
Introduction to
Natural Language Processing I
[Statistické metody zpracování

přirozených jazyků I]
(NPFL067)

http://ufal.mff.cuni.cz/courses/npfl067

prof. RNDr. Jan Hajič, Dr. / doc. RNDr. Pavel Pecina, Ph.D.
ÚFAL MFF UK

{hajic,pecina}@ufal.mff.cuni.cz
http://ufal.mff.cuni.cz/jan-hajic

http://ufal.mff.cuni.cz/~pecina/index.html

2018/9

Intro to NLP

• Instructors: Jan Hajič / Pavel Pecina
– ÚFAL MFF UK, office: 420 / 422 MS
– Hours: J. Hajic: Mon 10:00-11:00
– preferred contact: {hajic,pecina}@ufal.mff.cuni.cz

• Room & time:
– lecture: room S1, Tue 12:20-13:50
– seminar [cvičení] room S1, Tue 14:00-15:30
– Oct 2, 2018 – Jan 8, 2019
– Final written exam (probable) date: Jan 15, 2019

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 2

2018/9

Textbooks you need
• Manning, C. D., Schütze, H.:

• Foundations of Statistical Natural Language Processing. The
MIT Press. 1999. ISBN 0-262-13360-1. [required]

• Jurafsky, D., Martin, J.H.:
• Speech and Language Processing. Prentice-Hall. 2000. ISBN 0-

13-095069-6 and later editions. [recommended].

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 3

2018/9

Other reading
• Charniak, E:

– Statistical Language Learning. The MIT Press. 1996. ISBN 0-262-53141-0.

• Cover, T. M., Thomas, J. A.:
– Elements of Information Theory. Wiley. 1991. ISBN 0-471-06259-6.

• Jelinek, F.:
– Statistical Methods for Speech Recognition. The MIT Press. 1998. ISBN 0-

262-10066-5

• Proceedings of major conferences:
– ACL (Assoc. of Computational Linguistics)
– EACL/NAACL/IJCNLP (European/American/Asian Chapter of ACL)
– EMNLP (Empirical Methods in NLP)
– COLING (Intl. Committee of Computational Linguistics)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 4

2018/9

Course requirements
• Grade components: requirements & weights:

– Homeworks (1): 50%
– Final Exam: 50%

• Exam:
– approx. 4 questions:

• mostly explanatory answers (1/4 page or so),
• algorithms
• only a few multiple choice questions

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 5

2018/9

Homeworks

• Homework:
– Entropy, Language Modeling

• Organization
• (little) paper-and-pencil exercises, lot of programming
• turning-in mechanism: see the web
• no plagiarism!

• Deadline
– Jan. 31, 2018
– Late penalty: 5% of grade (0-100) per day (max. 50%)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 6

2018/9

Course segments
• Intro & Probability & Information Theory

– The very basics: definitions, formulas, examples.

• Language Modeling
– n-gram models, parameter estimation
– smoothing (EM algorithm)

• Words and the Lexicon
– word classes, mutual information, bit of lexicography

• Hidden Markov Models
– background, algorithms, parameter estimation

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 7

2018/9

NLP: The Main Issues
• Why is NLP difficult?

– many “words”, many “phenomena” --> many “rules”
• OED: 400k words; Finnish lexicon (of forms): ~2 . 107

• sentences, clauses, phrases, constituents, coordination,
negation, imperatives/questions, inflections, parts of speech,
pronunciation, topic/focus, and much more!

– irregularity (exceptions, exceptions to the exceptions, ...)
• potato -> potato es (tomato, hero,...); photo -> photo s, and

even: both mango -> mango s or -> mango es
• Adjective / Noun order: new book, electrical engineering,

general regulations, flower garden, garden flower, ...: but
Governor General

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 8

2018/9

Difficulties in NLP (cont.)
– ambiguity

• books: NOUN or VERB?
– you need many books vs. she books her flights online

• No left turn weekdays 4-6 pm / except transit vehicles
(Charles Street at Cold Spring)

– when may transit vehicles turn: Always? Never?
• Thank you for not smoking, drinking, eating or playing

radios without earphones. (MTA bus)
– Thank you for not eating without earphones??
– or even: Thank you for not drinking without earphones!?

• My neighbor’s hat was taken by wind. He tried to catch it.
– ...catch the wind or ...catch the hat ?

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 9

2018/9

(Categorical) Rules or Statistics?
• Preferences:

– clear cases: context clues: she books --> books is a verb
– rule: if an ambiguous word (verb/nonverb) is preceded by

a matching personal pronoun -> word is a verb

– less clear cases: pronoun reference
– she/he/it refers to the most recent noun or pronoun (?) (but

maybe we can specify exceptions)

– selectional:
– catching hat >> catching wind (but why not?)

– semantic:
– never thank for drinking in a bus! (but what about the

earphones?)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 10

2018/9

Solutions

• Don’t guess if you know:
• morphology (inflections)
• lexicons (lists of words)
• unambiguous names
• perhaps some (really) fixed phrases
• syntactic rules?

• Use statistics (based on real-world data) for
preferences (only?)

• No doubt: but this is the big question!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 11

2018/9

Statistical NLP

• Imagine:
– Each sentence W = { w1, w2, ..., wn } gets a probability

P(W|X) in a context X (think of it in the intuitive sense
for now)

– For every possible context X, sort all the imaginable
sentences W according to P(W|X):

– Ideal situation:
best sentence (most probable in context X) NB: same for

interpretation

P(W) “ungrammatical” sentences

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 12

2018/9

Real World Situation

• Unable to specify set of grammatical sentences today using
fixed “categorical” rules (maybe never, cf. arguments in MS)

• Use statistical “model” based on REAL WORLD DATA
and care about the best sentence only (disregarding the
“grammaticality” issue)

best sentence

P(W)

Wbest Wworst

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 13

Probability

2018/9

Experiments & Sample Spaces

• Experiment, process, test, ...
• Set of possible basic outcomes: sample space

– coin toss (= {head,tail}), die (= {1..6})
– yes/no opinion poll, quality test (bad/good) (= {0,1})
– lottery (| |
– # of traffic accidents somewhere per year (= N)
– spelling errors (= *), where Z is an alphabet, and Z*

is a set of possible strings over such and alphabet
– missing word (| | vocabulary size)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 15

2018/9

Events

• Event A is a set of basic outcomes
• Usually A and all A 2 (the event space)

– is then the certain event, is the impossible event
• Example:

– experiment: three times coin toss
• = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– count cases with exactly two tails: then
• A = {HTT, THT, TTH}

– all heads:
• A = {HHH}

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 16

2018/9

Probability

• Repeat experiment many times, record how many
times a given event A occurred (“count” c1).

• Do this whole series many times; remember all cis.
• Observation: if repeated really many times, the

ratios of ci/Ti (where Ti is the number of
experiments run in the i-th series) are close to
some (unknown but) constant value.

• Call this constant a probability of A. Notation: p(A)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 17

2018/9

Estimating probability
• Remember: ... close to an unknown constant.
• We can only estimate it:

– from a single series (typical case, as mostly the
outcome of a series is given to us and we cannot repeat
the experiment), set

p(A) = c1/T1.
– otherwise, take the weighted average of all ci/Ti (or, if

the data allows, simply look at the set of series as if it
is a single long series).

• This is the best estimate.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 18

2018/9

Example
• Recall our example:

– experiment: three times coin toss
• = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– count cases with exactly two tails: A = {HTT, THT, TTH}

• Run an experiment 1000 times (i.e. 3000 tosses)
• Counted: 386 cases with two tails (HTT, THT, or TTH)
• estimate: p(A) = 386 / 1000 = .386
• Run again: 373, 399, 382, 355, 372, 406, 359

– p(A) = .379 (weighted average) or simply 3032 / 8000

• Uniform distribution assumption: p(A) = 3/8 = .375

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 19

2018/9

Basic Properties

• Basic properties:
– p: 2 [0,1]
– p() = 1

– Disjoint events: p(Ai) = i p(Ai)

• [NB: axiomatic definition of probability: take the
above three conditions as axioms]

• Immediate consequences:
– p() = 0, p(A) = 1 - p(A), A p(A) p(B)
– a p(a) = 1

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 20

2018/9

Joint and Conditional Probability

• p(A,B) = p(A B)
• p(A|B) = p(A,B) / p(B)

– Estimating form counts:
• p(A|B) = p(A,B) / p(B) = (c(A B) / T) / (c(B) / T) =

= c(A B) / c(B)

A B

A B

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 21

2018/9

Bayes Rule
• p(A,B) = p(B,A) since p(A p(B

– therefore: p(A|B) p(B) = p(B|A) p(A), and therefore

p(A|B) = p(B|A) p(A) / p(B) !

A B
A B

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 22

2018/9

Independence
• Can we compute p(A,B) from p(A) and p(B)?
• Recall from previous foil:

p(A|B) = p(B|A) p(A) / p(B)
p(A|B) p(B) = p(B|A) p(A)

p(A,B) = p(B|A) p(A)
... we’re almost there: how p(B|A) relates to p(B)?

– p(B|A) = P(B) iff A and B are independent

• Example: two coin tosses, weather today and
weather on March 4th 1789;

• Any two events for which p(B|A) = P(B)!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 23

2018/9

Chain Rule

p(A1, A2, A3, A4, ..., An) = !
p(A1|A2,A3,A4,...,An) p(A2|A3,A4,...,An)
 p(A3|A4,...,An) ... p(An-1|An) p(An)

• this is a direct consequence of the Bayes rule.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 24

2018/9

The Golden Rule
(of Classic Statistical NLP)

• Interested in an event A given B (when it is not easy
or practical or desirable to estimate p(A|B)):

• take Bayes rule, max over all As:
• argmaxA p(A|B) = argmaxA p(B|A) . p(A) / p(B) =

argmaxA p(B|A) p(A) !
• ... as p(B) is constant when changing As

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 25

2018/9

Random Variable
• is a function X: Q

– in general: Q = Rn, typically R
– easier to handle real numbers than real-world events

• random variable is discrete if Q is countable (i.e.
also if finite)

• Example: die: natural “numbering” [1,6], coin: {0,1}
• Probability distribution:

– pX(x) = p(X=x) =df p(Ax) where Ax = {a : X(a) = x}
– often just p(x) if it is clear from context what X is

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 26

2018/9

Expectation
Joint and Conditional Distributions

• is a mean of a random variable (weighted average)
– E(X) = xX(x . pX(x)

• Example: one six-sided die: 3.5, two dice (sum) 7
• Joint and Conditional distribution rules:

– analogous to probability of events

• Bayes: pX|Y(x,y) =notation pXY(x|y) =even simpler notation
p(x|y) = p(y|x) . p(x) / p(y)

• Chain rule: p(w,x,y,z) = p(z).p(y|z).p(x|y,z).p(w|x,y,z)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 27

2018/9

Standard distributions

• Binomial (discrete)
– outcome: 0 or 1 (thus: binomial)
– make n trials
– interested in the (probability of) number of successes r

• Must be careful: it’s not uniform!

