
Index construction Distributed indexing Dynamic indexing Index compression

NPFL103: Information Retrieval (3)
Index construction, Distributed and dynamic indexing, Index compression

Pavel Pecina
pecina@ufal.mff.cuni.cz

Lecturer

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.

1 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Contents

Index construction

Distributed indexing

Dynamic indexing

Index compression

2 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Index construction

3 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Hardware basics

▶ Data access much faster in memory than on HD disk (approx. 10×)

▶ Disk seeks are “idle” time: No data is transferred from disk while the
disk head is being positioned.

▶ To optimize transfer time from disk to memory: one large chunk is
faster than many small chunks.

▶ Disk I/O is block-based: Reading and writing of entire blocks (as
opposed to smaller chunks). Block sizes: 8KB to 256 KB

▶ Servers used in IR systems typically have tens or hundreds of GBs of
RAM, and TBs of disk space.

▶ Fault tolerance is expensive: It’s cheaper to use many regular
machines than one fault tolerant machine.

4 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Some HW statistics

symbol statistic value
s average seek time 5 ms = 5× 10−3 s
b transfer time per byte 0.02 µs = 2× 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation (e.g., compare+swap a word) 0.01 µs = 10−8 s
size of main memory several GBs
size of disk space several TBs

▶ SSD (Solid State Drive) faster but smaller, more expensive, limitted write cycles

5 / 66

Index construction Distributed indexing Dynamic indexing Index compression

RCV1 collection

▶ Shakespeare’s collected works are not large enough for
demonstrating many of the points in this course.

▶ As an example for applying scalable index construction algorithms,
we will use the Reuters RCV1 collection:

▶ English newswire articles published in 1995–1996 (one year).

▶ Available from the following link (after signing an agreement):
https://trec.nist.gov/data/reuters/reuters.html

6 / 66

https://trec.nist.gov/data/reuters/reuters.html

Index construction Distributed indexing Dynamic indexing Index compression

A Reuters RCV1 document example

7 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Reuters RCV1 statistics

N documents 800,000
L tokens per document 200
M terms (= word types) 400,000

bytes per token (incl. spaces/punct.) 6
bytes per token (without spaces/punct.) 4.5
bytes per term (= word type) 7.5

T non-positional postings 100,000,000

Exercise:

1. Average document frequency of a term (how many tokens)?

2. 4.5 bytes per token vs. 7.5 bytes per type: why the difference?

3. How many positional postings?

8 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Goal: construct the inverted index

BRutus −→ 1 2 4 11 31 45 173 174

CaesaR −→ 1 2 4 5 6 16 57 132 …

CalpuRnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

9 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Index construction: Sort postings in memory
term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

10 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Sort-based index construction

▶ As we build index, we parse documents one at a time.

▶ The final postings for any term are incomplete until the end.

▶ Can we keep all postings in memory and sort in-memory at the end?

▶ No, not for large collections

▶ At 12B per postings entry, we need a lot of space for large collections.

▶ For RCV1, we can do this in memory on a typical current machine.

▶ In-memory index construction does not scale for large collections

▶ Thus: We need to store intermediate results on disk.

11 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Same algorithm for disk?

▶ Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

▶ No: Sorting T = 100,000,000 records (RCV1) on disk is too slow – too
many disk seeks.

▶ We need an external sorting algorithm.

12 / 66

Index construction Distributed indexing Dynamic indexing Index compression

External sorting algorithm (using few disk seeks)

▶ We must sort T = 100,000,000 non-positional postings.

▶ Each posting has size of 12 bytes (4+4+4: termID, docID, doc. freq).

▶ (assuming term→termID mapping for better efficiency)

▶ Define a block to consist of 10,000,000 such postings

▶ We can easily fit that many postings into memory.

▶ We will have 10 such blocks for RCV1.

▶ Basic idea of algorithm:

▶ For each block:
(i) accumulate postings
(ii) sort in memory
(iii) write to disk

▶ Then merge the blocks into one long sorted order.

