NPFL103: Information Retrieval (2)
Dictionaries, Tolerant retrieval, Spelling correction

Pavel Pecina
pecina@ufal.mff.cuni.cz
Lecturer

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.
Contents

Dictionaries

Wildcard queries

Spelling correction

Levenshtein distance

Soundex
Dictionaries

Wildcard queries
Spelling correction
Levenshtein distance
Soundex
For each term t, we store a list of all documents that contain t.

For example:

- **Brutus** → 1 2 4 11 31 45 173 174
- **Caesar** → 1 2 4 5 6 16 57 132 ...
- **Calpurnia** → 2 31 54 101

The dictionary is the data structure for storing the term vocabulary.
Dictionary as array of fixed-width entries

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
 - ...

- Assume for the time being that we can store this information in a fixed-length entry.

- Assume that we store these entries in an array.
Dictionary as array of fixed-width entries

Dictionary:

<table>
<thead>
<tr>
<th>term</th>
<th>document frequency</th>
<th>pointer to postings list</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>656,265</td>
<td></td>
</tr>
<tr>
<td>aachen</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>zulu</td>
<td>221</td>
<td></td>
</tr>
</tbody>
</table>

Space needed: 20 bytes 4 bytes 4 bytes

1. How do we look up a query term q_i in this array at query time?
2. Which data structure do we use to locate the entry (row) in the array where q_i is stored?
Two main classes of data structures: **hashes** and **trees**.

Some IR systems use hashes, some use trees.

Criteria for when to use hashes vs. trees:

1. Is there a fixed number of terms or will it keep growing?
2. What are the frequencies with which various keys will be accessed?
3. How many terms are we likely to have?
Hashes

- Each vocabulary term is hashed into an integer.

- Try to avoid collisions

- At query time, do the following: hash query term, resolve collisions, locate entry in fixed-width array

- Pros:
 1. Lookup in a hash is faster than lookup in a tree.
 2. Lookup time is constant.

- Cons:
 1. No way to find minor variants (resume vs. résumé)
 2. No prefix search (all terms starting with automat)
 3. Need to rehash everything periodically if vocabulary keeps growing
Trees

- Trees solve the prefix problem (e.g. find all terms starting with *auto*).
- Search is slightly slower than in hashes: $O(\log M)$, where M is the size of the vocabulary.
- $O(\log M)$ only holds for *balanced* trees. Rebalancing is expensive.
- **B-trees** mitigate the rebalancing problem.
- B-tree definition: every internal node has a number of children in the interval $[a, b]$ where a, b are appropriate positive integers, e.g., $[2, 4]$.
- Simplest tree: binary tree
B-tree example
Wildcard queries
Wildcard queries

- **mon**: find all docs containing any term beginning with *mon*
- With B-tree dictionary: find all terms \(t \) in the range \(mon \leq t < moo \)
- **\(mon \)**: find all docs containing any term ending with *mon*
 1. Maintain an additional tree for terms *backwards*
 2. Retrieve all terms \(t \) in the range: \(nom \leq t < non \)

Result: A set of terms that are matches for wildcard query

Then retrieve documents that contain **any of these terms**
How to handle * in the middle of a term

▶ Example: \(m^*nchen \)

▶ Simple approach: We look up \(m^* \) and \(nchen^* \) in the backward B-tree and intersect the two sets of terms (expensive).

▶ Alternative: permute term index
Basic idea: Rotate every wildcard query so that * occurs at the end.

