Introduction to Natural Language Processing I [Statistické metody zpracování přirozených jazyků I] (NPFL067)

http://ufal.mff.cuni.cz/courses/npfl067

Intro to NLP

- Instructors: Jan Hajič / Pavel Pecina
 - ÚFAL MFF UK, office: 420 / 422 MS
 - Hours: J. Hajic: Mon 10:00-11:00
 - preferred contact: {hajic,pecina}@ufal.mff.cuni.cz
- Room & time:
 - lecture: room S1, Tue 12:20-13:50
 - seminar [cvičení] room S1, Tue 14:00-15:30
 - Oct 2, 2018 Jan 8, 2019
 - Final written exam (probable) date: Jan 15, 2019

Textbooks you need

- Manning, C. D., Schütze, H.:
 - *Foundations of Statistical Natural Language Processing*. The MIT Press. 1999. ISBN 0-262-13360-1. [required]
- Jurafsky, D., Martin, J.H.:
 - Speech and Language Processing. Prentice-Hall. 2000. ISBN 0-13-095069-6 and <u>later editions</u>. [recommended].

Other reading

- Charniak, E:
 - Statistical Language Learning. The MIT Press. 1996. ISBN 0-262-53141-0.
- Cover, T. M., Thomas, J. A.:
 - Elements of Information Theory. Wiley. 1991. ISBN 0-471-06259-6.
- Jelinek, F.:
 - Statistical Methods for Speech Recognition. The MIT Press. 1998. ISBN 0-262-10066-5
- Proceedings of major conferences:
 - ACL (Assoc. of Computational Linguistics)
 - EACL/NAACL/IJCNLP (European/American/Asian Chapter of ACL)
 - EMNLP (Empirical Methods in NLP)
 - COLING (Intl. Committee of Computational Linguistics)

Course requirements

- Grade components: requirements & weights:
 - Homeworks (1): 50%
 - Final Exam: 50%
- Exam:
 - approx. 4 questions:
 - mostly explanatory answers (1/4 page or so),
 - algorithms
 - only a few multiple choice questions

Homeworks

- Homework:
 - Entropy, Language Modeling
- Organization
 - (little) paper-and-pencil exercises, lot of programming
 - turning-in mechanism: see the web
 - no plagiarism!
- Deadline
 - Jan. 31, 2018
 - Late penalty: 5% of grade (0-100) per day (max. 50%)

Course segments

- Intro & Probability & Information Theory
 - The very basics: definitions, formulas, examples.
- Language Modeling
 - n-gram models, parameter estimation
 - smoothing (EM algorithm)
- Words and the Lexicon
 - word classes, mutual information, bit of lexicography
- Hidden Markov Models
 - background, algorithms, parameter estimation

NLP: The Main Issues

- Why is NLP difficult?
 - many "words", many "phenomena" --> many "rules"
 - OED: 400k words; Finnish lexicon (of forms): ~2.107
 - sentences, clauses, phrases, constituents, coordination, negation, imperatives/questions, inflections, parts of speech, pronunciation, topic/focus, and much more!
 - irregularity (exceptions, exceptions to the exceptions, ...)
 - potato -> potato es (tomato, hero,...); photo -> photo s, and even: both mango -> mango s or -> mango es
 - Adjective / Noun order: new book, electrical engineering, general regulations, flower garden, garden flower, ...: but Governor General

Difficulties in NLP (cont.)

- ambiguity
 - books: NOUN or VERB?
 - you need many books vs. she books her flights online
 - No left turn weekdays 4-6 pm / except transit vehicles (Charles Street at Cold Spring)
 - when may transit vehicles turn: <u>Always</u>? <u>Never</u>?
 - Thank you for not smoking, drinking, eating or playing radios without earphones. (*MTA bus*)
 - Thank you for not eating without earphones??
 - or even: Thank you for t drinking without earphones!?
 - My neighbor's hat was taken by wind. He tried to catch it.
 - ...catch the <u>wind</u> or ...catch the <u>hat</u>?

(Categorical) Rules or Statistics?

- Preferences:
 - clear cases: context clues: she books --> books is a verb
 - rule: if an ambiguous word (verb/nonverb) is preceded by a matching personal pronoun -> word is a verb
 - less clear cases: pronoun reference
 - she/he/it refers to the most recent noun or pronoun (?) (but maybe we can specify exceptions)
 - selectional:
 - catching hat >> catching wind (but why not?)
 - semantic:
 - never thank for drinking in a bus! (but what about the earphones?)

Solutions

- Don't guess if you know:
 - morphology (inflections)
 - lexicons (lists of words)
 - unambiguous names
 - perhaps some (really) fixed phrases
 - syntactic rules?
- Use statistics (based on real-world data) for preferences (only?)

• No doubt: but this / is the big question!

