# NPFL103: Information Retrieval (3)

Index construction, Distributed and dynamic indexing, Index compression

#### Pavel Pecina

pecina@ufal.mff.cuni.cz

Lecturer

Institute of Formal and Applied Linguistics Faculty of Mathematics and Physics Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.

#### Contents

Index construction

Distributed indexing

Dynamic indexing

Index compression

## Index construction

#### Hardware basics

- ► Data access much faster in memory than on HD disk (approx. 10×)
- Disk seeks are "idle" time: No data is transferred from disk while the disk head is being positioned.
- To optimize transfer time from disk to memory: one large chunk is faster than many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB
- Servers used in IR systems typically have tens or hundreds of GBs of RAM, and TBs of disk space.
- Fault tolerance is expensive: It's cheaper to use many regular machines than one fault tolerant machine.

## Some HW statistics

| symbol | statistic                                      | value                                                  |
|--------|------------------------------------------------|--------------------------------------------------------|
| S      | average seek time                              | 5 ms = $5	imes 10^{-3}$ s                              |
| b      | transfer time per byte                         | 0.02 $\mu \mathrm{s}$ = $2 \times 10^{-8} \mathrm{~s}$ |
|        | processor's clock rate                         | $10^9 \ {\rm s}^{-1}$                                  |
| р      | lowlevel operation (e.g., compare+swap a word) | 0.01 $\mu$ s = $10^{-8}$ s                             |
|        | size of main memory                            | several GBs                                            |
|        | size of disk space                             | several TBs                                            |

SSD (Solid State Drive) faster but smaller, more expensive, limitted write cycles

- Shakespeare's collected works are not large enough for demonstrating many of the points in this course.
- As an example for applying scalable index construction algorithms, we will use the Reuters RCV1 collection:
  - English newswire articles published in 1995–1996 (one year).
  - Available from the following link (after signing an agreement): https://trec.nist.gov/data/reuters/reuters.html

#### A Reuters RCV1 document example



You are here: Home > News > Science > Article

#### Go to a Section: U.S. International Business Markets Politics Entertainment Technology Sports Oddly Enoug

#### Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

Email This Article | Print This Article | Reprints



SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds caused by extreme weather conditions above Antarctica are a possible indication of global warming, Australian scientists said on Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate wisps of colors were photographed in the sky over an Australian

## **Reuters RCV1 statistics**

| Ν | documents                               | 800,000     |
|---|-----------------------------------------|-------------|
| L | tokens per document                     | 200         |
| М | terms (= word types)                    | 400,000     |
|   | bytes per token (incl. spaces/punct.)   | 6           |
|   | bytes per token (without spaces/punct.) | 4.5         |
|   | bytes per term (= word type)            | 7.5         |
| Τ | non-positional postings                 | 100,000,000 |

#### Exercise:

- 1. Average document frequency of a term (how many tokens)?
- 2. 4.5 bytes per token vs. 7.5 bytes per type: why the difference?
- 3. How many positional postings?

### Goal: construct the inverted index



## Index construction: Sort postings in memory

| term    | docID | term doclE |      |
|---------|-------|------------|------|
| 1       | 1     | ambitio    | us 2 |
| did     | 1     | be         | 2    |
| enact   | 1     | brutus     | 1    |
| julius  | 1     | brutus     | 2    |
| caesar  | 1     | capitol    | 1    |
| 1       | 1     | caesar     | 1    |
| was     | 1     | caesar     | 2    |
| killed  | 1     | caesar     | 2    |
| i'      | 1     | did        | 1    |
| the     | 1     | enact      | 1    |
| capitol | 1     | hath       | 1    |
| brutus  | 1     | 1          | 1    |
| killed  | 1     | 1          | 1    |
| me      | 1     | <br>i'     | 1    |
| so      | 2     | <br>it     | 2    |
| let     | 2     | julius     | 1    |
| it      | 2     | killed     | 1    |
| be      | 2     | killed     | 1    |
| with    | 2     | let        | 2    |
| caesar  | 2     | me         | 1    |
| the     | 2     | noble      | 2    |
| noble   | 2     | SO         | 2    |
| brutus  | 2     | the        | 1    |
| hath    | 2     | the        | 2    |
| told    | 2     | told       | 2    |
| you     | 2     | you        | 2    |
| caesar  | 2     | was        | 1    |
| was     | 2     | was        | 2    |
| ambitio | us 2  | with       | 2    |