13 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Merging two blocks

Block 1
brutus d1,d3
caesar d1,d2,d4
noble d5
with d1,d2,d3,d5

Block 2
brutus d6,d7
caesar d8,d9
julius d10
killed d8

postings
to be merged

brutus d1,d3,d6,d7
caesar d1,d2,d4,d8,d9
julius d10
killed d8
noble d5
with d1,d2,d3,d5

merged
postings

disk

14 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Blocked Sort-Based Indexing (BSBI)

BSBIndexConstRuction()
1 n← 0
2 while (all documents have not been processed)
3 do n← n+ 1
4 block← PaRseNextBlocK()
5 BSBI-InveRt(block)
6 WRiteBlocKToDisK(block, fn)
7 MeRgeBlocKs(f1, . . . , fn; fmerged)

▶ BSBI-InveRt:
1. sort [termID, docID] pairs
2. collect [termID, docID] pairs with the same termID

▶ Key decision: What is the size of one block?

15 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Problem with sort-based algorithm

▶ Our assumption was: we can keep the dictionary in memory.

▶ We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

▶ Actually, we could work with [term, docID] postings instead of
[termID, docID] postings …

▶ …but then intermediate files become very large. (We would end up
with a scalable, but very slow index construction method.)

16 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Single-pass in-memory indexing (SPIMI)

▶ Key idea 1: Generate separate dictionaries for each block – no need to
maintain term-termID mapping across blocks.

▶ Key idea 2: Don’t sort. Accumulate postings in postings lists as they
occur.

▶ With these two ideas we can generate a complete inverted index for
each block.

▶ These separate indexes can then be merged into one big index.

17 / 66

Index construction Distributed indexing Dynamic indexing Index compression

SPIMI-Invert

SPIMI-InveRt(token_stream)
1 output_file← NewFile()
2 dictionary← NewHash()
3 while (free memory available)
4 do token← next(token_stream)
5 if term(token) /∈ dictionary
6 then postings_list← AddToDictionaRy(dictionary,term(token))
7 else postings_list← GetPostingsList(dictionary,term(token))
8 if full(postings_list)
9 then postings_list← DoublePostingsList(dictionary,term(token))

10 AddToPostingsList(postings_list,docID(token))
11 sorted_terms← SoRtTeRms(dictionary)
12 WRiteBlocKToDisK(sorted_terms,dictionary,output_file)
13 return output_file

▶ Merging of blocks is analogous to BSBI.

▶ Compression of terms/postings makes SPIMI even more efficient

18 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Distributed indexing

19 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Distributed indexing

▶ For web-scale indexing: must use a distributed computer cluster

▶ Individual machines fault-prone: can unpredictably slow down or fail

▶ How do we exploit such a pool of machines?

20 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Google data centers (latest estimates from Gartner, 2016)

▶ Google data centers mainly contain commodity machines.

▶ 2.5 million servers in 15 data centers are distributed all over the world.

▶ This was about 10% of the computing capacity of the world!

Exercise:

▶ If in a non-fault-tolerant system with 1000 nodes, each node has
99.9% uptime, what is the uptime of the system (assuming it does not
tolerate failures)?

Answer: 37% (0.9991000 = 0.3677)

▶ Suppose a server will fail after 3 years. For an installation of 1 million
servers, what is the interval between machine failures?

Answer: <2 minutes ((3 ∗ 365 ∗ 24 ∗ 60)/1000000 = 1.5768)

21 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Distributed indexing

▶ Maintain a master machine directing the job – considered “safe”

▶ Break up indexing into sets of parallel tasks

▶ Master machine assigns each task to an idle machine from a pool.

22 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Parallel tasks

▶ We will define two sets of parallel tasks and deploy two types of
machines to solve them: parsers, inverters

▶ Break the input document collection into splits (corresponding to
blocks in BSBI/SPIMI)

▶ Each split is a subset of documents.

23 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Process

Master:

1. Assigns a split to an idle parser machine.

Parser:

1. Reads a document at a time and emits [term,docID]-pairs.

2. Writes pairs into j partitions each for a range of terms’ first letters
(e.g., a–f, g–p, q–z; here: j = 3).

Inverter:

1. Collects all [term,docID] pairs (= postings) for one term-partition
(e.g., for a–f).

2. Sorts and writes to postings lists

24 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Data flow

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

25 / 66

Index construction Distributed indexing Dynamic indexing Index compression

MapReduce

▶ The index construction algorithm we just described is an instance of
MapReduce.

▶ MapReduce is a robust and conceptually simple framework for
distributed computing …

▶ …without having to write code for the distribution part.