• pb(r|n) = () / 2n (for equally likely outcome)

• () counts how many possibilities there are for
choosing r objects out of n; = n! / ((n-r)! r!)

n
r

n
r

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 28

2018/9

Continuous Distributions
• The normal distribution (“Gaussian”)

• pnorm(x|) = e-(x-)2/(22)/
• where:

– is the mean (x-coordinate of the peak) (0)
– is the standard deviation (1)

x
• other: hyperbolic, t

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 29

Essential Information Theory

2018/9

The Notion of Entropy

• Entropy ~ “chaos”, fuzziness, opposite of order, ...
– you know it:

• it is much easier to create “mess” than to tidy things up...

• Comes from physics:
– Entropy does not go down unless energy is applied

• Measure of uncertainty:
– if low... low uncertainty; the higher the entropy, the

higher uncertainty, but the higher “surprise”
(information) we can get out of an experiment

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 31

2018/9

The Formula
• Let pX(x) be a distribution of random variable X
• Basic outcomes (alphabet)

H(X) = - x p(x) log2 p(x) !
• Unit: bits (log10: nats)
• Notation: H(X) = Hp(X) = H(p) = HX(p) = H(pX)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 32

2018/9

Using the Formula: Example
• Toss a fair coin: = {head,tail}

– p(head) = .5, p(tail) = .5
– H(p) = - 0.5 log2(0.5) + (- 0.5 log2(0.5)) =

2 ((-0.5) (-1)) = 2 0.5 = 1
• Take fair, 32-sided die: p(x) = 1 / 32 for every side x

– H(p) = -i = 1..32 p(xi) log2p(xi) = - 32 (p(x1) log2p(x1)
(since for all i p(xi) = p(x1) = 1/32)
= -32 ((1/32) (-5)) = 5 (now you see why it’s called bits?)

• Unfair coin:
– p(head) = .2 ... H(p) = .722; p(head) = .01 ... H(p) = .081

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 33

2018/9

Example: Book Availability

Entropy H(p)

1

bad bookstore good bookstore

0

0 0.5 1 p(Book Available)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 34

2018/9

The Limits

• When H(p) = 0?
– if a result of an experiment is known ahead of time:
– necessarily:

x ; p(x) = 1 & y ; y x p(y) = 0
• Upper bound?

– none in general
– for | | = n: H(p) log2n

• nothing can be more uncertain than the uniform distribution

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 35

2018/9

Entropy and Expectation

• Recall:
– E(X) = xX pX(x) x

• Then:
E(log2(1/pX(x))) = xX pX(x) log2(1/pX(x)) =

= - xX pX(x) log2pX(x) =

= H(pX) =notation H(p)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 36

2018/9

Perplexity: motivation
• Recall:

– 2 equiprobable outcomes: H(p) = 1 bit
– 32 equiprobable outcomes: H(p) = 5 bits
– 4.3 billion equiprobable outcomes: H(p) ~= 32 bits

• What if the outcomes are not equiprobable?
– 32 outcomes, 2 equiprobable at .5, rest impossible:

• H(p) = 1 bit
– Any measure for comparing the entropy (i.e.

uncertainty/difficulty of prediction) (also) for random
variables with different number of outcomes?

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 37

2018/9

Perplexity
• Perplexity:

– G(p) = 2H(p)

• ... so we are back at 32 (for 32 eqp. outcomes), 2
for fair coins, etc.

• it is easier to imagine:
– NLP example: vocabulary size of a vocabulary with

uniform distribution, which is equally hard to predict

• the “wilder” (biased) distribution, the better:
– lower entropy, lower perplexity

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 38

2018/9

Joint Entropy and
Conditional Entropy

• Two random variables: X (space),Y ()
• Joint entropy:

– no big deal: ((X,Y) considered a single event):

H(X,Y) = - x y p(x,y) log2 p(x,y)
• Conditional entropy:

H(Y|X) = - x y p(x,y) log2 p(y|x)
recall that H(X) = E(log2(1/pX(x)))
(weighted “average”, and weights are not conditional)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 39

2018/9

Conditional Entropy
(Using the Calculus)

• other definition:
H(Y|X) = x p(x) H(Y|X=x) =

for H(Y|X=x), we can use the
single-variable definition (x ~ constant)

= x p(x) (- y p(y|x) log2p(y|x)) =
= - x y p(y|x) p(x) log2p(y|x) =

= - x y p(x,y) log2p(y|x)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 40

2018/9

Properties of Entropy I

• Entropy is non-negative:
– H(X)
– proof: (recall: H(X) = - x p(x) log2 p(x))

• log(p(x)) is negative or zero for x 1,
• p(x) is non-negative; their product p(x)log(p(x) is thus negative;
• sum of negative numbers is negative;
• and -f is positive for negative f

• Chain rule:
– H(X,Y) = H(Y|X) + H(X), as well as
– H(X,Y) = H(X|Y) + H(Y) (since H(Y,X) = H(X,Y))

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 41

2018/9

Properties of Entropy II
• Conditional Entropy is better (than unconditional):

– H(Y|X) H(Y) (proof on Monday)

• H(X,Y) H(X) + H(Y) (follows from the previous (in)equalities)

• equality iff X,Y independent
• [recall: X,Y independent iff p(X,Y) = p(X)p(Y)]

• H(p) is concave (remember the book availability graph?)
– concave function f over an interval (a,b):

x,y (a,b), [0,1]:
f(x + (1-)y) f(x) + (1-)f(y)

• function f is convex if -f is concave
• [for proofs and generalizations, see Cover/Thomas]

f

x y

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 42

2018/9

“Coding” Interpretation of Entropy

• The least (average) number of bits needed to
encode a message (string, sequence, series,...)
(each element having being a result of a random
process with some distribution p): = H(p)

• Remember various compressing algorithms?
– they do well on data with repeating (= easily

predictable = low entropy) patterns
– their results though have high entropy compressing

compressed data does nothing

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 43

2018/9

Coding: Example
• How many bits do we need for ISO Latin 1?

– the trivial answer: 8
• Experience: some chars are more common, some (very) rare:

• ...so what if we use more bits for the rare, and less bits for the
frequent? [be careful: want to decode (easily)!]

• suppose: p(‘a’) = 0.3, p(‘b’) = 0.3, p(‘c’) = 0.3, the rest: p(x)
.0004

• code: ‘a’ ~ 00, ‘b’ ~ 01, ‘c’ ~ 10, rest: 11b1b2b3b4b5b6b7b8

• code acbbécbaac: 0010010111000011111001000010
a c b b é c b a a c

• number of bits used: 28 (vs. 80 using “naive” coding)

• code length ~ 1 / probability; conditional prob OK!
UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 44

2018/9

Entropy of a Language

• Imagine that we produce the next letter using
p(ln+1|l1,...,ln),

where l1,...,ln is the sequence of all the letters which
had been uttered so far (i.e. n is really big!); let’s
call l1,...,ln the history h (hn+1), and all histories H:

• Then compute its entropy:
– - h l p(l,h) log2 p(l|h)

• Not very practical, isn’t it?

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 45

2018/9

Kullback-Leibler Distance
(Relative Entropy)

• Remember:
– long series of experiments... ci/Ti oscillates around some

number... we can only estimate it... to get a distribution q.

• So we get a distribution q; (sample space , r.v. X)

the true distribution is, however, p. (same , X)

how big error are we making?
• D(p||q) (the Kullback-Leibler distance):

D(p||q) = x p(x) log2 (p(x)/q(x)) = Ep log2 (p(x)/q(x))

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 46

2018/9

Comments on Relative Entropy

• Conventions:
– 0 log 0 = 0
– p log (p/0) = (for p > 0)

• Distance? (less “misleading”: Divergence)
– not quite:

• not symmetric: D(p||q) D(q||p)
• does not satisfy the triangle inequality

– but useful to look at it that way

• H(p) + D(p||q): bits needed for encoding p if q is used

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 47

2018/9

Mutual Information (MI)
in terms of relative entropy

• Random variables X, Y; pXY(x,y), pX(x), pY(y)
• Mutual information (between two random variables X,Y):

I(X,Y) = D(p(x,y) || p(x)p(y))

• I(X,Y) measures how much (our knowledge of) Y
contributes (on average) to easing the prediction of X

• or, how p(x,y) deviates from (independent) p(x)p(y)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 48

2018/9

Mutual Information: the Formula
• Rewrite the definition: [recall: D(r||s) = v r(v) log2 (r(v)/s(v));

substitute r(v) = p(x,y), s(v) = p(x)p(y); <v> ~ <x,y>]

I(X,Y) = D(p(x,y) || p(x)p(y)) =
= x y p(x,y) log2 (p(x,y)/p(x)p(y))

• Measured in bits (what else? :-)

!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 49

2018/9

From Mutual Information to Entropy
• by how many bits the knowledge of Y lowers the entropy H(X):

I(X,Y) = x y p(x,y) log2 (p(x,y)/p(y)p(x)) =
...use p(x,y)/p(y) = p(x|y)

= x y p(x,y) log2 (p(x|y)/p(x)) =
...use log(a/b) = log a - log b (a ~ p(x|y), b ~ p(x)), distribute sums

= x y p(x,y)log2p(x|y) - x y p(x,y)log2p(x) =
...use def. of H(X|Y) (left term), and y p(x,y) = p(x) (right term)

= - H(X|Y) + (- x p(x)log2p(x)) =
...use def. of H(X) (right term), swap terms

= H(X) - H(X|Y) ...by symmetry, = H(Y) - H(Y|X)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 50

2018/9

Properties of MI vs. Entropy

• I(X,Y) = H(X) - H(X|Y) = number of bits the knowledge
of Y lowers the entropy of X

= H(Y) - H(Y|X) (prev. foil, symmetry)

Recall: H(X,Y) = H(X|Y) + H(Y) -H(X|Y) = H(Y) - H(X,Y)

• I(X,Y) = H(X) + H(Y) - H(X,Y)
• I(X,X) = H(X) (since H(X|X) = 0)

• I(X,Y) = I(Y,X) (just for completeness)

• I(X,Y) 0 ... let’s prove that now (as promised).