Index construction

- As we build index, we parse documents one at a time.
- The final postings for any term are incomplete until the end.
- Can we keep all postings in memory and sort in-memory at the end?
- No, not for large collections
- At 12B per postings entry, we need a lot of space for large collections.
- For RCV1, we can do this in memory on a typical current machine.
- In-memory index construction does not scale for large collections
- Thus: We need to store intermediate results on disk.

## Same algorithm for disk?

- Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?
- No: Sorting T = 100,000,000 records (RCV1) on disk is too slow too many disk seeks.
- We need an external sorting algorithm.

Index construction

#### Distributed indexin

Dynamic indexing

## External sorting algorithm (using few disk seeks)

- We must sort T = 100,000,000 non-positional postings.
  - Each posting has size of 12 bytes (4+4+4: termID, docID, doc. freq).
  - ► (assuming term→termID mapping for better efficiency)
- Define a block to consist of 10,000,000 such postings
  - We can easily fit that many postings into memory.
  - We will have 10 such blocks for RCV1.
- Basic idea of algorithm:
  - For each block:
     (i) accumulate postings
     (ii) sort in memory
     (iii) write to disk
  - Then merge the blocks into one long sorted order.

## Merging two blocks



## Blocked Sort-Based Indexing (BSBI)

## BSBINDExConstruction()

- 1  $n \leftarrow 0$
- 2 while (all documents have not been processed)
- 3 do  $n \leftarrow n+1$
- 4  $block \leftarrow ParseNextBlock()$
- 5 BSBI-Invert(*block*)
- 6 WRITEBLOCKTODISK  $(block, f_n)$
- 7 MergeBlocks $(f_1, \ldots, f_n; f_{merged})$

## BSBI-Invert:

- 1. sort [termID, docID] pairs
- 2. collect [termID, docID] pairs with the same termID
- Key decision: What is the size of one block?

## Problem with sort-based algorithm

- Our assumption was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.
- Actually, we could work with [term, docID] postings instead of [termID, docID] postings ...
- ...but then intermediate files become very large. (We would end up with a scalable, but very slow index construction method.)

## Single-pass in-memory indexing (SPIMI)

- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.
- These separate indexes can then be merged into one big index.

#### SPIMI-Invert

SPIMI-INVERT(token\_stream)

- 1  $output_file \leftarrow NewFile()$
- 2 *dictionary*  $\leftarrow$  NewHash()
- 3 while (free memory available)
- 4 **do** token  $\leftarrow$  next(token\_stream)
- 5 **if**  $term(token) \notin dictionary$
- 6 **then**  $postings\_list \leftarrow AddToDictionary(dictionary,term(token))$
- 7 **else**  $postings\_list \leftarrow GetPostingsList(dictionary,term(token))$
- 8 **if** *full*(*postings\_list*)
- 9 **then**  $postings\_list \leftarrow DOUBLEPOSTINGsList(dictionary,term(token))$
- 10 AddToPostingsList(*postings\_list,docID*(*token*))
- 11  $sorted\_terms \leftarrow SortTerms(dictionary)$
- 12 WRITEBLOCKTODISK(*sorted\_terms,dictionary,output\_file*)
- 13 **return** *output\_file* 
  - Merging of blocks is analogous to BSBI.
  - Compression of terms/postings makes SPIMI even more efficient

## **Distributed indexing**

**Distributed** indexing

- For web-scale indexing: must use a distributed computer cluster
- Individual machines fault-prone: can unpredictably slow down or fail
- How do we exploit such a pool of machines?

## Google data centers (latest estimates from Gartner, 2016)

- Google data centers mainly contain commodity machines.
- > 2.5 million servers in 15 data centers are distributed all over the world.
- This was about 10% of the computing capacity of the world!

#### Exercise:

If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system (assuming it does not tolerate failures)?