▶ The original Google indexing system consisted of a number of phases,
each implemented in MapReduce.

26 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing

27 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing

▶ Up to now, we have assumed that collections are static.

▶ They rarely are: Documents are inserted, deleted and modified.

▶ Dictionary and postings lists have to be dynamically modified.

28 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing: Simplest approach

▶ Maintain big main index on disk

▶ New docs go into small auxiliary index in memory.

▶ Search across both, merge results

▶ Periodically, merge auxiliary index into big index

▶ Deletions:

▶ Invalidation bit-vector for deleted docs

▶ Filter docs returned by index using this bit-vector

29 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Issue with multiple indexes

▶ Corpus-wide statistics are hard to maintain.

▶ E.g., for hit-based spelling correction: how do we determine which
correction has the most hits in the collection?

▶ We will see that other such statistics are important in ranking.

▶ There is no easy way around this if we want to do dynamic indexing
efficiently.

30 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Issue with auxiliary and main index

▶ Frequent merges

▶ Poor search performance during index merge

▶ Actually:
▶ Merging of the auxiliary index into the main index is not that costly if

we keep a separate file for each postings list.

▶ But then we would need a lot of files – inefficient.

▶ Assumption for the rest of the lecture: The index is one big file.

▶ In reality: Use a scheme somewhere in between (e.g., split very large
postings lists into several files, collect small postings lists in one file)

31 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Logarithmic merge

▶ Logarithmic merging amortizes cost of merging indexes over time.

→ Users see smaller effect on response times.

▶ Maintain a series of indexes, each twice as large as the previous one.

▶ Keep smallest (Z0) in memory

▶ Larger ones (I0, I1, …) on disk

▶ If Z0 gets too big (> n), write to disk as I0

… or merge with I0 (if I0 already exists) and write merger to I1 etc.

32 / 66

Index construction Distributed indexing Dynamic indexing Index compression

LMeRgeAddToKen(indexes,Z0, token)
1 Z0 ← MeRge(Z0, {token})
2 if |Z0| = n
3 then for i← 0 to∞
4 do if Ii ∈ indexes
5 then Zi+1 ← MeRge(Ii,Zi)
6 (Zi+1 is a temporary index on disk.)
7 indexes← indexes− {Ii}
8 else Ii ← Zi (Zi becomes the permanent index Ii.)
9 indexes← indexes ∪ {Ii}

10 BReaK
11 Z0 ← ∅

LogaRithmicMeRge()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes← ∅
3 while true
4 do LMeRgeAddToKen(indexes,Z0, getNextToKen())

33 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Logarithmic merge

▶ Number of indexes bounded by O(log T) (T is total number of
postings read so far)

▶ So query processing requires the merging of O(log T) indexes

▶ Time complexity of log. index construction is O(T log T).
…because each of T postings is merged O(log T) times.

▶ Traditional auxiliary index: index construction time is O(T2) as each
posting is touched in each merge.
▶ Suppose auxiliary index has size a
▶ a+ 2a+ 3a+ 4a+ . . .+ na = a n(n+1)

2 = O(n2)

▶ So logarithming merging is an order of magnitude more efficient.

34 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dynamic indexing at large search engines

Often a combination of:

1. Frequent incremental changes

2. Rotation of large parts of the index that can then be swapped in

3. Occasional complete rebuild (becomes harder with increasing size)

35 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Building positional indexes

▶ Basically the same problem except that the intermediate data
structures are large.

36 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Index compression

37 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Inverted index

For each term t, we store a list of all documents that contain t.

BRutus −→ 1 2 4 11 31 45 173 174

CaesaR −→ 1 2 4 5 6 16 57 132 …

CalpuRnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file
▶ How much space do we need for the dictionary?
▶ How much space do we need for the postings file?
▶ How can we compress them?

38 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Why compression? (in general)

▶ Use less disk space (saves money)

▶ Keep more stuff in memory (increases speed)

▶ Speed up transferring data from disk to memory (increases speed)

[read compressed data and decompress in memory]
is faster than

[read uncompressed data]

▶ Premise: Decompression algorithms are fast.
… this is true of the decompression algorithms we will use.

39 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Why compression in information retrieval?