Store each of these rotations in the dictionary, say, in a B-tree

For term hello: add hello$, ello$h, llohe, lohel, and o$hell to the B-tree where $ is a special symbol
Permuterm index

- For **hello**, we’ve stored: *hello*$*, *ello*$h*, *llo*$he*, *lo*$hel*, and *o*$hell

- Queries:
 - For X, look up X$
 - For X*, look up $X*$
 - For *X, look up X$*
 - For *X*, look up X*
 - For X*Y, look up Y$X*$

- Example: For *hel*o, look up o$hel*$
Processing a lookup in the permuterm index

- Rotate query wildcard to the right
- Use B-tree lookup as before
- Problem: Permuterm more than quadruples the size of the dictionary compared to a regular B-tree (empirical estimation).
k-gram indexes

- More space-efficient than permuterm index

- Enumerate all character k-grams (sequence of k characters) occurring in a term (2-grams are called **bigrams**).

- Example: from “April is the cruelest month” we get the bigrams: $a a p p r r i i l l $ $i i s s $ $t t h h e e $ $e e s s t t $ $m m o o n n t t h h$

- $\$ is a special word boundary symbol, as before.

- Maintain an inverted index from **bigrams to the terms** that contain the bigram.
Postings list in a 3-gram inverted index

etr → BEETROOT → METRIC → PETRIFY → RETRIEVAL
Note that we now have two different types of inverted indexes

The **term-document inverted index** for finding documents based on a query consisting of terms

- **Metric** → 2 4 7 15 36 51 180 182

The **k-gram index** for finding terms based on a query k-grams

etr → BEETROOT → METRIC → PETRIFY → RETRIEVAL
Processing wildcarded terms in a bigram index

- Query `mon*` can now be run as: `$m` AND `mo` AND `on`

- Gets us all terms with the prefix `mon` ...

 ...but also many “false positives” like `moon`.

- We must postfilter these terms against query.

- Surviving terms are then looked up in term-document inverted index.

- *k*-gram index vs. permuterm index
 - *k*-gram index is more space efficient.
 - Permuterm index doesn’t require postfiltering.
Google has very limited support for wildcard queries.

Query example which doesn’t work well on Google: \([gen^* universit^*]\)

- Intention: you are looking for the University of Geneva, but don’t know which accents to use for the French words for university and Geneva.

According to Google search basics, 2010-04-29: “Note that the * operator works only on whole words, not parts of words.”

But this is not entirely true. Try e.g. \[“pythag^*”\]

Exercise: Why doesn’t Google fully support wildcard queries?
Processing wildcard queries in the term-document index

- **Problem 1:** Potential execution of a large number of Boolean queries.
 - Most straightforward semantics: Conjunction of disjunctions
 - For \([\text{gen}^* \text{universit}^*]\): geneva university or geneva université or genève university or genève université or general universities or ...
 - Very expensive

- **Problem 2:** Users hate to type.
 - If abbreviated queries like \([\text{pyth}^* \text{theo}^*]\) for [pythagoras’ theorem] are allowed, users will use them a lot.
 - This would significantly increase the cost of answering queries.
 - Somewhat alleviated by Google Suggest
<table>
<thead>
<tr>
<th>Dictionaries</th>
<th>Wildcard queries</th>
<th>Spelling correction</th>
<th>Levenshtein distance</th>
<th>Soundex</th>
</tr>
</thead>
</table>

Spelling correction
Two principal uses:

1. Correcting documents being indexed
2. Correcting user queries at query time

Two different methods for spelling correction:

1. Isolated word spelling correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g., *an asteroid that fell* form the sky

2. Context-sensitive spelling correction
 - Look at surrounding words
 - Can correct *form/from* error above
Correcting documents vs. correcting queries

- We’re not interested in interactive spelling correction of documents.
- In IR, we use document correction primarily for OCR’ed documents. (OCR = optical character recognition)
- The general philosophy in IR is: don’t change the documents.
- Spelling errors in queries are much more frequent
Isolated word spelling correction

Premises:

1. There is a list of “correct words” from which the correct spellings come.
2. We have a way of computing the distance between a misspelled word and a correct word.

Simple algorithm: return the “correct” word that has the smallest distance to the misspelled word.

Example: informaton → information

For the list of correct words, we can use the vocabulary of all words that occur in our collection.