Answer:  $37\% (0.999^{1000} = 0.3677)$ 

Suppose a server will fail after 3 years. For an installation of 1 million servers, what is the interval between machine failures?

Answer: <2 minutes ((3 \* 365 \* 24 \* 60)/1000000 = 1.5768)

#### Distributed indexing

- Maintain a master machine directing the job considered "safe"
- Break up indexing into sets of parallel tasks
- Master machine assigns each task to an idle machine from a pool.

- We will define two sets of parallel tasks and deploy two types of machines to solve them: parsers, inverters
- Break the input document collection into splits (corresponding to blocks in BSBI/SPIMI)
- Each split is a subset of documents.

#### Process

Master:

1. Assigns a split to an idle parser machine.

Parser:

- 1. Reads a document at a time and emits [term,docID]-pairs.
- 2. Writes pairs into *j* partitions each for a range of terms' first letters (e.g., a-f, g-p, q-z; here: *j* = 3).

Inverter:

- Collects all [term,docID] pairs (= postings) for one term-partition (e.g., for a-f).
- 2. Sorts and writes to postings lists

#### Data flow



- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing ...
- ...without having to write code for the distribution part.
- The original Google indexing system consisted of a number of phases, each implemented in MapReduce.

## Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are: Documents are inserted, deleted and modified.
- Dictionary and postings lists have to be dynamically modified.

## Dynamic indexing: Simplest approach

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index
- Deletions:
  - Invalidation bit-vector for deleted docs
  - Filter docs returned by index using this bit-vector

#### Issue with multiple indexes

- Corpus-wide statistics are hard to maintain.
- E.g., for hit-based spelling correction: how do we determine which correction has the most hits in the collection?
- We will see that other such statistics are important in ranking.
- There is no easy way around this if we want to do dynamic indexing efficiently.

## Issue with auxiliary and main index

- Frequent merges
- Poor search performance during index merge
- Actually:
  - Merging of the auxiliary index into the main index is not that costly if we keep a separate file for each postings list.
  - But then we would need a lot of files inefficient.
- Assumption for the rest of the lecture: The index is one big file.
- In reality: Use a scheme somewhere in between (e.g., split very large postings lists into several files, collect small postings lists in one file)

## Logarithmic merge

Logarithmic merging amortizes cost of merging indexes over time.

 $\rightarrow$  Users see smaller effect on response times.

Maintain a series of indexes, each twice as large as the previous one.

- Keep smallest  $(Z_0)$  in memory
- Larger ones  $(I_0, I_1, ...)$  on disk
- If  $Z_0$  gets too big (> *n*), write to disk as  $I_0$

... or merge with  $I_0$  (if  $I_0$  already exists) and write merger to  $I_1$  etc.

| LMergeAddToken | $(indexes, Z_0, token)$ |
|----------------|-------------------------|
|----------------|-------------------------|

| 1  | $Z_0 \leftarrow Merge(Z_0, \{$ | [token})                                                          |
|----|--------------------------------|-------------------------------------------------------------------|
| 2  | <b>if</b> $ Z_0  = n$          |                                                                   |
| 3  | then for $i \leftarrow 0$ t    | to $\infty$                                                       |
| 4  | <b>do if</b> $I_i \in I$       | ndexes                                                            |
| 5  | then                           | $Z_{i+1} \leftarrow Merge(I_i, Z_i)$                              |
| 6  |                                | $(Z_{i+1} \text{ is a temporary index on disk.})$                 |
| 7  |                                | $indexes \leftarrow indexes - \{I_i\}$                            |
| 8  | else                           | $I_i \leftarrow Z_i$ ( $Z_i$ becomes the permanent index $I_i$ .) |
| 9  |                                | $indexes \leftarrow indexes \cup \{I_i\}$                         |
| 10 |                                | Break                                                             |
| 11 | $Z_0 \gets \emptyset$          |                                                                   |

LogarithmicMerge()

1 
$$Z_0 \leftarrow \emptyset$$
 ( $Z_0$  is the in-memory index.)