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 51

2018/9

Jensen’s Inequality
• Recall: f is convex on interval (a,b) iff

x,y (a,b), [0,1]:
f(x + (1-)y) f(x) + (1-)f(y)

• J.I.: for distribution p(x), r.v. X on , and convex f,
f(xp(x) x) xp(x) f(x)

• Proof (idea): by induction on the number of basic outcomes;
• start with || = 2 by:

• p(x1)f(x1) + p(x2)f(x2) f(p(x1)x1 + p(x2)x2) (def. of convexity)
• for the induction step (|| = k k+1), just use the induction

hypothesis and def. of convexity (again).

f

x y

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 52

2018/9

Information Inequality

D(p||q) 0 !
• Proof:
0 = - log 1 = - log xq(x) = - log x(q(x)/p(x))p(x)

...apply Jensen’s inequality here (- log is convex)...

 xp(x) (-log(q(x)/p(x))) = xp(x) log(p(x)/q(x)) =
= D(p||q)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 53

2018/9

Other (In)Equalities and Facts

• Log sum inequality: for ri, si

i=1..n (ri log(ri/si)) (i=1..n ri) log(i=1..nri/i=1..nsi))

• D(p||q) is convex [in p,q] (log sum inequality)
• H(pX) log2||, where is the sample space of pX

Proof: uniform u(x), same sample space : p(x) log u(x) = -log2||;

log2|| - H(X) = -p(x) log u(x) + p(x) log p(x) = D(p||u) 0

• H(p) is concave [in p]:
Proof: from H(X) = log2|| - D(p||u), D(p||u) convex H(x) concave

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 54

2018/9

Cross-Entropy

• Typical case: we’ve got series of observations
T = {t1, t2, t3, t4, ..., tn}(numbers, words, ...; ti);

estimate (simple):
y (y) = c(y) / |T|, def. c(y) = |{t ; t = y}|

• ...but the true p is unknown; every sample is too small!
• Natural question: how well do we do using [instead of p]?
• Idea: simulate actual p by using a different T’

(or rather: by using different observation we simulate the
insufficiency of T vs. some other data (“random” difference))

p

p

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 55

2018/9

Cross Entropy: The Formula

• Hp’() = H(p’) + D(p’||)

Hp’() = - x p’(x) log2 (x) !
• p’ is certainly not the true p, but we can consider it the

“real world” distribution against which we test
• note on notation (confusing...): p/p’ , also HT’(p)
• (Cross)Perplexity: Gp’(p) = GT’(p)= 2Hp’()

p p

pp

p

p
p

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 56

2018/9

Conditional Cross Entropy

• So far: “unconditional” distribution(s) p(x), p’(x)...
• In practice: virtually always conditioning on context
• Interested in: sample space , r.v. Y, y ;

context: sample space , r.v. X, x :
“our” distribution p(y|x), test against p’(y,x),

which is taken from some independent data:
Hp’(p) = - y x p’(y,x) log2p(y|x)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 57

2018/9

Sample Space vs. Data

• In practice, it is often inconvenient to sum over the
sample space(s) , (especially for cross entropy!)

• Use the following formula:

Hp’(p) = - y x p’(y,x) log2p(y|x) =

- 1/|T’| i = 1..|T’| log2p(yi|xi)

• This is in fact the normalized log probability of the “test” data:

Hp’(p) = - 1/|T’| log2 i = 1..|T’| p(yi|xi)

!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 58

2018/9

Computation Example

• = {a,b,..,z}, prob. distribution (assumed/estimated from data):
p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

• Data (test): barb p’(a) = p’(r) = .25, p’(b) = .5

• Sum over :
 a b c d e f g ... p q r s t ... z
-p’()log2p() .5+.5+0+0+0+0+0+0+0+0+0+1.5+0+0+0+0+0 = 2.5

• Sum over data:
i / si 1/b 2/a 3/r 4/b 1/|T’|
-log2p(si) 1 + 2 + 6 + 1 = 10 (1/4) 10 = 2.5

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 59

2018/9

Cross Entropy: Some Observations
• H(p) ?? > ?? Hp’(p): ALL!
• Previous example:

[p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z]

H(p) = 2.5 bits = H(p’) (barb)
• Other data: probable: (1/8)(6+6+6+1+2+1+6+6)= 4.25

H(p) < 4.25 bits = H(p’) (probable)
• And finally: abba: (1/4)(2+1+1+2)= 1.5

H(p) > 1.5 bits = H(p’) (abba)
• But what about: baby -p’(‘y’)log2p(‘y’) = -.25log20 = (??)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 60

2018/9

Cross Entropy: Usage
• Comparing data??

– NO! (we believe that we test on real data!)

• Rather: comparing distributions (vs. real data)
• Have (got) 2 distributions: p and q (on some , X)

– which is better?
– better: has lower cross-entropy (perplexity) on real data S

• “Real” data: S
• HS(p) = - 1/|S| i = 1..|S| log2p(yi|xi) ?? HS(q) = - 1/|S| i = 1..|S| log2q(yi|xi)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 61

2018/9

Comparing Distributions

• p(.) from prev. example: HS(p) = 4.25
p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

• q(.|.) (conditional; defined by a table):

ex.: q(o|r) = 1

q(r|p) = .125

(1/8) (log(p|oth.)+log(r|p)+log(o|r)+log(b|o)+log(a|b)+log(b|a)+log(l|b)+log(e|l))
(1/8) (0 + 3 + 0 + 0 + 1 + 0 + 1 + 0)

HS(q) = .625

q(.|.)

a b e l o p r other

a 0 .5 0 0 0 .125 0 0
b 1 0 0 0 1 .125 0 0
e 0 0 0 1 0 .125 0 0
l 0 .5 0 0 0 .125 0 0
o 0 0 0 0 0 .125 1 0
p 0 0 0 0 0 .125 0 1
r 0 0 0 0 0 .125 0 0
other 0 0 1 0 0 .125 0 0

Test data S: probable

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 62

Language Modeling
(and the Noisy Channel)

2018/9

The Noisy Channel

• Prototypical case:
Input Output (noisy)

The channel
0,1,1,1,0,1,0,1,... (adds noise) 0,1,1,0,0,1,1,0,...

• Model: probability of error (noise):
• Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6
• The Task:
known: the noisy output; want to know: the input (decoding)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 64

2018/9

Noisy Channel Applications
• OCR

– straightforward: text print (adds noise), scan image

• Handwriting recognition
– text neurons, muscles (“noise”), scan/digitize image

• Speech recognition (dictation, commands, etc.)
– text conversion to acoustic signal (“noise”) acoustic waves

• Machine Translation
– text in target language translation (“noise”) source language

• Also: Part of Speech Tagging
– sequence of tags selection of word forms text

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 65

2018/9

Noisy Channel: The Golden Rule of ...

OCR, ASR, HR, MT, ...
• Recall:

p(A|B) = p(B|A) p(A) / p(B) (Bayes formula)

Abest = argmaxA p(B|A) p(A) (The Golden Rule)

• p(B|A): the acoustic/image/translation/lexical model
– application-specific name
– will explore later

• p(A): the language model

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 66

2018/9

The Perfect Language Model

• Sequence of word forms [forget about tagging for the moment]

• Notation: A ~ W = (w1,w2,w3,...,wd)
• The big (modeling) question:

p(W) = ?
• Well, we know (Bayes/chain rule):

p(W) = p(w1,w2,w3,...,wd) =
= p(w1) p(w2|w1) p(w3|w1,w2) p(wd|w1,w2,...,wd-1)

• Not practical (even short W too many parameters)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 67

2018/9

Markov Chain

• Unlimited memory (cf. previous foil):
– for wi, we know all its predecessors w1,w2,w3,...,wi-1

• Limited memory:
– we disregard “too old” predecessors
– remember only k previous words: wi-k,wi-k+1,...,wi-1

– called “kth order Markov approximation”

• + stationary character (no change over time):
p(W) i=1..dp(wi|wi-k,wi-k+1,...,wi-1), d = |W|

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 68

2018/9

n-gram Language Models
• (n-1)th order Markov approximation n-gram LM:

p(W) df i=1..dp(wi|wi-n+1,wi-n+2,...,wi-1) !
• In particular (assume vocabulary |V| = 60k):

• 0-gram LM: uniform model, p(w) = 1/|V|, 1 parameter
• 1-gram LM: unigram model, p(w), 6104 parameters
• 2-gram LM: bigram model, p(wi|wi-1) 3.6109 parameters
• 3-gram LM: trigram model, p(wi|wi-2,wi-1) 2.161014 parameters

prediction history

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 69

2018/9

LM: Observations
• How large n?

– nothing is enough (theoretically)
– but anyway: as much as possible (close to “perfect” model)
– empirically: 3

• parameter estimation? (reliability, data availability, storage space,
...)

• 4 is too much: |V|=60k 1.2961019 parameters
• but: 6-7 would be (almost) ideal (having enough data): in fact, one

can recover the original text ssequence from 7-grams!

• Reliability ~ (1 / Detail) (need compromise)
• For now, keep word forms (no “linguistic” processing)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 70

2018/9

The Length Issue

• n; wn p(w) = 1 n=1..∞wn p(w) >> 1 (∞)
• We want to model all sequences of words

– for “fixed” length tasks: no problem - n fixed, sum is 1
• tagging, OCR/handwriting (if words identified ahead of time)

– for “variable” length tasks: have to account for
• discount shorter sentences

• General model: for each sequence of words of length n,

define p’(w) = np(w) such that n=1..∞n = 1

n=1..∞wn p’(w)=1
e.g., estimate n from data; or use normal or other distribution

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 71

2018/9

Parameter Estimation
• Parameter: numerical value needed to compute p(w|h)
• From data (how else?)
• Data preparation:

• get rid of formatting etc. (“text cleaning”)
• define words (separate but include punctuation, call it “word”)
• define sentence boundaries (insert “words” <s> and </s>)
• letter case: keep, discard, or be smart:

– name recognition
– number type identification
[these are huge problems per se!]

• numbers: keep, replace by <num>, or be smart (form ~
pronunciation)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 72

2018/9

Maximum Likelihood Estimate
• MLE: Relative Frequency...

– ...best predicts the data at hand (the “training data”)

• Trigrams from Training Data T:
– count sequences of three words in T: c3(wi-2,wi-1,wi)

[NB: notation: just saying that the three words follow each other]

– count sequences of two words in T: c2(wi-1,wi):
• either use c2(y,z) = w c3(y,z,w)
• or count differently at the beginning (& end) of data!

p(wi|wi-2,wi-1) =est. c3(wi-2,wi-1,wi) / c2(wi-2,wi-1) !
UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 73

2018/9

Character Language Model

• Use individual characters instead of words:

• Same formulas etc.
• Might consider 4-grams, 5-grams or even more
• Good only for language comparison
• Transform cross-entropy between letter- and

word-based models:
HS(pc) = HS(pw) / avg. # of characters/word in S

p(W) df i=1..dp(ci|ci-n+1,ci-n+2,...,ci-1)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 74

2018/9

LM: an Example

• Training data:
<s> <s> He can buy the can of soda.

– Unigram: p1(He) = p1(buy) = p1(the) = p1(of) = p1(soda) = p1(.) = .125

p1(can) = .25

– Bigram: p2(He|<s>) = 1, p2(can|He) = 1, p2(buy|can) = .5,
p2(of|can) = .5, p2(the|buy) = 1,...

– Trigram: p3(He|<s>,<s>) = 1, p3(can|<s>,He) = 1,
p3(buy|He,can) = 1, p3(of|the,can) = 1, ..., p3(.|of,soda) = 1.

– Entropy: H(p1) = 2.75, H(p2) = .25, H(p3) = 0 Great?!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 75

2018/9

LM: an Example (The Problem)
• Cross-entropy:
• S = <s> <s> It was the greatest buy of all.
• Even HS(p1) fails (= HS(p2) = HS(p3) =), because:

– all unigrams but p1(the), p1(buy), p1(of) and p1(.) are 0.
– all bigram probabilities are 0.
– all trigram probabilities are 0.

• We want: to make all (theoretically possible*)
probabilities non-zero.

*in fact, all: remember our graph from day 1?