Why is this problematic?
Alternatives to using the term vocabulary

- A standard dictionary (Webster’s, OED etc.)
- An industry-specific dictionary (for specialized IR systems)
- The term vocabulary of the collection, appropriately weighted
We will discuss several alternatives:

1. Edit distance and Levenshtein distance
2. Weighted edit distance
3. k-gram overlap
Edit distance

The edit distance between string s_1 and string s_2 is the minimum number of basic operations that convert s_1 to s_2.

Levenshtein: The basic operations are insert, delete, and replace.

Examples:
- Levenshtein distance dog-do: 1
- Levenshtein distance cat-$cart$: 1
- Levenshtein distance cat-cut: 1
- Levenshtein distance cat-act: 2

Damerau-Levenshtein: transposition as a fourth possible operation.

Example:
- Damerau-Levenshtein distance cat-act: 1
Levenshtein distance
Levenshtein distance: Computation

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Levenshtein distance: Algorithm

\[\text{LevenshteinDistance}(s_1, s_2)\]

1. \textbf{for} \(i \leftarrow 0\) \textbf{to} \(|s_1|\)
2. \textbf{do} \(m[i, 0] = i\)
3. \textbf{for} \(j \leftarrow 0\) \textbf{to} \(|s_2|\)
4. \textbf{do} \(m[0, j] = j\)
5. \textbf{for} \(i \leftarrow 1\) \textbf{to} \(|s_1|\)
6. \textbf{do for} \(j \leftarrow 1\) \textbf{to} \(|s_2|\)
7. \textbf{do if} \(s_1[i] = s_2[j]\)
8. \textbf{then} \(m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]\}\)
9. \textbf{else} \(m[i, j] = \min\{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]+1\}\)
10. \textbf{return} \(m[|s_1|, |s_2|]\)

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy (cost 0)
Levenshtein distance: Example

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

The Table shows the Levenshtein distance between the strings "fast" and "start".
Each cell of Levenshtein matrix

<table>
<thead>
<tr>
<th>Cost of getting here from my upper left neighbor</th>
<th>Cost of getting here from my upper neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ copy/replace</td>
<td>→ delete</td>
</tr>
<tr>
<td>Cost of getting here from my left neighbor</td>
<td>the minimum of the three possible “movements”; the cheapest way of getting here</td>
</tr>
<tr>
<td>→ insert</td>
<td></td>
</tr>
</tbody>
</table>
Example: Levenshtein distance OSLO – SNOW

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>n</th>
<th>o</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>operation</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>delete</td>
<td>o</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>(copy)</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>1</td>
<td>replace</td>
<td>l</td>
<td>n</td>
</tr>
<tr>
<td>0</td>
<td>(copy)</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>w</td>
</tr>
</tbody>
</table>
Example: Levenshtein distance CAT – CATCAT

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Cost and Operation

<table>
<thead>
<tr>
<th>Cost</th>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>t</td>
</tr>
<tr>
<td>0</td>
<td>(copy)</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>0</td>
<td>(copy)</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>(copy)</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>
Example: Levenshtein distance CAT – CATCAT

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Cost and Operation

<table>
<thead>
<tr>
<th>cost</th>
<th>operation</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(copy)</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>c</td>
</tr>
<tr>
<td>0</td>
<td>(copy)</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>(copy)</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>
Example: Levenshtein distance CAT – CATCAT

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>operation</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>copy</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>0</td>
<td>copy</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>copy</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>
Example: Levenshtein distance **CAT** – **CATCAT**

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>operation</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>copy</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>0</td>
<td>copy</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>copy</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>insert</td>
<td>*</td>
<td>t</td>
</tr>
</tbody>
</table>
Weighted edit distance

- As above, but operation weights depend on the characters involved.
- Meant to capture keyboard errors (e.g., \textit{m} more likely to be mistyped as \textit{n} than as \textit{q}).
- Therefore, replacing \textit{m} by \textit{n} is a smaller edit distance than by \textit{q}.
- Requires a weight matrix as input.
- The dynamic programming need to be modified to handle weights.
Using edit distance for spelling correction

- Given a query, first enumerate all character sequences within a preset (possibly weighted) edit distance.