- 2 indexes  $\leftarrow \emptyset$
- 3 while true
- 4 **do** LMergeAddToken(*indexes*,  $Z_0$ , getNextToken())

## Logarithmic merge

- Number of indexes bounded by O(log T) (T is total number of postings read so far)
- So query processing requires the merging of  $O(\log T)$  indexes
- Time complexity of log. index construction is O(Tlog T).
  ...because each of T postings is merged O(log T) times.
- ▶ Traditional auxiliary index: index construction time is  $O(T^2)$  as each posting is touched in each merge.
  - Suppose auxiliary index has size a

• 
$$a + 2a + 3a + 4a + \ldots + na = a \frac{n(n+1)}{2} = O(n^2)$$

So logarithming merging is an order of magnitude more efficient.

## Dynamic indexing at large search engines

Often a combination of:

- 1. Frequent incremental changes
- 2. Rotation of large parts of the index that can then be swapped in
- 3. Occasional complete rebuild (becomes harder with increasing size)

ndex construction Distributed indexing Dynamic indexing

#### Index compression

## Building positional indexes

Basically the same problem except that the intermediate data structures are large.

## Index compression





- How much space do we need for the dictionary?
- How much space do we need for the postings file?
- How can we compress them?

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Speed up transferring data from disk to memory (increases speed)

## [read compressed data and decompress in memory] is faster than [read uncompressed data]

Index compression

Premise: Decompression algorithms are fast.
 ... this is true of the decompression algorithms we will use.

## Why compression in information retrieval?

## First, we will consider space for dictionary

- Main motivation for dictionary compression: make it small enough to keep in main memory
- Then for the postings file
  - Motivation: reduce disk space needed, decrease time needed to read from disk
  - Note: Large search engines keep significant part of postings in memory
- We will use various compression schemes for dictionary and postings.

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:

Index compression

- Iowercasing, stop words removal, stemming, number elimination
- Lossless compression: All information is preserved.
  - What we mostly do in index compression

Index construction

Distributed indexi

Dynamic indexing

Index compression

## Model collection: The Reuters collection

| symbol | statistic                                           | value       |
|--------|-----------------------------------------------------|-------------|
| N      | documents                                           | 800,000     |
| L      | avg. # word tokens per document                     | 200         |
| М      | word types                                          | 400,000     |
|        | avg. # bytes per word token (incl. spaces/punct.)   | 6           |
|        | avg. # bytes per word token (without spaces/punct.) | 4.5         |
|        | avg. # bytes per word type                          | 7.5         |
| Т      | non-positional postings                             | 100,000,000 |

## Effect of preprocessing for Reuters

|              | word types |            |                 | non-positio | nal po | ostings         | positional postings |          |                  |  |
|--------------|------------|------------|-----------------|-------------|--------|-----------------|---------------------|----------|------------------|--|
| size of      | dictionary |            |                 | non-positi  | onal i | ndex            | positional index    |          |                  |  |
|              | size       | $\Delta\%$ | $\sum \Delta\%$ | size        | Δ      | $\sum \Delta\%$ | size                | $\Delta$ | $\sum \Delta \%$ |  |
| unfiltered   | 484,494    |            |                 | 109,971,179 |        |                 | 197,879,290         |          |                  |  |
| no numbers   | 473,723    | -2%        | -2%             | 100,680,242 | -8%    | -8%             | 179,158,204         | -9%      | -9%              |  |
| case folding | 391,523    | -17%       | -19%            | 96,969,056  | -3%    | -12%            | 179,158,204         | -0%      | -9%              |  |
| 30 stop w's  | 391,493    | -0%        | -19%            | 83,390,443  | -14%   | -24%            | 121,857,825         | -31%     | -38%             |  |
| 150 stop w's | 391,373    | -0%        | -19%            | 67,001,847  | -30%   | -39%            | 94,516,599          | -47%     | -52%             |  |
| stemming     | 322,383    | -17%       | -33%            | 63,812,300  | -4%    | -42%            | 94,516,599          | -0%      | -52%             |  |

#### dex construction Distributed indexing Dynamic indexing Index compression How big is the term vocabulary?

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least  $70^{20} \approx 10^{37}$  different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law:  $M = kT^b$ 
  - Empirical law.
  - M size of the vocabulary, T number of tokens in the collection.
  - Linear in log-log space.
  - ▶ Typical values for the parameters:  $30 \le k \le 100$  and  $b \approx 0.5$ .