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 76

LM Smoothing
(And the EM Algorithm)

2018/9

The Zero Problem
• “Raw” n-gram language model estimate:

– necessarily, some zeros
• !many: trigram model 2.161014 parameters, data ~ 109 words

– which are true 0?
• optimal situation: even the least frequent trigram would be seen

several times, in order to distinguish it’s probability vs. other
trigrams

• optimal situation cannot happen, unfortunately (open question:
how many data would we need?)

– we don’t know
– we must eliminate the zeros

• Two kinds of zeros: p(w|h) = 0, or even p(h) = 0!
UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 78

2018/9

Why do we need Nonzero Probs?

• To avoid infinite Cross Entropy:
– happens when an event is found in test data which has

not been seen in training data
H(p) = prevents comparing data with 0 “errors”

• To make the system more robust
– low count estimates:

• they typically happen for “detailed” but relatively rare
appearances

– high count estimates: reliable but less “detailed”

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 79

2018/9

Eliminating the Zero Probabilities:
Smoothing

• Get new p’(w) (same): almost p(w) but no zeros
• Discount w for (some) p(w) > 0: new p’(w) < p(w)

wdiscounted (p(w) - p’(w)) = D

• Distribute D to all w; p(w) = 0: new p’(w) > p(w)
– possibly also to other w with low p(w)

• For some w (possibly): p’(w) = p(w)
• Make sure wp’(w) = 1
• There are many ways of smoothing

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 80

2018/9

Smoothing by Adding 1
• Simplest but not really usable:

– Predicting words w from a vocabulary V, training data T:
p’(w|h) = (c(h,w) + 1) / (c(h) + |V|)
• for non-conditional distributions: p’(w) = (c(w) + 1) / (|T| + |V|)

– Problem if |V| > c(h) (as is often the case; even >> c(h)!)

• Example: Training data: <s> what is it what is small ? |T| = 8
• V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
• p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = .252.1252 .001

p(it is flying.) = .125.2502 = 0
• p’(it) =.1, p’(what) =.15, p’(.)=.05 p’(what is it?) = .152.12 .0002

p’(it is flying.) = .1.15.052 .00004

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 81

2018/9

Adding less than 1

• Equally simple:
– Predicting words w from a vocabulary V, training data T:

p’(w|h) = (c(h,w) +) / (c(h) + |V|),
• for non-conditional distributions: p’(w) = (c(w) +) / (|T| + |V|)

• Example: Training data: <s> what is it what is small ? |T| = 8
• V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
• p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = .252.1252 .001

p(it is flying.) = .125.2502 = 0
• Use = .1:
• p’(it).12, p’(what).23, p’(.).01 p’(what is it?) = .232.122 .0007

p’(it is flying.) = .12.23.012 .000003

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 82

2018/9

Good - Turing

• Suitable for estimation from large data
– similar idea: discount/boost the relative frequency estimate:

pr(w) = (c(w) + 1) N(c(w) + 1) / (|T| N(c(w))) ,
where N(c) is the count of words with count c (count-of-

counts)
specifically, for c(w) = 0 (unseen words), pr(w) = N(1) / (|T| N(0))

– good for small counts (< 5-10, where N(c) is high)
– variants (see MS)
– normalization! (so that we have w p’(w) = 1)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 83

2018/9

Good-Turing: An Example
• Example: remember: pr(w) = (c(w) + 1) N(c(w) + 1) / (|T| N(c(w)))

Training data: <s> what is it what is small ? |T| = 8
• V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12

p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = .252.1252 .001
p(it is flying.) = .125.2502 = 0

• Raw reestimation (N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0 for i > 2):
pr(it) = (1+1)N(1+1)/(8N(1)) = 22/(84) = .125
pr(what) = (2+1)N(2+1)/(8N(2)) = 30/(82) = 0: keep orig. p(what)
pr(.) = (0+1)N(0+1)/(8N(0)) = 14/(86) .083

• Normalize (divide by 1.5 = w|V|pr(w)) and compute:
p’(it).08, p’(what).17, p’(.).06 p’(what is it?) = .172.082 .0002

p’(it is flying.) = .08.17.062 .00004

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 84

2018/9

Smoothing by Combination:
Linear Interpolation

• Combine what?
• distributions of various level of detail vs. reliability

• n-gram models:
• use (n-1)gram, (n-2)gram, ..., uniform

reliability

detail

• Simplest possible combination:
– sum of probabilities, normalize:

• p(0|0) = .8, p(1|0) = .2, p(0|1) = 1, p(1|1) = 0, p(0) = .4, p(1) = .6:
• p’(0|0) = .6, p’(1|0) = .4, p’(0|1) = .7, p’(1|1) = .3

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 85

2018/9

Typical n-gram LM Smoothing
• Weight in less detailed distributions using =(0,,,):

p’(wi| wi-2 ,wi-1) = p3(wi| wi-2 ,wi-1) +
p2(wi| wi-1) + p1(wi) + 0 /|V|

• Normalize:
i > 0, i=0..n i = 1 is sufficient (0 = 1 - i=1..n i) (n=3)

• Estimation using MLE:
– fix the p3, p2, p1 and |V| parameters as estimated from the

training data
– then find such {i} which minimizes the cross entropy

(maximizes probability of data): -(1/|D|)i=1..|D|log2(p’(wi|hi))

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 86

2018/9

Held-out Data
• What data to use?

– try the training data T: but we will always get = 1
• why? (let piT be an i-gram distribution estimated using r.f. from T)
• minimizing HT(p’) over a vector , p’ = p3T+p2T+p1T+/|V|

– remember: HT(p’) = H(p3T)+D(p3T||p’);
• (p3T fixed H(p3T) fixed, best)

– which p’ minimizes HT(p’)? ... a p’ for which D(p3T|| p’)=0
– ...and that’s p3T (because D(p||p) = 0, as we know).
– ...and certainly p’ = p3T if = 1 (maybe in some other cases, too).
– (p’ = 1 p3T + 0 p2T + 0 p1T + 0/|V|)

– thus: do not use the training data for estimation of
• must hold out part of the training data (heldout data, H):
• ...call the remaining data the (true/raw) training data, T
• the test data S (e.g., for comparison purposes): still different data!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 87

2018/9

The Formulas
• Repeat: minimizing -(1/|H|)i=1..|H|log2(p’(wi|hi)) over

p’(wi| hi) = p’(wi| wi-2 ,wi-1) = p3(wi| wi-2 ,wi-1) +
p2(wi| wi-1) + p1(wi) + 0 /|V|

• “Expected Counts (of lambdas)”: j = 0..3

c(j) = i=1..|H| (jpj(wi|hi) / p’(wi|hi))

• “Next ”: j = 0..3

j,next = c(j) / k=0..3 (c(k))

!

!

!
UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 88

2018/9

The (Smoothing) EM Algorithm

1. Start with some , such that j > 0 for all j 0..3.
2. Compute “Expected Counts” for each j.
3. Compute new set of j, using the “Next ” formula.
4. Start over at step 2, unless a termination condition is

met.
• Termination condition: convergence of .

– Simply set an , and finish if |j - j,next| < for each j (step 3).
• Guaranteed to converge:

follows from Jensen’s inequality, plus a technical proof.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 89

2018/9

Remark on Linear Interpolation
Smoothing

• “Bucketed” smoothing:
– use several vectors of instead of one, based on (the

frequency of) history: (h)
• e.g. for h = (micrograms,per) we will have

(h) = (.999,.0009,.00009,.00001)
(because “cubic” is the only word to follow...)

– actually: not a separate set for each history, but rather a
set for “similar” histories (“bucket”):
(b(h)), where b: V2 N (in the case of trigrams)

b classifies histories according to their reliability (~ frequency)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 90

2018/9

Bucketed Smoothing: The Algorithm

• First, determine the bucketing function b (use heldout!):
– decide in advance you want e.g. 1000 buckets
– compute the total frequency of histories in 1 bucket (fmax(b))
– gradually fill your buckets from the most frequent bigrams so

that the sum of frequencies does not exceed fmax(b) (you might
end up with slightly more than 1000 buckets)

• Divide your heldout data according to buckets
• Apply the previous algorithm to each bucket and its data

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 91

2018/9

Simple Example
• Raw distribution (unigram only; smooth with uniform):

p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

• Heldout data: baby; use one set of (1: unigram, 0: uniform)

• Start with 1 = .5; p’(b) = .5 x .5 + .5 / 26 = .27
p’(a) = .5 x .25 + .5 / 26 = .14
p’(y) = .5 x 0 + .5 / 26 = .02

c(1) = .5x.5/.27 + .5x.25/.14 + .5x.5/.27 + .5x0/.02 = 2.72
c(0) = .5x.04/.27 + .5x.04/.14 + .5x.04/.27 + .5x.04/.02 = 1.28

Normalize: 1,next = .68, 0,next = .32.
Repeat from step 2 (recompute p’ first for efficient computation, then c(i), ...)

Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 92

2018/9

Some More Technical Hints
• Set V = {all words from training data}.

• You may also consider V = T H, but it does not make the coding
in any way simpler (in fact, harder).

• But: you must never use the test data for you vocabulary!

• Prepend two “words” in front of all data:
• avoids beginning-of-data problems
• call these index -1 and 0: then the formulas hold exactly

• When cn(w,h) = 0:
• Assign 0 probability to pn(w|h) where cn-1(h) > 0, but a uniform

probability (1/|V|) to those pn(w|h) where cn-1(h) = 0 [this must be
done both when working on the heldout data during EM, as well as
when computing cross-entropy on the test data!]

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 93

Words and the Company They Keep

2018/9

Motivation

• Environment:
– mostly “not a full analysis (sentence/text parsing)”

• Tasks where “words & company” are important:
– word sense disambiguation (MT, IR, TD, IE)
– lexical entries: subdivision & definitions (lexicography)
– language modeling (generalization, [kind of] smoothing)
– word/phrase/term translation (MT, Multilingual IR)
– NL generation (“natural” phrases) (Generation, MT)
– parsing (lexically-based selectional preferences)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 95

2018/9

Collocations

• Collocation
– Firth: “word is characterized by the company it keeps”;

collocations of a given word are statements of the
habitual or customary places of that word.

– non-compositionality of meaning
• cannot be derived directly from its parts (heavy rain)

– non-substitutability in context
• for parts (red light)

– non-modifiability (& non-transformability)
• kick the yellow bucket; take exceptions to

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 96

2018/9

Association and Co-occurence;
Terms

• Does not fall under “collocation”, but:
• Interesting just because it does often [rarely] appear

together or in the same (or similar) context:
• (doctors, nurses)
• (hardware,software)
• (gas, fuel)
• (hammer, nail)
• (communism, free speech)

• Terms:
– need not be > 1 word (notebook, washer)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 97

2018/9

Collocations of Special Interest
• Idioms: really fixed phrases

• kick the bucket, birds-of-a-feather, run for office

• Proper names: difficult to recognize even with lists
• Tuesday (person’s name), May, Winston Churchill, IBM, Inc.

