.
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Non-docID ordering of postings lists

▶ So far: postings lists have been ordered according to docID.

▶ Alternative: a query-independent measure of “goodness” of a page

▶ Example: PageRank g(d) of page d, a measure of how many “good”
pages hyperlink to d (later in this course)

▶ Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

▶ Define composite score of a document: s(q, d) = g(d) + cos(q, d)

▶ This scheme supports early termination: We do not have to process
postings lists in their entirety to find topk.
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Non-docID ordering of postings lists (2)

▶ Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

▶ Define composite score of a document: s(q, d) = g(d) + cos(q, d)

▶ Suppose:
(i) g → [0, 1];
(ii) g(d) < 0.1 for the document d we’re currently processing;
(iii) smallest top k score we’ve found so far is 1.2

▶ Then all subsequent scores will be < 1.1.

▶ So we’ve already found the top k and can stop processing the
remainder of postings lists.
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Document-at-a-time processing

▶ Both docID-ordering and PageRank-ordering impose a consistent
ordering on documents in postings lists.

▶ Computing cosines in this scheme is document-at-a-time:
▶ We complete computation of the query-document similarity score of

document di before starting to compute the query-document similarity
score of di+1.

▶ Alternative: term-at-a-time processing.
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Term-at-a-time processing

▶ Simplest case: completely process postings list of the first query term.

▶ Create an accumulator for each docID you encounter.

▶ Then completely process the postings list of the second query term

… and so forth.
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Term-at-a-time processing

CosineScoRe(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d) in postings list
6 do Scores[d]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top k components of Scores[]

▶ Accumulators (“Scores[]”) as an array not optimal (or even infeasible).

▶ Thus: Only create accumulators for docs occurring in postings lists.
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Accumulators: Example

BRutus −→ 1,2 7,3 83,1 87,2 …

CaesaR −→ 1,1 5,1 13,1 17,1 …

CalpuRnia −→ 7,1 8,2 40,1 97,3

▶ For query: [Brutus Caesar]:

▶ Only need accumulators for 1, 5, 7, 13, 17, 83, 87

▶ Don’t need accumulators for 3, 8 etc.
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Enforcing conjunctive search

▶ We can enforce conjunctive search (a la Google): only consider
documents (and create accumulators) if all terms occur.

▶ Example: just one accumulator for [Brutus Caesar] in the example
above because only d1 contains both words.
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Complete search system
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Tiered indexes

▶ Basic idea:
▶ Create several tiers of indexes, corresponding to importance of

indexing terms.

▶ During query processing, start with highest-tier index.

▶ If highest-tier index returns at least k (e.g., k = 100) results: stop and
return results to user.

▶ If we’ve only found < k hits: repeat for next index in tier cascade.

▶ Example: two-tier system
▶ Tier 1: Index of all titles

▶ Tier 2: Index of the rest of documents

▶ Motivation: Pages containing the search words in the title are better
hits than pages containing the search words in the body of the text.
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Tiered index

Tier 1

Tier 2

Tier 3

auto

best

car

insurance

auto

auto

best

car

car

insurance

insurance

best

Doc2

Doc1

Doc2

Doc1

Doc3

Doc3

Doc3

Doc1

Doc2
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Tiered indexes

▶ The use of tiered indexes is believed to be one of the reasons that
Google search quality was significantly higher initially (2000/01) than
that of competitors.

▶ (along with PageRank, use of anchor text and proximity constraints)
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Query parser

▶ IR systems often guess what the user intended.

▶ The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.

▶ The query 100 Madison Avenue, New York may be interpreted as a
request for a map.

▶ How do we “parse” the query and translate it into a formal
specification containing phrase operators, proximity operators,
indexes to search etc.?
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Complete search system
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Components we have introduced thus far

▶ Document preprocessing (linguistic and otherwise)

▶ Positional indexes

▶ Tiered indexes

▶ Spelling correction

▶ k-gram indexes for wildcard queries and spelling correction

▶ Query processing

▶ Document scoring

▶ Term-at-a-time processing
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Components we haven’t covered yet

▶ Document cache: generating snippets (= dynamic summaries)

▶ Zone indexes: They separate the indexes for different zones: the body
of the document, all highlighted text in the document, anchor text,
text in metadata fields etc

▶ Machine-learned ranking functions

▶ Proximity ranking (e.g., rank documents in which the query terms
occur in the same local window higher than documents in which the
query terms occur far from each other)
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Vector space retrieval: Interactions

▶ How do we combine phrase retrieval with vector space retrieval?

▶ We do not want to compute document frequency / idf for every
possible phrase. Why?

▶ How do we combine Boolean retrieval with vector space retrieval?

▶ For example: “+”-constraints and “-”-constraints.

▶ Postfiltering is simple, but can be very inefficient – no easy answer.

▶ How do we combine wild cards with vector space retrieval?

▶ Again, no easy answer.
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Evaluation
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Measures for a search engine

1. How fast does it index?
▶ e.g., number of bytes per hour

2. How fast does it search?
▶ e.g., latency as a function of queries per second

3. What is the cost per query?
▶ in dollars
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Measures for a search engine

▶ All of the preceding criteria are measurable: speed / size / money

▶ However, the key measure for a search engine is user happiness.