## Heaps' law for Reuters



Vocabulary size *M* is a function of collection size *T*:

$$M = kT^b$$

The best least squares fit for Reuters RCV1:

$$\log_{10} M = 0.49 * \log_{10} T + 1.64$$

$$M = 10^{1.64} T^{0.49}$$
  
 $k = 10^{1.64} \approx 44$   
 $b = 0.49.$ 

#### **Empirical fit for Reuters**

- Good, as we just saw in the graph.
- For the first 1,000,020 tokens Heaps'law predicts 38,323 terms:

 $44 \times 1,000,020^{0.49} \approx 38,323$ 

- ▶ The actual number is 38,365 terms, very close to the prediction.
- Empirical observation: fit is good in general.

- We have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law:  $cf_i \propto \frac{1}{i}$
- The *i*<sup>th</sup> most frequent term has frequency  $cf_i$  proportional to 1/i.
- Collection frequency cf<sub>i</sub>: number of occurrences of term t<sub>i</sub> in the collection.

#### Index construction Distributed indexing Dynamic indexing Index compression Zipf's law: example

- **>** Zipf's law:  $cf_i \propto \frac{1}{i}$
- The *i*<sup>th</sup> most frequent term has frequency  $cf_i$  proportional to 1/i.
- So if the most frequent term (*the*) occurs cf₁ times, then the second most frequent term (*of*) has half as many occurrences cf₂ = ½cf₁ ...
- ...and the third most frequent term (*and*) has a third as many occurrences  $cf_3 = \frac{1}{3}cf_1$  etc.
- Equivalent:  $cf_i = ci^k$  and  $\log cf_i = \log c + k \log i$  (for k = -1)
- Example of a power law.

## Zipf's law for Reuters



Fit is not great. What is important is the key insight:

Few frequent terms, many rare terms.

#### Dictionary compression

- The dictionary is small compared to the postings file.
- But we want to keep it in memory.
- Also: competition with other applications, cell phones, onboard computers, fast startup time
- So compressing the dictionary is important.

#### dex construction Distributed indexing Dynamic indexing Index compression Recall: Dictionary as array of fixed-width entries

| Dictionary:   | term     | document  | pointer to        |  |  |
|---------------|----------|-----------|-------------------|--|--|
|               |          | frequency | postings list     |  |  |
|               | а        | 656,265   | $\longrightarrow$ |  |  |
|               | aachen   | 65        | $\longrightarrow$ |  |  |
|               |          |           |                   |  |  |
|               | zulu     | 221       | $\longrightarrow$ |  |  |
|               |          |           |                   |  |  |
| space needed: | 20 bytes | 4 bytes   | 4 bytes           |  |  |

Space for Reuters: (20+4+4)\*400,000 = 11.2 MB

## Fixed-width entries are bad.

- Most of the bytes in the term column are wasted.
  - We allot 20 bytes for terms of length 1.
- We can't handle HYDROCHLOROFLUOROCARBONS and SUPERCALIFRAGILISTICEXPIALIDOCIOUS
- Average length of a term in English: 8 characters
- How can we use on average 8 characters per term?

## Dictionary as a string



## Space for dictionary as a string

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list
- 8 bytes (on average) for term in string
- ➤ 3 bytes per pointer into string (need log<sub>2</sub> 8 · 400000 < 24 bits to resolve 8 · 400,000 positions)</p>
- Space: 400,000 × (4 + 4 + 3 + 8) = 7.6MB (compared to 11.2 MB for fixed-width array)

## Dictionary as a string with blocking



## Space for dictionary as a string with blocking

- Example block size k = 4
- ▶ Where we used 4 × 3 bytes for term pointers without blocking ...
- ...we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save 12 (3 + 4) = 5 bytes per block.
- Total savings: 400,000/4 \* 5 = 0.5 MB
- This reduces the size of the dictionary from 7.6 MB to 7.1 MB.