• Numerical expressions
– containing “ordinary” words

• Monday Oct 04 1999, two thousand seven hundred fifty

• Phrasal verbs
– Separable parts:

• look up, take off

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 98

2018/9

Further Notions

• Synonymy: different form/word, same meaning:
• notebook / laptop

• Antonymy: opposite meaning:
• new/old, black/white, start/stop

• Homonymy: same form/word, different meaning:
• “true” (random, unrelated): can (aux. verb / can of Coke)
• related: polysemy; notebook, shift, grade, ...

• Other:
• Hyperonymy/Hyponymy: general vs. special: vehicle/car
• Meronymy/Holonymy: whole vs. part: body/leg

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 99

2018/9

How to Find Collocations?

• Frequency
– plain
– filtered

• Hypothesis testing
– t test
– test

• Pointwise (“poor man’s”) Mutual Information
• (Average) Mutual Information

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 100

2018/9

Frequency

• Simple
– Count n-grams; high frequency n-grams are candidates:

• mostly function words
• frequent names

• Filtered
– Stop list: words/forms which (we think) cannot be a

part of a collocation
• a, the, and, or, but, not, ...

– Part of Speech (possible collocation patterns)
• A+N, N+N, N+of+N, ...

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 101

2018/9

Hypothesis Testing

• Hypothesis
– something we test (against)

• Most often:
– compare possibly interesting thing vs. “random” chance
– “Null hypothesis”:

• something occurs by chance (that’s what we suppose).
• Assuming this, prove that the probabilty of the “real world” is

then too low (typically < 0.05, also 0.005, 0.001)... therefore reject
the null hypothesis (thus confirming “interesting” things are
happening!)

• Otherwise, it’s possibile there is nothing interesting.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 102

2018/9

t test (Student’s t test)

• Significance of difference
– compute “magic” number against normal distribution (mean)
– using real-world data: (x’ real data mean, s2 variance, N size):

• t = (x’ - / s2 / N

– find in tables (see MS, p. 609):
• d.f. = degrees of freedom (parameters which are not determined by

other parameters)
• percentile level p = 0.05 (or better)

– the bigger t:
• the better chances that there is the interesting feature we hope for (i.e.

we can reject the null hypothesis)
• t: at least the value from the table(s)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 103

2018/9

t test on words
• null hypothesis: independence

• mean : p(w1) p(w2)

• data estimates:
• x’ = MLE of joint probability from data
• s2 is p(1-p), i.e. almost p for small p; N is the data size

• Example: (d.f. ~ sample size)
• ‘general term’ (homework corpus): c(general) = 108, c(term) = 40
• c(general,term) = 2; expected p(general)p(term) = 8.8E-8
• t = (9.0E-6 - 8.8E-8) / (9.0E-6 / 221097)1/2 = 1.40 (not > 2.576) thus

‘general term’ is not a collocation with confidence 0.005
• ‘true species’: (84/1779/9): t = 2.774 > 2.576 !!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 104

2018/9

Pearson’s Chi-square test
• 2 test (general formula): i,j (Oij-Eij)2 / Eij

– where Oij/Eij is the observed/expected count of events i, j

• for two-outcomes-only events:

2 = 221097(219243x9-75x1770)2/1779x84x221013x219318 = 103.39 > 7.88
(at .005 thus we can reject the independence assumption)

 wright \ wleft
 = true true

 = species 9 1,770
 species 75 219,243

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 105

2018/9

Pointwise Mutual Information

• This is NOT the MI as defined in Information Theory
– (IT: average of the following; not of values)

• ...but might be useful:
I’(a,b) = log2 (p(a,b) / p(a)p(b)) = log2 (p(a|b) / p(a))

• Example (same):
I’(true,species) = log2 (4.1e-5 / 3.8e-4 x 8.0e-3) = 3.74
I’(general,term) = log2 (9.0e-6 / 1.8e-4 x 4.9e-4) = 6.68

• measured in bits but it is difficult to give it an interpretation
• used for ranking (~ the null hypothesis tests)/

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 106

Mutual Information and Word Classes

2018/9

The Problem

• Not enough data
• Language Modeling: we do not see “correct” n-grams

– solution so far: smoothing
• suppose we see:

– short homework, short assignment, simple homework
• but not:

– simple assigment
• What happens to our (bigram) LM?

– p(homework | simple) = high probability
– p(assigment | simple) = low probability (smoothed with p(assigment))

– They should be much closer!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 108

2018/9

Word Classes

• Observation: similar words behave in a similar way
– trigram LM:
– trigram LM, conditioning:

– a ... homework (any atribute of homework: short, simple, late, difficult),
– ... the woods (any verb that has the woods as an object: walk, cut, save)

– trigram LM: both:
– a (short,long,difficult,...) (homework,assignment,task,job,...)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 109

2018/9

Solution
• Use the Word Classes as the “reliability” measure
• Example: we see

• short homework, short assignment, simple homework

– but not:
• simple assigment

– Cluster into classes:
• (short, simple) (homework, assignment)

– covers “simple assignment”, too

• Gaining: realistic estimates for unseen n-grams
• Loosing: accuracy (level of detail) within classes

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 110

2018/9

The New Model
• Rewrite the n-gram LM using classes:

– Was: [k = 1..n]
• pk(wi|hi) = c(hi,wi) / c(hi) [history: (k-1) words]

– Introduce classes:

pk(wi|hi) = p(wi|ci) pk(ci|hi) !
• history: classes, too: [for trigram: hi = ci-2,ci-1, bigram: hi = ci-1]

– Smoothing as usual
• over pk(wi|hi), where each is defined as above (except uniform

which stays at 1/|V|)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 111

2018/9

Training Data

• Suppose we already have a mapping:
– r: V C assigning each word its class (ci = r(wi))

• Expand the training data:
– T = (w1, w2, ..., w|T|) into
– TC = (<w1,r(w1)>, <w2,r(w2)>, ..., <w|T|,r(w|T|)>)

• Effectively, we have two streams of data:
– word stream: w1, w2, ..., w|T|

– class stream: c1, c2, ..., c|T| (def. as ci = r(wi))

• Expand Heldout, Test data too

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 112

2018/9

Training the New Model

• As expected, using ML estimates:
– p(wi|ci) = p(wi|r(wi)) = c(wi) / c(r(wi)) = c(wi) / c(ci)

• !!! c(wi,ci) = c(wi) [since ci determined by wi]
– pk(ci|hi):

• p3(ci|hi) = p3(ci|ci-2 ,ci-1) = c(ci-2 ,ci-1,ci) / c(ci-2 ,ci-1)
• p2(ci|hi) = p2(ci|ci-1) = c(ci-1,ci) / c(ci-1)
• p1(ci|hi) = p1(ci) = c(ci) / |T|

• Then smooth as usual
– not the p(wi|ci) nor pk(ci|hi) individually, but the pk(wi|hi)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 113

2018/9

Classes: How To Get Them

• We supposed the classes are given
• Maybe there are in [human] dictionaries, but...

– dictionaries are incomplete
– dictionaries are unreliable
– do not define classes as equivalence relation (overlap)
– do not define classes suitable for LM

• small, short... maybe; small and difficult?

• we have to construct them from data (again...)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 114

2018/9

Creating the Word-to-Class Map

• We will talk about bigrams from now
• Bigram estimate:

• p2(ci|hi) = p2(ci|ci-1) = c(ci-1,ci) / c(ci-1) = c(r(wi-1),r(wi)) / c(r(wi-1))

• Form of the model:
– just raw bigram for now:

• P(T) = i=1..|T|p(wi|r(wi)) p2(r(wi)|r(wi-1)) (p2(c1|c0) =df p(c1))

• Maximize over r (given r fixed p, p2):
– define objective L(r) = 1/|T| i=1..|T|log(p(wi|r(wi)) p2(r(wi))|r(wi-1)))
– rbest = argmaxr L(r) (L(r) = norm. logprob of training data... as usual)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 115

2018/9

Simplifying the Objective Function
• Start from L(r) = 1/|T| i=1..|T|log(p(wi|r(wi)) p2(r(wi)|r(wi-1))):

1/|T| i=1..|T|log(p(wi|r(wi)) p(r(wi)) p2(r(wi)|r(wi-1)) / p(r(wi))) =

1/|T| i=1..|T|log(p(wi,r(wi)) p2(r(wi)|r(wi-1)) / p(r(wi))) =

1/|T| i=1..|T|log(p(wi)) + 1/|T| i=1..|T|log(p2(r(wi)|r(wi-1)) / p(r(wi))) =

-H(W) + 1/|T| i=1..|T|log(p2(r(wi)|r(wi-1)) p(r(wi-1)) / (p(r(wi-1)) p(r(wi)))) =

-H(W) + 1/|T| i=1..|T|log(p(r(wi),r(wi-1)) / (p(r(wi-1)) p(r(wi)))) =

-H(W) + d,eC p(d,e) log(p (d,e) / (p(d) p(e))) =

-H(W) + I(D,E)
(event E picks class adjacent (to the right) to the one picked by D)

• Since W does not depend on r, we ended up with I(D,E).
the need to maximize

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 116

2018/9

Maximizing Mutual Information
(dependent on the mapping r)

• Result from previous foil:
– Maximizing the probability of data amounts to

maximizing I(D,E), the mutual information of the
adjacent classes.

• Good:
– We know what a MI is, and we know how to maximize.

• Bad:
– There is no way how to maximize over so many

possible partitionings: |V||V| - no way to test them all.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 117

2018/9

Training or Heldout?

• Training:
– best I(D,E): all words in a class of its own

will not give us anything new.

• Heldout: ok, but:
– must smooth to test any possible partitioning (unfeasible):

using raw model: 0 probability of heldout (almost) guaranteed
 will not be able to compare anything

– some smoothing estimates? (to be explored...)

• Solution:
– use training anyway, but only keep I(D,E) as large as possible

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 118

2018/9

The Greedy Algorithm
• Define merging operation on the mapping r: V C:

– merge: R C C R’ C-1: (r,k,l) r’,C’ such that
– C-1 = {C - {k,l} {m}} (throw out k and l, add new m C)
– r’(w) = m for w rINV{k,l}),

..... r(w) otherwise.

• 1. Start with each word in its own class (C = V), r = id.
• 2. Merge two classes k,l into one, m, such that

(k,l) = argmaxk,l Imerge(r,k,l)(D,E).

• 3. Set new (r,C) = merge(r,k,l).

• 4. Repeat 2 and 3 until |C| reaches predetermined size.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 119

2018/9

Word Classes in Applications

• Word Sense Disambiguation: context not seen
[enough(-times)]

• Parsing: verb-subject, verb-object relations
• Speech recognition (acoustic model): need more

instances of [rare(r)] sequences of phonemes
• Machine Translation: translation equivalent

selection [for rare(r) words]

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 120

Word Classes:
Programming Tips & Tricks

2018/9

The Algorithm (review)

• Define merge(r,k,l) = (r’,C’) such that
• C’ = C - {k,l} {m (a new class)}
• r’(w) = r(w) except for k,l member words for which it is m.

• 1. Start with each word in its own class (C = V), r = id.
• 2. Merge two classes k,l into one, m, such that

(k,l) = argmaxk,,l Imerge(r,k,l)(D,E).

• 3. Set new (r,C) = merge(r,k,l).