▶ Factors of user happiness include:

▶ Speed of response

▶ Size of index

▶ Uncluttered UI

▶ Most important: relevance

▶ (actually, maybe even more important: it’s free)

▶ Note that none of these is sufficient: blindingly fast, but useless
answers won’t make a user happy.

▶ How can we quantify user happiness?
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Who is the user?

▶ Web search engine: searcher
▶ Success: Searcher finds what she was looking for
▶ Measure: rate of return to this search engine

▶ Web search engine: advertiser
▶ Success: Searcher clicks on ad
▶ Measure: clickthrough rate

▶ Ecommerce: buyer
▶ Success: Buyer buys something
▶ Measures: purchase time, fraction of searchers-to-buyers “conversions”

▶ Ecommerce: seller
▶ Success: Seller sells something
▶ Measure: profit per item sold

▶ Enterprise: CEO
▶ Success: Employees are more productive (because of effective search)
▶ Measure: profit of the company

43 / 73



Ranking Complete search system Evaluation Benchmarks

Most common definition of user happiness: Relevance

▶ User happiness equated with relevance of search results to the query.

▶ But how do you measure relevance?

▶ Standard methodology in IR consists of three elements:

1. A benchmark document collection.

2. A benchmark suite of queries.

3. An assessment of the relevance of each query-document pair.
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Relevance to what?

“Relevance to the query” is very problematic:

▶ Information need i: “I am looking for information on whether
drinking red wine is more effective at reducing your risk of heart
attacks than white wine.”

(This is an information need, not a query.)

▶ Query q: [red wine white wine heart attack]

▶ Consider document d′:
At heart of his speech was an attack on the wine industry lobby for
downplaying the role of red and white wine in drunk driving.

▶ d′ is an excellent match for query q but not relevant to the
information need i.
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Relevance: query vs. information need

▶ User happiness can only be measured by relevance to an information
need, not by relevance to queries.

▶ Our terminology is sloppy – though we mean
information-need-document relevance judgments.
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Precision and Recall

document retrieved not retrieved

relevant relevant retrieved relevant missed

not relevant false alarm irrelevant rejected

   

All

   

All

Relevant

   

All

Relevant

Retrieved

Precision=
|relevant retrieved|

|retrieved|
Recall=

|relevant retrieved|
|relevant|
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Precision and Recall cont’d

▶ Precision (P) is the fraction of retrieved documents that are relevant:

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)

▶ Recall (R) is the fraction of relevant documents that are retrieved:

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)
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Precision and recall: confusion matrix

Relevant Nonrelevant

Retrieved true positives (TP) false positives (FP)

Not retrieved false negatives (FN) true negatives (TN)

P =
TP

TP+ FP
R =

TP
TP+ FN
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Precision/recall tradeoff

▶ You can increase recall by returning more docs.

▶ Recall is a non-decreasing function of the number of docs retrieved.

▶ A system that returns all docs has 100% recall!

▶ The converse is also true (usually): It’s easy to get high precision for
very low recall.

▶ Suppose the document with the largest score is relevant. How can we
maximize precision?
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A combined measure: F

▶ The F measure allows us to trade off precision against recall.

F =
1

α1
P + (1− α) 1R

=
(β2 + 1)PR
β2P+ R

where β2 =
1− α

α

▶ α ∈ [0, 1] and thus β2 ∈ [0,∞]

▶ Most frequently used: balanced F with β = 1 or α = 0.5

▶ This is the harmonic mean of P and R: 1
F = 1

2(
1
P + 1

R)

▶ What value range of β weights recall higher than precision?
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F measure: Example

relevant not relevant

retrieved 20 40 60

not retrieved 60 1,000,000 1,000,060

80 1,000,040 1,000,120

▶ P = 20/(20 + 40) = 1/3

▶ R = 20/(20 + 60) = 1/4

▶ F1 = 2 1
1
1
3

+ 1
1
4

= 2/7
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Accuracy

▶ Why do we use complex measures like precision, recall, and F?

▶ Why not something simple like accuracy?

▶ Accuracy is the fraction of correct decisions (relevant/nonrelevant)

▶ In terms of the contingency table above:

A =
TP+ TN

TP+ FP+ FN+ TN

▶ Why is accuracy not a useful measure for web information retrieval?
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Why accuracy is a useless measure in IR

▶ The number of relavant and non-relevant documents is unbalanced.

▶ A trick to maximize accuracy in IR: always say no and return nothing.

▶ You then get 99.99% accuracy on most queries (0.01% docs relevant).

▶ Searchers on the web (and in IR in general) want to find something
and have a certain tolerance for junk.

▶ It’s better to return some bad hits as long as you return something.

→ We use precision, recall, and F for evaluation, not accuracy.
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F measure: Why harmonic mean?

▶ Why don’t we use a different mean of P and R as a measure?
▶ e.g., the arithmetic mean

▶ The simple (arithmetic) mean is 50% for “return-everything” search
engine (P = 0%, R = 100%), which is too high.