- Intersect this set with our list of “correct” words.

- Then suggest terms in the intersection to the user.
k-gram indexes for spelling correction

- Enumerate all \(k \)-grams in the query term

- Example:
 - bigram index, misspelled word: *bordroom*
 - bigrams: *bo, or, rd, dr, ro, oo, om*

- Use the \(k \)-gram index to retrieve “correct” words that match query term \(k \)-grams

- Threshold by number of matching \(k \)-grams
 (e.g., only vocabulary terms that differ by at most 3 \(k \)-grams)

- rank by (weighted) edit distance
k-gram indexes for spelling correction: bordroom

- BO: aboard → about → boardroom → border
- OR: border → lord → morbid → sordid
- RD: aboard → ardent → boardroom → border
Context-sensitive spelling correction

- Our example was: *an asteroid that fell form the sky*

- How can we correct *form* here?

- One idea: **hit-based** spelling correction (hit = retrieved document)
 1. Retrieve “correct” terms close to each query term
 for *flew form munich*: *flea* for *flew*, *from* for *form*, *munch* for *munich*
 2. Try all possible phrases as queries with one word “fixed” at a time:
 “*flea form munich*”, “*flew from munich*”, “*flew form munch*”
 3. The correct query “*flew from munich*” has the most hits.

- Suppose we have 7 alternatives for *flew*, 20 for *form* and 3 for *munich*, how many “corrected” phrases will we enumerate?
The “hit-based” algorithm we just outlined is not very efficient.

More efficient alternative: look at “collection” of queries (query logs), not documents.

Another alternative: learn corrections from the users (mine query logs for sequences of an incorrect query followed by a corrected query).

Yet another alternative: language models
General issues in spelling correction

- User interface:
 - automatic vs. suggested correction
 - *Did you mean* only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs. powerful UI

- Cost:
 - Spelling correction is potentially expensive.
 - Avoid running on every query?
 - Maybe just on queries that match few documents.
 - Guess: Spelling correction of major search engines is efficient enough to be run on every query.
Soundex

<table>
<thead>
<tr>
<th>Dictionaries</th>
<th>Wildcard queries</th>
<th>Spelling correction</th>
<th>Levenshtein distance</th>
<th>Soundex</th>
</tr>
</thead>
</table>
Soundex is the basis for finding **phonetic** (as opposed to orthographic) alternatives (in English).

Example: *chebyshev / tchebyscheff*

Algorithm:

1. Turn every token to be indexed into a 4-character reduced form
2. Do the same with query terms
3. Build and search an index on the reduced forms
Soundex algorithm

1. Retain the first letter of the term.

2. Change all occurrences of the following letters to ’0’ (zero): A, E, I, O, U, H, W, Y

3. Change letters to digits as follows:
 - B, F, P, V to 1
 - C, G, J, K, Q, S, X, Z to 2
 - D, T to 3
 - L to 4
 - M, N to 5
 - R to 6

4. Repeatedly remove one out of each pair of consecutive identical digits.

5. Remove all zeros from the resulting string; pad the resulting string with trailing zeros and return the first four positions, which will consist of a letter followed by three digits.
Example: Soundex of HERMAN

- Retain H

- ERMAN \rightarrow ORM0N

- ORM0N \rightarrow 06505

- 06505 \rightarrow 06505

- 06505 \rightarrow 655

- Return H655

- Note: HERMANN will generate the same code
How useful is Soundex?

- Not very – for information retrieval
- OK for “high recall” tasks in other applications (e.g., Interpol)
- Zobel and Dart (1996) suggest better alternatives for phonetic matching in IR.