• 4. Repeat 2 and 3 until |C| reaches a predetermined size.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 122

2018/9

Complexity Issues

• Still too complex:
– |V| iterations of the steps 2 and 3.
– |V|2 steps to maximize argmaxk,l (selecting k,l freely

from |C|, which is in the order of |V|2)
– |V|2 steps to compute I(D,E) (sum within sum, all

classes, also: includes log)
– total: |V|5

– i.e., for |V| = 100, about 1010 steps; ~ several hours!
– but |V| ~ 50,000 or more

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 123

2018/9

Trick #1: Recomputing The MI
the Smart Way: Subtracting...

• Bigram count table:

• Test-merging c2 and c4: recompute only rows/cols 2 & 4:
– subtract column/row (2 & 4) from the MI sum (intersect.!)
– add sums of merged counts (row & column)

 l \ r c1 c2 c3 c4

c1 10 2 0 1
c2 0 0 5 2
c3 0 2 0 3
c4 2 3 0 0

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 124

2018/9

...and Adding

• Add the merged counts:

• Be careful at intersections:
– (don’t forget to add this:)

 l \ r c1 c2’ c3

c1 10 3 0
c2’ 2 5 5
c3 0 5 0

c2 c3 c4

c2 0 5 2
c3 2 0 3
c4 3 0 0

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 125

2018/9

Trick #2: Precompute the
Counts-to-be-Subtracted

• Summing loop goes through i,j
• ...but the single row/column sums do not depend on

the (resulting sums after the) merge
• can be precomputed

• only 2k logs to compute at each algorithm iteration, instead of
k2

• Then for each “merge-to-be” compute only add-on
sums, plus “intersection adjustment”

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 126

2018/9

Formulas for Tricks #1 and #2

• Let’s have k classes at a certain iteration. Define:
qk(l,r) = pk(l,r) log(pk(l,r) / (pkl(l) pkr(r)))

now the same, but using counts:
qk(l,r) = ck(l,r)/N log(N ck(l,r)/(ckl(l) ckr(r)))

• Define further (row+column i sum):
sk(a) = l=1..kqk(l,a) + r=1..kqk(a,r) - qk(a,a)

• Then, the subtraction part of Trick #1 amounts to
subk(a,b) = sk(a) + sk(b) - qk(a,b) - qk(b,a)

intersection adjustment

remaining intersect. adj.

precomputed

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 127

2018/9

Formulas - cont.
• After-merge add-on:

addk(a,b) = l=1..k,la,bqk(l,a+b) + r=1..k,ra,bqk(a+b,r) + qk(a+b,a+b)

• What is it a+b? Answer: the new (merged) class.
• Hint: use the definition of qk as a “macro”, and then

pk(a+b,r) = pk(a,r) + pk(b,r) (same for other sums, equivalent)

• The above sums cannot be precomputed
• After-merge Mutual Information (Ik is the “old” MI, kept

from previous iteration of the algorithm):
Ik(a,b) (MI after merge of cl. a,b) = Ik - subk(a,b) + addk(a,b)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 128

2018/9

Trick #3: Ignore Zero Counts

• Many bigrams are 0
– (see the paper: Canadian Hansards, < .1 % of bigrams

are non-zero)

• Create linked lists of non-zero counts in columns
and rows (similar effect: use perl’s hashes)

• Update links after merge (after step 3)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 129

2018/9

Trick #4: Use Updated Loss of MI
• We are now down to |V|4: |V| merges, each merge

takes |V|2 “test-merges”, each test-merge involves
order-of-|V| operations (addk(i,j) term, foil #8)

• Observation: many numbers (sk, qk) needed to
compute the mutual information loss due to a
merge of i+j do not change: namely, those which
are not in the vicinity of neither i nor j.

• Idea: keep the MI loss matrix for all pairs of
classes, and (after a merge) update only those cells
which have been influenced by the merge.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 130

2018/9

Formulas for Trick #4 (sk-1,Lk-1)

• Keep a matrix of “losses” Lk(d,e).1

• Init: Lk(d,e) = subk(d,e) - addk(d,e) [then Ik(d,e) = Ik - Lk(d,e)]
• Suppose a,b are now the two classes merged into a:
• Update (k-1: index used for the next iteration; i,j a,b):

– sk-1(i) = sk(i) - qk(i,a) - qk(a,i) - qk(i,b) - qk(b,i) + qk-1(a,i) + qk-1(i,a)
– 2Lk-1(i,j) = Lk(i,j) - sk(i) + sk-1(i) - sk(j) + sk-1(j) +

+ qk(i+j,a) + qk(a,i+j) + qk(i+j,b) + qk(b,i+j) -
- qk-1(i+j,a) - qk-1(a,i+j) [NB: may substitute even for sk , sk-1]

NB 1 Lk is symmetrical Lk(d,e) = Lk(e,d) (qk is something different!)
2The update formula Lk-1(l,m) is wrong in the Brown et. al paper

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 131

2018/9

Completing Trick #4

• sk-1(a) must be computed using the “Init” sum.
• Lk-1(a,i) = Lk-1(i,a) must be computed in a similar way,

for all i a,b.
• sk-1(b), Lk-1(b,i), Lk-1(i,b) are not needed anymore (keep

track of such data, i.e. mark every class already merged
into some other class and do not use it anymore).

• Keep track of the minimal loss during the Lk(i,j) update
process (so that the next merge to be taken is obvious
immediately after finishing the update step).

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 132

2018/9

Efficient Implementation
• Data Structures: (N - # of bigrams in data [fixed])

– Hist(k) history of merges
• Hist(k) = (a,b) merged when the remaining number of classes

was k

– ck(i,j) bigram class counts [updated]
– ckl(i), ckr(i) unigram (marginal) counts [updated]
– Lk(a,b) table of losses; upper-right trianlge [updated]
– sk(a) “subtraction” subterms [optionally updated]
– qk(i,j) subterms involving a log [opt. updated]

• The optionally updated data structures will give linear
improvement only in the subsequent steps, but at least sk(i) is
necessary in the initialization phase (1st iteration)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 133

2018/9

Implementation: the Initialization Phase

• 1 Read data in, init counts ck(l,r); then l,r,a,b; a < b:
• 2 Init unigram counts:

ckl(l) = r=1..kck(l,r), ckr(r) = l=1..kck(l,r)
– complicated? remember, must take care of start & end of data!

• 3 Init qk(l,r): use the 2nd formula (count-based) on foil 7,
qk(l,r) = ck(l,r)/N log(N ck(l,r)/(ckl(l) ckr(r)))

• 4 Init sk(a) = l=1..kqk(l,a) + r=1..kqk(a,r) - qk(a,a)
• 5 Init Lk(a,b) = sk(a)+sk(b)-qk(a,b)-qk(b,a)-qk(a+b,a+b)+

- l=1..k,la,bqk(l,a+b) - r=1..k,ra,bqk(a+b,r)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 134

2018/9

Implementation: Select & Update

• 6 Select the best pair (a,b) to merge into a (watch the
candidates when computing Lk(a,b)); save to Hist(k)

• 7 Optionally, update qk(i,j) for all i,j b, get qk-1(i,j)
– remember those qk(i,j) values needed for the updates below

• 8 Optionally, update sk(i) for all i b, to get sk-1(i)
– again, remember the sk(i) values for the “loss table” update

• 9 Update the loss table, Lk(i,j), to Lk-1(i,j), using the
tabulated qk, qk-1, sk and sk-1 values, or compute the
needed qk(i,j) and qk-1(i,j) values dynamically from the
counts: ck(i+j,b) = ck(i,b) + ck(j,b); ck-1(a,i) = ck(a+b,i)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 135

2018/9

Towards the Next Iteration

• 10 During the Lk(i,j) update, keep track of the
minimal loss of MI, and the two classes which
caused it.

• 11 Remember such best merge in Hist(k).
• 12 Get rid of all sk, qk, Lk values.
• 13 Set k = k -1; stop if k == 1.
• 14 Start the next iteration

– either by the optional updates (steps 7 and 8), or
– directly updating Lk(i,j) again (step 9).

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 136

2018/9

Moving Words Around

• Improving Mutual Information
– take a word from one class, move it to another (i.e., two

classes change: the moved-from and the moved-to),
compute Inew(D,E); keep change permanent if

Inew(D,E) > I(D,E)
– keep moving words until no move improves I(D,E)

• Do it at every iteration, or at every m iterations
• Use similar “smart” methods as for merging

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 137

2018/9

Using the Hierarchy

• Natural Form of Classes
– follows from the sequence of merges:

evaluation assessment analysis understanding opinion

1

2

3

4

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 138

2018/9

Numbering the Classes
(within the Hierarchy)

• Binary branching
• Assign 0/1 to the left/right branch at every node:

evaluation assessment analysis understanding opinion [padding: 0]
000 001 010 100 110

010

0

0

1

1

1

- prefix determines class:
00 ~ {evaluation,assessment}

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 139

Markov Models

2018/9

Review: Markov Process
• Bayes formula (chain rule):
P(W) = P(w1,w2,...,wT) = i=1..T p(wi|w1,w2,..,wi-n+1,..,wi-1)

• n-gram language models:
– Markov process (chain) of the order n-1:

P(W) = P(w1,w2,...,wT) = i=1..T p(wi|wi-n+1,wi-n+2,..,wi-1)
Using just one distribution (Ex.: trigram model: p(wi|wi-2,wi-1)):

Positions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Words: My car broke down , and within hours Bob ’s car broke down , too .

p(,|broke down) = p(w5|w3,w4)) = p(w14|w12,w13)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 141

2018/9

Markov Properties

• Generalize to any process (not just words/LM):
– Sequence of random variables: X = (X1,X2,...,XT)
– Sample space S (states), size N: S = {s0,s1,s2,...,sN}

1. Limited History (Context, Horizon):
i 1..T; P(Xi|X1,...,Xi-1) = P(Xi|Xi-1)

1 7 3 7 9 0 6 7 3 4 5... 1 7 3 7 9 0 6 7 3 4 5...

2. Time invariance (M.C. is stationary, homogeneous)
i 1..T, y,x S; P(Xi=y|Xi-1=x) = p(y|x)

1 7 3 7 9 0 6 7 3 4 5...
? ok...same distribution

1 7 3 7 9 0 6 7 7

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 142

2018/9

Long History Possible

• What if we want trigrams:
1 7 3 7 9 0 6 7 3 4 5...

• Formally, use transformation:
Define new variables Qi, such that Xi = {Qi-1,Qi}:

Then
P(Xi|Xi-1) = P(Qi-1,Qi|Qi-2,Qi-1) = P(Qi|Qi-2,Qi-1)

Predicting (Xi): 1 7 3 7 9 0 6 7 3 4 5...
 1 7 3 0 6 7 3 4

History (Xi-1 = {Qi-2,Qi-1}): 1 7 9 0 6 7 3

9 0
0
9

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 143

2018/9

Graph Representation: State Diagram

• S = {s0,s1,s2,...,sN}: states
• Distribution P(Xi|Xi-1):

• transitions (as arcs) with probabilities attached to them:

´

a

t

o

e
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 = .528

sum of outgoing probs = 1

Bigram
case:

p(o|a) = 0.1

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 144

2018/9

The Trigram Case

• S = {s0,s1,s2,...,sN}: states: pairs si = (x,y)
• Distribution P(Xi|Xi-1): (r.v. X: generates pairs si)

´´

´o

´t

t,o

t,e
0.6

0.4
0.88

0.12

p(toe) = .6 ´ .88 ´ .07 .037

o,n

e,n

n,e

1

o,e

0.07

0.93

1

1
1

1

1

p(one) = ?