▶ Desideratum: Punish bad performance on either precision or recall.

▶ Taking the minimum achieves this.

▶ But minimum is not smooth and hard to weight.

▶ F (harmonic mean) is a kind of smooth minimum.
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F1 and other averages

0 
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▶ We can view the harmonic mean as a kind of soft minimum.
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Difficulties in using precision, recall and F measure

▶ We should always average over a large set of queries.

▶ We need relevance judgments for information-need-document pairs –
but they are expensive to produce.

▶ Alternatives to using precision/recall and having to produce relevance
judgments exists (A/B testing).
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Precision-recall curve

▶ Precision/recall/F are measures for unranked sets.

▶ We can easily turn set measures into measures of ranked lists.

▶ Just compute the set measure for each “prefix” of the ranked list:
the top 1, top 2, top 3, top 4 etc. results.

▶ Doing this for precision and recall gives you a precision-recall curve.
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A precision-recall curve
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▶ Each point corresponds to a result for top k ranked hits (k=1,2,3,…)

▶ Interpolation (in red): Take maximum of all future points.

▶ Rationale for interpolation: The user is willing to look at more stuff if
both precision and recall get better.
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11-point interpolated average precision

Recall Interpolated
Precision

0.0 1.00
0.1 0.67
0.2 0.63
0.3 0.55
0.4 0.45
0.5 0.41
0.6 0.36
0.7 0.29
0.8 0.13
0.9 0.10
1.0 0.08

11-point average: ≈ 0.425

How can precision at 0.0 be > 0?
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Averaged 11-point precision/recall graph
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▶ Compute interpolated precision at recall levels 0.0, 0.1, 0.2, …

▶ Do this for each of the queries in the evaluation benchmark.

▶ Average over queries.

▶ This measure measures performance at all recall levels.

62 / 73



Ranking Complete search system Evaluation Benchmarks

Average precision

▶ Combines recall and precision for ranked results for one query
▶ Mean of the precision scores after each relevant document is

retrieved.

AP =

∑
P@r
R

where
▶ r is the rank of each relevant document

▶ R is the total number of relevant documents

▶ P@r is the precision of the top-r retrieved documents.
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Mean average precision

▶ Average precision averaged over multiple queries.
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Evaluation at large search engines

▶ Recall is difficult to measure on the web.

▶ Search engines often use precision at top k, e.g., k = 10 or use
measures that reward you more for getting rank 1 right than for
getting rank 10 right.

▶ Search engines also use non-relevance-based measures.
▶ Example 1: clickthrough on first result

Not very reliable if you look at a single clickthrough (you may realize
after clicking that the summary was misleading and the document is
nonrelevant but pretty reliable in the aggregate.)

▶ Example 2: Ongoing studies of user behavior in the lab

▶ Example 3: A/B testing
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A/B testing

▶ Purpose: Test a single innovation

▶ Prerequisite: You have a large search engine up and running

▶ Steps:
1. Have most users use the old system.

2. Divert a small proportion of traffic (e.g., 1%) to the new system.

3. Evaluate with an automatic measure like clickthrough on first result.

4. Directly see if the innovation does improve user happiness.

▶ Probably the eval. methodology that large search engines trust most.

▶ Variant: Give users the option to switch to new algorithm/interface.
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Benchmarks
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What we need for a benchmark

1. A collection of documents
▶ Must be representative of the documents we expect to see in reality.

2. A collection of information needs
▶ (which we will often incorrectly refer to as queries)

▶ Must be representative of the inform. needs we expect to see in reality.

3. Human relevance assessments
▶ We need to hire/pay “judges” or assessors to do this.

▶ Expensive, time-consuming.

▶ Judges must be representative of the users we expect to see in reality.
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Standard relevance benchmark: Cranfield

▶ Pioneering: first testbed allowing precise quantitative measures of
information retrieval effectiveness.

▶ Late 1950s, UK.

▶ 1398 abstracts of aerodynamics journal articles, a set of 225 queries,
exhaustive relevance judgments of all query-document-pairs.

▶ Too small, too untypical for serious IR evaluation today.
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Standard relevance benchmark: TREC

▶ TREC = Text Retrieval Conference (TREC)

▶ Organized by National Institute of Standards and Technology (NIST)

▶ TREC is actually a set of several different relevance benchmarks.

▶ Best known: TREC Ad Hoc, used for TREC evaluations in 1992 – 1999

▶ 1.89 M documents, mainly newswire articles, 450 information needs

▶ No exhaustive relevance judgments – too expensive

▶ Rather, NIST assessors’ relevance judgments are available only for the
documents that were among the top k returned for some system
which was entered in the TREC evaluation for which the information
need was developed.
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Standard relevance benchmarks: Others

▶ GOV2
▶ Another TREC/NIST collection

▶ 25 million web pages

▶ Used to be largest collection that is easily available

▶ But still 3 orders of magnitude smaller than what Google/Bing index

▶ NTCIR
▶ East Asian language and cross-language information retrieval

▶ Cross Language Evaluation Forum (CLEF)
▶ This evaluation series has concentrated on European languages and

cross-language information retrieval.

▶ Many others
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