Statistical NLP

• Imagine:

2018/9

- Each sentence W = { w₁, w₂, ..., w_n } gets a probability P(W|X) in a context X (think of it in the intuitive sense for now)
- For every possible context X, sort all the imaginable sentences W according to P(W|X):
- Ideal situation:

Real World Situation

- Unable to specify set of grammatical sentences today using fixed "categorical" rules (maybe never, cf. arguments in MS)
- Use statistical "model" based on <u>**REAL WORLD DATA</u></u> and care about the best sentence only (disregarding the "grammaticality" issue)</u>**

2018/9

Probability

Experiments & Sample Spaces

- Experiment, process, test, ...
- Set of possible basic outcomes: sample space Ω
 - coin toss ($\Omega = \{\text{head,tail}\}$), die ($\Omega = \{1..6\}$)
 - yes/no opinion poll, quality test (bad/good) ($\Omega = \{0,1\}$)
 - − lottery ($| Ω | \cong 10^7 ... 10^{12}$)
 - # of traffic accidents somewhere per year ($\Omega = N$)
 - spelling errors ($\Omega = Z^*$), where Z is an alphabet, and Z^* is a set of possible strings over such and alphabet
 - missing word ($|\Omega| \cong$ vocabulary size)

Events

- Event A is a set of basic outcomes
- Usually $A \subset \Omega$, and all $A \in 2^{\Omega}$ (the event space)
 - Ω is then the certain event, \emptyset is the impossible event
- Example:
 - experiment: three times coin toss
 - $\Omega = \{\text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}\}$
 - count cases with exactly two tails: then
 - $A = \{HTT, THT, TTH\}$
 - all heads:
 - **A** = {**HHH**}

Probability

- Repeat experiment many times, record how many times a given event A occurred ("count" c₁).
- Do this whole series many times; remember all c_is .
- Observation: if repeated really many times, the ratios of c_i/T_i (where T_i is the number of experiments run in the *i-th* series) are close to some (unknown but) <u>constant</u> value.
- Call this constant a *probability of A*. Notation: **p(A)**

Estimating probability

- Remember: ... close to an *unknown* constant.
- We can only estimate it:
 - from a single series (typical case, as mostly the outcome of a series is given to us and we cannot repeat the experiment), set

$$\mathbf{p}(\mathbf{A}) = \mathbf{c}_1 / \mathbf{T}_1.$$

- otherwise, take the weighted average of all c_i/T_i (or, if the data allows, simply look at the set of series as if it is a single long series).
- This is the **best** estimate.

Example

- Recall our example:
 - experiment: three times coin toss
 - $\Omega = \{\text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}\}$
 - count cases with exactly two tails: A = {HTT, THT, TTH}
- Run an experiment 1000 times (i.e. 3000 tosses)
- Counted: 386 cases with two tails (HTT, THT, or TTH)
- estimate: p(A) = 386 / 1000 = .386
- Run again: 373, 399, 382, 355, 372, 406, 359
 p(A) = .379 (weighted average) or simply 3032 / 8000
- *Uniform* distribution assumption: p(A) = 3/8 = .375

Basic Properties

- Basic properties:
 - $p: 2 \xrightarrow{\Omega} \rightarrow [0,1]$
 - $p(\Omega) = 1$
 - Disjoint events: $p(\bigcup A_i) = \sum_i p(A_i)$
- [NB: *axiomatic definition* of probability: take the above three conditions as axioms]
- Immediate consequences:

$$- p(\emptyset) = 0, \quad p(\overline{A}) = 1 - p(A), \quad A \subseteq B \implies p(A) \le p(B)$$
$$- \sum_{a \in \Omega} p(a) = 1$$

Joint and Conditional Probability

- $p(A,B) = p(A \cap B)$
- p(A|B) = p(A,B) / p(B)
 - Estimating form counts:
 - $p(A|B) = p(A,B) / p(B) = (c(A \cap B) / T) / (c(B) / T) =$ = $c(A \cap B) / c(B)$

Bayes Rule

- p(A,B) = p(B,A) since $p(A \cap B) = p(B \cap A)$
 - therefore: p(A|B) p(B) = p(B|A) p(A), and therefore

Independence

- Can we compute p(A,B) from p(A) and p(B)?
- Recall from previous foil:

p(A|B) = p(B|A) p(A) / p(B)

p(A|B) p(B) = p(B|A) p(A)

p(A,B) = p(B|A) p(A)

- ... we're almost there: how p(B|A) relates to p(B)?
 - p(B|A) = P(B)(iff)A and B are <u>independent</u>
- Example: two coin tosses, weather today and weather on March 4th 1789;
- Any two events for which p(B|A) = P(B)!

Chain Rule

$$p(A_{1}, A_{2}, A_{3}, A_{4}, ..., A_{n}) =$$

$$p(A_{1}|A_{2}, A_{3}, A_{4}, ..., A_{n}) \times p(A_{2}|A_{3}, A_{4}, ..., A_{n}) \times$$

$$\times p(A_{3}|A_{4}, ..., A_{n}) \times ... \quad p(A_{n-1}|A_{n}) \times p(A_{n})$$

• this is a direct consequence of the Bayes rule.