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 145

2018/9

Finite State Automaton

• States ~ symbols of the [input/output] alphabet
– pairs (or more): last element of the n-tuple

• Arcs ~ transitions (sequence of states)
• [Classical FSA: alphabet symbols on arcs:

– transformation: arcs nodes]
• Possible thanks to the “limited history” M’ov Property
• So far: Visible Markov Models (VMM)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 146

2018/9

Hidden Markov Models

• The simplest HMM: states generate [observable] output
(using the “data” alphabet) but remain “invisible”:

´

3

1

4

2
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 = .528
p(4|3) = 0.1

a

t
e

o

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 147

2018/9

Added Flexibility

• So far, no change; but different states may
generate the same output (why not?):

´

3

1

4

2
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 +
.4 ´ .1 ´ 1 = .568

p(4|3) = 0.1

t

t
e

o

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 148

2018/9

Output from Arcs...

• Added flexibility: Generate output from arcs, not
states:

´

3

1

4

2
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

0.1
t

t
e

o

e

o
e

e

o

t

p(toe) = .6 ´ .88 ´ 1 +
.4 ´ .1 ´ 1 +
.4 ´ .2 ´ .3 +
.4 ´ .2 ´ .4 = .624

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 149

2018/9

... and Finally, Add Output Probabilities
• Maximum flexibility: [Unigram] distribution

(sample space: output alphabet) at each output arc:

´

3

1

4

2
0.6

1
0.4 0.88 1

0.12

p(t)=.5
p(o)=.2
p(e)=.3

p(toe) = .6´´.88´´1´ +
.4´ ´1´ ´.88´ +
.4´ ´1´ ´.12´

 .237

!simplified!
p(t)=.8
p(o)=.1
p(e)=.1

p(t)=0
p(o)=0
p(e)=1

p(t)=.1
p(o)=.7
p(e)=.2

p(t)=0
p(o)=.4
p(e)=.6

p(t)=0
p(o)=1
p(e)=0

0.88

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 150

2018/9

Slightly Different View
• Allow for multiple arcs from si sj, mark them

by output symbols, get rid of output distributions:

´

3

1

4

2
t,.48

t,.2
o,.616 e,.6

e,.12

p(toe) = .48´.616´.6+
.2´1´.176 +
.2´1´.12 .237

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

In the future, we will use the view more convenient for the problem at hand.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 151

2018/9

Formalization
• HMM (the most general case):

– five-tuple (S, s0, Y, PS, PY), where:
• S = {s0,s1,s2,...,sT} is the set of states, s0 is the initial state,
• Y = {y1,y2,...,yV} is the output alphabet,
• PS(sj|si) is the set of prob. distributions of transitions,

– size of PS: |S|2.
• PY(yk|si,sj) is the set of output (emission) probability distributions.

– size of PY: |S|2 x |Y|

• Example:
– S = {x, 1, 2, 3, 4}, s0 = x
– Y = { t, o, e }

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 152

2018/9

Formalization - Example

• Example (for graph, see foils 11,12):
– S = {x, 1, 2, 3, 4}, s0 = x
– Y = { e, o, t }
– PS: PY:

0

0
0
0
0

0
0

0
0

.6 .40 0

0
0
1 0 0

.12 .88
10

10 0

x 1 2

2

3

3

4

4

1

x

x 1 2

2

3

3

4

4

1

xx 1 2

2

3

3

4

4

1

xx 1 2

2

3

3

4

4

1

x
t

o
e

.8 .5
.10
0

0
0

.7
.2

 = 1

 = 1

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 153

2018/9

Using the HMM

• The generation algorithm (of limited value :-)):
1. Start in s = s0.
2. Move from s to s’ with probability PS(s’|s).
3. Output (emit) symbol yk with probability PS(yk|s,s’).
4. Repeat from step 2 (until somebody says enough).

• More interesting usage:
– Given an output sequence Y = {y1,y2,...,yk}, compute its

probability.
– Given an output sequence Y = {y1,y2,...,yk}, compute the

most likely sequence of states which has generated it.
– ...plus variations: e.g., n best state sequences

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 154

HMM Algorithms: Trellis and Viterbi

2018/9

HMM: The Two Tasks

• HMM (the general case):
– five-tuple (S, S0, Y, PS, PY), where:

• S = {s1,s2,...,sT} is the set of states, S0 is the initial state,
• Y = {y1,y2,...,yV} is the output alphabet,
• PS(sj|si) is the set of prob. distributions of transitions,
• PY(yk|si,sj) is the set of output (emission) probability distributions.

• Given an HMM & an output sequence Y = {y1,y2,...,yk}:
(Task 1) compute the probability of Y;
(Task 2) compute the most likely sequence of states which has

generated Y.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 156

2018/9

Trellis - Deterministic Output
HMM:

´

C

A

D

B

0.40.3

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 +
.4 ´ .1 ´ 1 = .568

p(4|3) = 0.1

t

t
e

o

Y: t o e

time/position t
0 1 2 3 4...

(´,0) = 1 (A,1) = .6

(C,1) = .4

.6

.4B,0

´,0

C,0

D,0

A,0

B,1

´,1

C,1

D,1

A,1

B,2

´,2

C,2

D,2

A,2

B,3

´,3

C,3

D,3

A,3

(D,2) = .568 (B,3) = .568- trellis state: (HMM state, position)

Trellis:

- each state: holds one number (prob):

“rollout”

- probability or Y: in the last state

+

.88

.1 1

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 157

2018/9

Creating the Trellis: The Start

• Start in the start state (),
– set its (,0) to 1.

• Create the first stage:
– get the first “output” symbol y1

– create the first stage (column)
– but only those trellis states

which generate y1

– set their (state,1) to the PS(state|) (,0)
• ...and forget about the 0-th stage

.6

.4

´,0

C,1

A,1

position/stage
0 1

y1: t

 = .6
 = 1
}

1

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 158

2018/9

Trellis: The Next Step
• Suppose we are in stage i
• Creating the next stage:

– create all trellis states in the
next stage which generate
yi+1, but only those reachable
from any of the stage-i states

– set their (state,i+1) to:

PS(state|prev.state) (prev.state, i)
(add up all such numbers on arcs
going to a common trellis state)

– ...and forget about stage i

C,1

A,1

yi+1 = y2: o

 = .6

 = .4

.88

.1
D,2

 = .568

position/stage
i=1 2

+

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 159

2018/9

Trellis: The Last Step

• Continue until “output” exhausted
– |Y| = 3: until stage 3

• Add together all the (state,|Y|)
• That’s the P(Y).
• Observation (pleasant):

– memory usage max: 2|S|
– multiplications max: |S|2|Y|

B,
3
B,
3

D,2 = .568

 = .568

P(Y) = .568

last position/stage

1

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 160

2018/9

Trellis: The General Case (still, bigrams)

• Start as usual:
– start state (´), set its (´,0) to 1.

´

C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

p(toe) = .48´.616´.6+
.2´1´.176 +
.2´1´.12 .237

´,0

 = 1

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 161

2018/9

General Trellis: The Next Step
• We are in stage i :

– Generate the next stage i+1 as
before (except now arcs generate
output, thus use only those arcs
marked by the output symbol yi+1)

– For each generated state, compute (state,i+1) =
= incoming arcsPY(yi+1|state, prev.state) (prev.state, i)

´

C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

.48

.2

´,0

C,1

A,1 = .48
 = 1

 = .2

y1: t

position/stage
0 1

...and forget about stage i as usual.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 162

2018/9

Trellis: The Complete Example
Stage:

0 1 1 2 2 3

´

C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

C,1

A,1

.48

.2

´,0

C,1

A,1 = .48
 = 1

 = .2

y1: t

A,2

D,2

1

.616

y2: o

A,2

D,2

 = .2

 .29568

B,3

D,3

.12

.176

.6

y3: e

 = .024 + .177408 = .201408

 = .035200

P(Y) = P(toe) = .236608

+

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 163

2018/9

The Case of Trigrams
• Like before, but:

– states correspond to bigrams,
– output function always emits the second output symbol of

the pair (state) to which the arc goes:

Multiple paths not possible trellis not really needed

´´

´o

´t

t,o

t,e
0.6

0.4
0.88

0.12

p(toe) = .6 ´ .88 ´ .07 .037

o,n

e,n

n,e

1

o,e

0.07

0.93

1

1
1

1

1

´´

´t

t,o

o,e

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 164

2018/9

Trigrams with Classes

• More interesting:
– n-gram class LM: p(wi|wi-2,wi-1) = p(wi|ci) p(ci|ci-2,ci-1)

states are pairs of classes (ci-1,ci), and emit “words”:

´´

´V

´C

C,V

0.6

0.4
0.88

p(teo) = .6 ´ ´ .88 ´ ´ .07 ´ .00665

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1 p(t|C) = 1 usual,
p(o|V) = .3 non-
p(e|V) = .6 overlapping
p(y|V) = .1 classes

t t

to,e,yo,e,y

o,e,y

p(toy) = .6 ´ ´ .88 ´ ´ .07 ´ .00111

p(toe) = .6 ´ ´ .88 ´ ´ .07 ´ .00665

p(tty) = .6 ´ ´ .12 ´ ´ 1 ´ .0072

(letters in our example)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 165

2018/9

Class Trigrams: the Trellis

• Trellis generation (Y = “toy”):
´´

´C

C,V

V,V

 = 1

 = .6 x 1

 = .6 x .88 x .3

 = .1584 x .07 x .1
 .00111

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t t

to,e,yo,e,y

o,e,y

p(t|C) = 1
p(o|V) = .3
p(e|V) = .6
p(y|V) = .1

Y: t o y

again, trellis useful
but not really needed

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 166

2018/9

Overlapping Classes

• Imagine that classes may overlap
– e.g. ‘r’ is sometimes vowel sometimes consonant,

belongs to V as well as C:

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
p(try) = ?