## Lookup of a term without blocking



## Lookup of a term with blocking: (slightly) slower



One block in blocked compression  $(k = 4) \dots$ 8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

₩

...further compressed with front coding. 8 a u t o m a t \* a 1  $\diamond$  e 2  $\diamond\,$  i c 3  $\diamond\,$  i o n

## Dictionary compression for Reuters: Summary

| data structure                        | size in MB |
|---------------------------------------|------------|
| dictionary, fixed-width               | 11.2       |
| dictionary, term pointers into string | 7.6        |
| $\sim$ , with blocking, $k = 4$       | 7.1        |
| $\sim$ , with blocking & front coding | 5.9        |

The postings file is much larger than the dictionary (factor >10)

Index compression

- Key desideratum: store each posting compactly
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- ▶ Alternatively, we can use  $\log_2 800,000 \approx 19.6 < 20$  bits per docID.
- Our goal: use a lot less than 20 bits per docID.

## Key idea: Store gaps instead of docIDs

- Each postings list is ordered in increasing order of docID.
- Example postings list: сомритея: 283154, 283159, 283202, ...
- It suffices to store gaps: 283159-283154=5, 283202-283154=43
- Example postings list using gaps : сомритея: 283154, 5, 43, ...
- Gaps for frequent terms are small.
- Thus: We can encode small gaps with fewer than 20 bits.

## Gap encoding

|                | encoding | posting | s list |        |     |        |   |        |    |        |
|----------------|----------|---------|--------|--------|-----|--------|---|--------|----|--------|
| THE            | docIDs   |         |        | 283042 |     | 283043 |   | 283044 |    | 283045 |
|                | gaps     |         |        |        | 1   |        | 1 |        | 1  |        |
| COMPUTER       | docIDs   |         |        | 283047 |     | 283154 |   | 283159 |    | 283202 |
|                | gaps     |         |        |        | 107 |        | 5 |        | 43 |        |
| ARACHNOCENTRIC | docIDs   | 252000  |        | 500100 |     |        |   |        |    |        |
|                | gaps     |         | 248100 |        |     |        |   |        |    |        |

## **Compression of Reuters**

| data structure                         | size in MB |
|----------------------------------------|------------|
| dictionary, fixed-width                | 11.2       |
| dictionary, term pointers into string  | 7.6        |
| $\sim$ , with blocking, $\textit{k}=4$ | 7.1        |
| $\sim$ , with blocking & front coding  | 5.9        |
| collection (text, xml markup etc)      | 3600.0     |
| collection (text)                      | 960.0      |
| T/D incidence matrix                   | 40,000.0   |
| postings, uncompressed (32-bit words)  | 400.0      |
| postings, uncompressed (20 bits)       | 250.0      |
| postings, variable byte encoded        | 116.0      |

## Term-document incidence matrix

|           | Anthony   | Julius | The     | Hamlet | Othello | Macbeth |  |
|-----------|-----------|--------|---------|--------|---------|---------|--|
|           | and       | Caesar | Tempest |        |         |         |  |
|           | Cleopatra |        |         |        |         |         |  |
| Anthony   | 1         | 1      | 0       | 0      | 0       | 1       |  |
| Brutus    | 1         | 1      | 0       | 1      | 0       | 0       |  |
| Caesar    | 1         | 1      | 0       | 1      | 1       | 1       |  |
| Calpurnia | 0         | 1      | 0       | 0      | 0       | 0       |  |
| Cleopatra | 1         | 0      | 0       | 0      | 0       | 0       |  |
| MERCY     | 1         | 0      | 1       | 1      | 1       | 1       |  |
| WORSER    | 1         | 0      | 1       | 1      | 1       | 0       |  |
|           |           |        |         |        |         |         |  |

Entry 1 if term occurs. e.g. CALPURNIA occurs in *Julius Caesar*. Entry 0 if term doesn't occur. e.g. CALPURNIA doesn't occur in *The tempest*.

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 10-15% of the total size of the text in the collection.
- However, we've ignored positional and frequency information.
- For this reason, space savings are less in reality.