▶ First, we will consider space for dictionary
▶ Main motivation for dictionary compression: make it small enough to

keep in main memory

▶ Then for the postings file
▶ Motivation: reduce disk space needed, decrease time needed to read

from disk

▶ Note: Large search engines keep significant part of postings in memory

▶ We will use various compression schemes for dictionary and postings.

40 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Lossy vs. lossless compression

▶ Lossy compression: Discard some information

▶ Several of the preprocessing steps we frequently use can be viewed as
lossy compression:
▶ lowercasing, stop words removal, stemming, number elimination

▶ Lossless compression: All information is preserved.
▶ What we mostly do in index compression

41 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Model collection: The Reuters collection

symbol statistic value
N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per word type 7.5

T non-positional postings 100,000,000

42 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Effect of preprocessing for Reuters

word types non-positional postings positional postings
size of dictionary non-positional index positional index

size ∆% ∑
∆% size ∆

∑
∆% size ∆

∑
∆%

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2% -2% 100,680,242 -8% -8% 179,158,204 -9% -9%
case folding 391,523 -17% -19% 96,969,056 -3% -12% 179,158,204 -0% -9%
30 stop w’s 391,493 -0% -19% 83,390,443 -14% -24% 121,857,825 -31% -38%
150 stop w’s 391,373 -0% -19% 67,001,847 -30% -39% 94,516,599 -47% -52%
stemming 322,383 -17% -33% 63,812,300 -4% -42% 94,516,599 -0% -52%

43 / 66

Index construction Distributed indexing Dynamic indexing Index compression

How big is the term vocabulary?

▶ That is, how many distinct words are there?

▶ Can we assume there is an upper bound?

▶ Not really: At least 7020 ≈ 1037 different words of length 20.

▶ The vocabulary will keep growing with collection size.

▶ Heaps’ law: M = kTb

▶ Empirical law.

▶ M – size of the vocabulary, T – number of tokens in the collection.

▶ Linear in log-log space.

▶ Typical values for the parameters: 30 ≤ k ≤ 100 and b ≈ 0.5.

44 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Heaps’ law for Reuters

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g

1
0

 M

Vocabulary size M is a function
of collection size T:

M = kTb

The best least squares fit for
Reuters RCV1:

log10 M = 0.49 ∗ log10 T+1.64

M = 101.64T0.49

k = 101.64 ≈ 44
b = 0.49.

45 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Empirical fit for Reuters

▶ Good, as we just saw in the graph.

▶ For the first 1,000,020 tokens Heaps’law predicts 38,323 terms:

44× 1,000,0200.49 ≈ 38,323

▶ The actual number is 38,365 terms, very close to the prediction.

▶ Empirical observation: fit is good in general.

46 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Zipf’s law

▶ We have characterized the growth of the vocabulary in collections.

▶ We also want to know how many frequent vs. infrequent terms we
should expect in a collection.

▶ In natural language, there are a few very frequent terms and very
many very rare terms.

▶ Zipf’s law: cfi ∝ 1
i

▶ The ith most frequent term has frequency cfi proportional to 1/i.

▶ Collection frequency cfi: number of occurrences of term ti in the
collection.

47 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Zipf’s law: example

▶ Zipf’s law: cfi ∝ 1
i

▶ The ith most frequent term has frequency cfi proportional to 1/i.

▶ So if the most frequent term (the) occurs cf1 times, then the second
most frequent term (of) has half as many occurrences cf2 = 1

2cf1 …

▶ …and the third most frequent term (and) has a third as many
occurrences cf3 = 1

3cf1 etc.

▶ Equivalent: cfi = cik and log cfi = log c+ k log i (for k = −1)

▶ Example of a power law.

48 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Zipf’s law for Reuters

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

log10 rank

lo
g

1
0
 c

f

Fit is not great. What is
important is the key insight:

Few frequent terms, many
rare terms.

49 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary compression

▶ The dictionary is small compared to the postings file.

▶ But we want to keep it in memory.

▶ Also: competition with other applications, cell phones, onboard
computers, fast startup time

▶ So compressing the dictionary is important.

50 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Recall: Dictionary as array of fixed-width entries

Dictionary: term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
… … …
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

Space for Reuters: (20+4+4)*400,000 = 11.2 MB

51 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Fixed-width entries are bad.