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 167

2018/9

Overlapping Classes: Trellis Example

´´

´C

C,V

V,V

 = 1

 = .6 x .3
= .18

 = .18 x .88 x .2
= .03168

 = .03168 x .07 x .4
 .0008870

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t,r t,r

t,ro,e,y,ro,e,y,r

o,e,y,r

Y: t r y p(Y) = .006935

C,C
 = .18 x .12 x .7

= .01512

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

C,V
 = .01512 x 1 x .4
 .006048

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 168

2018/9

Trellis: Remarks

• So far, we went left to right (computing)
• Same result: going right to left (computing)

– supposed we know where to start (finite data)

• In fact, we might start in the middle going left and right
• Important for parameter estimation

(Forward-Backward Algortihm alias Baum-Welch)
• Implementation issues:

– scaling/normalizing probabilities, to avoid too small numbers
& addition problems with many transitions

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 169

2018/9

The Viterbi Algorithm

• Solving the task of finding the most likely sequence
of states which generated the observed data

• i.e., finding
Sbest = argmaxSP(S|Y)

which is equal to (Y is constant and thus P(Y) is fixed):
Sbest = argmaxSP(S,Y) =

= argmaxSP(s0,s1,s2,...,sk,y1,y2,...,yk) =
= argmaxSi=1..k p(yi|si,si-1)p(si|si-1)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 170

2018/9

The Crucial Observation

• Imagine the trellis build as before (but do not
compute the s yet; assume they are o.k.); stage i:

C,1

A,1

 = .6

 = .4

.5

.8
D,2

 = max(.3,.32) = .32

stage
1 2

? max!

this is certainly the “backwards” maximum to (D,2)... but
it cannot change even whenever we go forward (M. Property: Limited History)

NB: remember previous state
from which we got the maximum:

C,1

A,1

D,2
 = .32

stage
1 2

“reverse” the arc

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 171

2018/9

Viterbi Example

• ‘r’ classification (C or V?, sequence?):

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

.2

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
argmaxXYZ p(rry|XYZ) = ?.8

Possible state seq.: (´V)(V,C)(C,V)[VCV], (´C)(C,C)(C,V)[CCV], (´C)(C,V)(V,V) [CVV]

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 172

2018/9

Viterbi Computation

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

.2

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
.8

´´

´C

C,V

V,V

 = 1

 = .6 x .7
= .42

 = .42 x .88 x .2
= .07392

C,C
 = .42 x .12 x .7

= .03528

C,V
C,C = .03528 x 1 x .4
 .01411

´V
 = .4 x .2

= .08

V,C

 = .08 x 1 x .7
= .056

 = .07392 x .07 x .4
 .002070

V,C = .056 x .8 x .4
 .01792 = max

{

Y: r r y
 in trellis
state:
best prob
from start
to here

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 173

2018/9

n-best State Sequences

• Keep track
of n best
“back pointers”:

• Ex.: n= 2:
Two “winners”:
VCV (best)
CCV (2nd best)

´´

´C

C,V

V,V

 = 1

 = .6 x .7
= .42

 = .42 x .88 x .2
= .07392

C,C
 = .42 x .12 x .7

= .03528

C,V
C,C = .03528 x 1 x .4
 .01411

´V
 = .4 x .2

= .08

V,C

 = .08 x 1 x .7
= .056

 = .07392 x .07 x .4
 .002070

V,C = .056 x .8 x .4
 .01792 = max

?{

Y: r r y

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 174

2018/9

Tracking Back the n-best paths

• Backtracking-style algorithm:
• Start at the end, in the best of the n states (sbest)
• Put the other n-1 best nodes/back pointer pairs on stack, except those

leading from sbest to the same best-back state.

• Follow the back “beam” towards the start of the data, spitting out
nodes on the way (backwards of course) using always only the best
back pointer.

• At every beam split, push the diverging node/back pointer pairs
onto the stack (node/beam width is sufficient!).

• When you reach the start of data, close the path, and pop the top-
most node/back pointer(width) pair from the stack.

• Repeat until the stack is empty; expand the result tree if necessary.

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 175

2018/9

Pruning

• Sometimes, too many trellis states in a stage:
 = .002

 = .043

 = .001

 = .231

 = .0002

 = .000003

 = .000435

 = .0066

A

F

G

K

N

Q

S

X

criteria: (a) < threshold
(b) < threshold
(c) # of states > threshold

(get rid of smallest)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 176

HMM Parameter Estimation:
the Baum-Welch Algorithm

2018/9

HMM: The Tasks
• HMM (the general case):

– five-tuple (S, S0, Y, PS, PY), where:
• S = {s1,s2,...,sT} is the set of states, S0 is the initial state,
• Y = {y1,y2,...,yV} is the output alphabet,
• PS(sj|si) is the set of prob. distributions of transitions,
• PY(yk|si,sj) is the set of output (emission) probability distributions.

• Given an HMM & an output sequence Y = {y1,y2,...,yk}:
(Task 1) compute the probability of Y;
(Task 2) compute the most likely sequence of states which has

generated Y.
(Task 3) Estimating the parameters (transition/output distributions)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 178

2018/9

A Variant of EM

• Idea (~ EM, for another variant see LM smoothing):
– Start with (possibly random) estimates of PS and PY.
– Compute (fractional) “counts” of state transitions/emissions

taken, from PS and PY, given data Y.
– Adjust the estimates of PS and PY from these “counts” (using

the MLE, i.e. relative frequency as the estimate).

• Remarks:
– many more parameters than the simple four-way smoothing
– no proofs here; see Jelinek, Chapter 9

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 179

2018/9

Setting

• HMM (without PS, PY) (S, S0, Y), and data T = {yiY}i=1..|T|
• will use T ~ |T|

– HMM structure is given: (S, S0)
– PS:Typically, one wants to allow “fully connected” graph

• (i.e. no transitions forbidden ~ no transitions set to hard 0)
• why? we better leave it on the learning phase, based on the

data!
• sometimes possible to remove some transitions ahead of time

– PY: should be restricted (if not, we will not get anywhere!)
• restricted ~ hard 0 probabilities of p(y|s,s’)
• “Dictionary”: states words, “m:n” mapping on S Y (in

general)
UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 180

2018/9

Initialization

• For computing the initial expected “counts”
• Important part

– EM guaranteed to find a local maximum only (albeit a good
one in most cases)

• PY initialization more important
– fortunately, often easy to determine

• together with dictionary vocabulary mapping, get counts, then
MLE

• PS initialization less important
– e.g. uniform distribution for each p(.|s)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 181

2018/9

Data Structures
• Will need storage for:

– The predetermined structure of the HMM
(unless fully connected need not to keep it!)

– The parameters to be estimated (PS, PY)
– The expected counts (same size as PS, PY)
– The training data T = {yi Y}i=1..T

– The trellis (if f.c.):
C,1

V,1

S,1

L,1

C,2

V,2

S,2

L,2

C,3

V,3

S,3

L,3

C,4

V,4

S,4

L,4

C,T

V,T

S,T

L,T

....... }
T

S
Each trellis state:
two [float] numbers
(forward/backward)

Size: T ´ S (Precisely, |T|´|S|)

(...and then some)
UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 182

2018/9

The Algorithm Part I
1. Initialize PS, PY

2. Compute “forward” probabilities:
• follow the procedure for trellis (summing), compute (s,i)
• use the current values of PS, PY (p(s’|s), p(y|s,s’)):

(s’,i) = ss’ (s,i-1) p(s’|s) p(yi|s,s’)
• NB: do not throw away the previous stage!

3. Compute “backward” probabilities
• start at all nodes of the last stage, proceed backwards, (s,i)
• i.e., probability of the “tail” of data from stage i to the end of data

(s’,i) = ss’ (s,i+1) p(s|s’) p(yi+1|s’,s)
• also, keep the (s,i) at all trellis states

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 183

2018/9

The Algorithm Part II

4. Collect counts:
– for each output/transition pair compute

c(y,s,s’) = i=0..k-1,y=y (s,i) p(s’|s) p(yi+1|s,s’) (s’,i+1)

c(s,s’) = yY c(y,s,s’) (assuming all observed yi in Y)

c(s) = s’S c(s,s’)

5. Reestimate: p’(s’|s) = c(s,s’)/c(s) p’(y|s,s’) = c(y,s,s’)/c(s,s’)

6. Repeat 2-5 until desired convergence limit is reached.

one pass through data,
prefix prob. tail probthis transition prob

´ output prob

i+1

only stop at (output) y

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 184

2018/9

Baum-Welch: Tips & Tricks

• Normalization badly needed
– long training data extremely small probabilities

• Normalize , using the same norm. factor:
N(i) = sS (s,i)

as follows:
• compute (s,i) as usual (Step 2 of the algorithm), computing the

sum N(i) at the given stage i as you go.
• at the end of each stage, recompute all s (for each state s):
� *(s,i) = (s,i) / N(i)
• use the same N(i) for s at the end of each backward (Step 3) stage:
� *(s,i) = (s,i) / N(i)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 185

2018/9

Example

• Task: pronunciation of “the”
• Solution: build HMM, fully connected, 4 states:

• S - short article, L - long article, C,V - starting w/consonant, vowel
• thus, only “the” is ambiguous (a, an, the - not members of C,V)

• Output from states only (p(w|s,s’) = p(w|s’))
• Data Y: an egg and a piece of the big the end

Trellis:

L,1

V,2

S,4 S,T-1

L,T-1

.......
C,5

V,6

S,7

L,7

V,T

C,8

V,3

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 186

2018/9

Example: Initialization

• Output probabilities:
pinit(w|c) = c(c,w) / c(c); where c(S,the) = c(L,the) = c(the)/2

(other than that, everything is deterministic)

• Transition probabilities:
– pinit(c’|c) = 1/4 (uniform)

• Don’t forget:
– about the space needed
– initialize (X,0) = 1 (X : the never-occurring front buffer st.)
– initialize (s,T) = 1 for all s (except for s = X)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 187

2018/9

Fill in alpha, beta

• Left to right, alpha:
(s’,i) = ss’ (s,i-1) p(s’|s) p(wi|s’)

• Remember normalization (N(i)).
• Similarly, beta (on the way back from the end).

output from states

L,1

V,2

S,4 S,T-1

L,T-1

C,5

V,6

S,7

L,7

V,T

C,8

V,3

an egg and a piece of the big the end

(V,6)

(C,8) = (L,7)p(C|L)p(big,C)+
(S,7)p(C|S)p(big,C)

(L,7)

(S,7)

(L,7)

(S,7)

(V,6) = (L,7)p(L|V)p(the,L)+
(S,7)p(S|V)p(the,S)

(C,8)

S,7

L,7

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 188

2018/9

Counts & Reestimation

• One pass through data
• At each position i, go through all pairs (si,si+1)
• Increment appropriate counters by frac. counts (Step 4):

• inc(yi+1,si,si+1) = a(si,i) p(si+1|si) p(yi+1|si+1) b(si+1,i+1)
• c(y,si,si+1) += inc (for y at pos i+1)
• c(si,si+1) += inc (always)
• c(si) += inc (always)

• Reestimate p(s’|s), p(y|s)
• and hope for increase in p(C|S) and p(V|L)...!!

V,6

S,7

L,7

C,8

of the big

inc(big,L,C) = (L,7)p(C|L)p(big,C)(C,8)

(L,7)

(S,7)
(C,8)

S,7

L,7inc(big,S,C) = (S,7)p(C|S)p(big,C)(C,8)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 189

2018/9

HMM: Final Remarks

• Parameter “tying”:
– keep certain parameters same (~ just one “counter” for all

of them)
– any combination in principle possible
– ex.: smoothing (just one set of lambdas)

• Real Numbers Output
– Y of infinite size (R, Rn):

• parametric (typically: few) distribution needed (e.g.,
“Gaussian”)

• “Empty” transitions: do not generate output
• ~ vertical arcs in trellis; do not use in “counting”

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 190