▶ Most of the bytes in the term column are wasted.
▶ We allot 20 bytes for terms of length 1.

▶ We can’t handle hydRochloRofluoRocaRbons and
supeRcalifRagilisticexpialidocious

▶ Average length of a term in English: 8 characters

▶ How can we use on average 8 characters per term?

52 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary as a string

. . . sys t i l esyzyget i csyzyg i a l syzygysza ibe ly i teszec inszono . . .

freq.

9
92
5
71
12
…

4 bytes

postings ptr.

→
→
→
→
→
…

4 bytes

term ptr.

3 bytes
…

53 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Space for dictionary as a string

▶ 4 bytes per term for frequency

▶ 4 bytes per term for pointer to postings list

▶ 8 bytes (on average) for term in string

▶ 3 bytes per pointer into string
(need log2 8 · 400000 < 24 bits to resolve 8 · 400,000 positions)

▶ Space: 400,000× (4 + 4 + 3 + 8) = 7.6MB (compared to 11.2 MB for
fixed-width array)

54 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary as a string with blocking

. . . 7 sys t i l e 9 syzyge t i c 8 syzyg i a l 6 syzygy11s za i be l y i t e 6 s z ec i n . . .

freq.

9
92
5
71
12
…

postings ptr.

→
→
→
→
→
…

term ptr.

…

55 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Space for dictionary as a string with blocking

▶ Example block size k = 4

▶ Where we used 4× 3 bytes for term pointers without blocking …

▶ …we now use 3 bytes for one pointer plus 4 bytes for indicating the
length of each term.

▶ We save 12− (3 + 4) = 5 bytes per block.

▶ Total savings: 400,000/4 ∗ 5 = 0.5 MB

▶ This reduces the size of the dictionary from 7.6 MB to 7.1 MB.

56 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Lookup of a term without blocking

aid

box

den

ex

job

ox

pit

win

57 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Lookup of a term with blocking: (slightly) slower

aid box den ex

job ox pit win

58 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Front coding

One block in blocked compression (k = 4) …
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

⇓

…further compressed with front coding.
8 a u t o m a t ∗ a 1 ⋄ e 2 ⋄ i c 3 ⋄ i o n

59 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Dictionary compression for Reuters: Summary

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9

60 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Postings compression

▶ The postings file is much larger than the dictionary (factor >10)

▶ Key desideratum: store each posting compactly

▶ A posting for our purposes is a docID.

▶ For Reuters (800,000 documents), we would use 32 bits per docID
when using 4-byte integers.

▶ Alternatively, we can use log2 800,000 ≈ 19.6 < 20 bits per docID.

▶ Our goal: use a lot less than 20 bits per docID.

61 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Key idea: Store gaps instead of docIDs

▶ Each postings list is ordered in increasing order of docID.

▶ Example postings list: computeR: 283154, 283159, 283202, …

▶ It suffices to store gaps: 283159-283154=5, 283202-283154=43

▶ Example postings list using gaps : computeR: 283154, 5, 43, …

▶ Gaps for frequent terms are small.

▶ Thus: We can encode small gaps with fewer than 20 bits.

62 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Gap encoding

encoding postings list
the docIDs … 283042 283043 283044 283045 …

gaps 1 1 1 …
computeR docIDs … 283047 283154 283159 283202 …

gaps 107 5 43 …
aRachnocentRic docIDs 252000 500100

gaps 248100

63 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

64 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
BRutus 1 1 0 1 0 0
CaesaR 1 1 0 1 1 1
CalpuRnia 0 1 0 0 0 0
CleopatRa 1 0 0 0 0 0
meRcy 1 0 1 1 1 1
woRseR 1 0 1 1 1 0
…

Entry 1 if term occurs. e.g. CalpuRnia occurs in Julius Caesar.
Entry 0 if term doesn’t occur. e.g. CalpuRnia doesn’t occur in The tempest.

65 / 66

Index construction Distributed indexing Dynamic indexing Index compression

Summary

▶ We can now create an index for highly efficient Boolean retrieval that
is very space efficient.

▶ Only 10-15% of the total size of the text in the collection.

▶ However, we’ve ignored positional and frequency information.

▶ For this reason, space savings are less in reality.

66 / 66

	Index construction
	Distributed indexing
	Dynamic indexing
	Index compression