The Golden Rule (of Classic Statistical NLP)

- Interested in an event A given B (when it is not easy or practical or desirable to estimate p(A|B)):
- take Bayes rule, max over all As:
- $\operatorname{argmax}_{A} p(A|B) = \operatorname{argmax}_{A} p(B|A) \cdot p(A) / p(B) =$

 $\operatorname{argmax}_{A} p(B|A) p(A) \bullet$

• ... as p(B) is constant when changing As

2018/9

Random Variable

- is a function X: $\Omega \rightarrow Q$
 - in general: $Q = R^n$, typically R
 - easier to handle real numbers than real-world events
- random variable is *discrete* if Q is <u>countable</u> (i.e. also if <u>finite</u>)
- Example: *die*: natural "numbering" [1,6], *coin*: {0,1}
- Probability distribution:
 - $p_X(x) = p(X=x) =_{df} p(A_x) \text{ where } A_x = \{a \in \Omega : X(a) = x\}$
 - often just p(x) if it is clear from context what X is

Expectation Joint and Conditional Distributions

- is a mean of a random variable (weighted average) - $E(X) = \sum_{x \in X(\Omega)} x \cdot p_X(x)$
- Example: one six-sided die: 3.5, two dice (sum) 7
- Joint and Conditional distribution rules:

analogous to probability of events

- Bayes: $p_{X|Y}(x,y) =_{notation} p_{XY}(x|y) =_{even simpler notation} p(x|y) = p(y|x) \cdot p(x) / p(y)$
- Chain rule: p(w,x,y,z) = p(z).p(y|z).p(x|y,z).p(w|x,y,z)

Standard distributions

- Binomial (discrete)
 - outcome: 0 or 1 (thus: *bi*nomial)
 - make *n* trials
 - interested in the (probability of) number of successes r
- Must be careful: it's not uniform!
- $p_b(r|n) = {n \choose r} / 2^n$ (for equally likely outcome)
- $\binom{n}{r}$ counts how many possibilities there are for choosing r objects out of n; = n! / ((n-r)! r!)

Continuous Distributions

- The normal distribution ("Gaussian")
- $p_{\text{norm}}(x|\mu,\sigma) = e^{-(x-\mu)^2/(2\sigma^2)}/\sigma\sqrt{2\pi}$
- where:
 - $-\mu$ is the mean (x-coordinate of the peak) (0)
 - $-\sigma$ is the standard deviation (1)

• other: hyperbolic, t

Essential Information Theory

The Notion of Entropy

- Entropy ~ "chaos", fuzziness, opposite of order, ...
 - you know it:
 - it is much easier to create "mess" than to tidy things up...
- Comes from physics:
 - Entropy does not go down unless energy is applied
- Measure of *uncertainty*:
 - if low... low uncertainty; the higher the entropy, the higher uncertainty, but the higher "surprise" (information) we can get out of an experiment

The Formula

- Let $p_X(x)$ be a distribution of random variable X
- Basic outcomes (alphabet) Ω

$$H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x) \quad \bullet$$

- Unit: bits (log₁₀: nats)
- Notation: $H(X) = H_p(X) = H(p) = H_X(p) = H(p_X)$

Using the Formula: Example

- Toss a fair coin: $\Omega = \{\text{head}, \text{tail}\}$
 - p(head) = .5, p(tail) = .5
 - $\mathbf{H}(\mathbf{p}) = -0.5 \log_2(0.5) + (-0.5 \log_2(0.5)) = 2 \times ((-0.5) \times (-1)) = 2 \times 0.5 = \mathbf{1}$
- Take fair, 32-sided die: p(x) = 1 / 32 for every side x
 - $-\mathbf{H}(\mathbf{p}) = -\sum_{i=1..32} p(x_i) \log_2 p(x_i) = -32 (p(x_1) \log_2 p(x_1))$ (since for all $i p(x_i) = p(x_1) = 1/32$) $= -32 \times ((1/32) \times (-5)) = \mathbf{5} (now you see why it's called$ **bits**?)
- Unfair coin:
 - p(head) = .2 ... H(p) = .722; p(head) = .01 ... H(p) = .081

Example: Book Availability

2018/9

The Limits

- When H(p) = 0?
 - if a result of an experiment is *known* ahead of time:
 - necessarily:

 $\exists x \in \Omega; \, p(x) = 1 \& \forall y \in \Omega; \, y \neq x \implies p(y) = 0$

- Upper bound?
 - none in general
 - for $|\Omega| = n$: $H(p) \le \log_2 n$
 - nothing can be more uncertain than the uniform distribution

Entropy and Expectation

• Recall:

$$- E(X) = \sum_{x \in X(\Omega)} p_X(x) \times x$$

• Then:

 $E(\log_2(1/p_X(x))) = \sum_{x \in X(\Omega)} p_X(x) \log_2(1/p_X(x)) =$

$$= -\sum_{x \in X(\Omega)} p_X(x) \log_2 p_X(x) =$$

$$= H(p_X) =_{notation} H(p)$$
Perplexity: motivation

- Recall:
 - -2 equiprobable outcomes: H(p) = 1 bit
 - -32 equiprobable outcomes: H(p) = 5 bits
 - 4.3 billion equiprobable outcomes: H(p) \sim = 32 bits
- What if the outcomes are not equiprobable?
 - 32 outcomes, 2 equiprobable at .5, rest impossible:

• H(p) = 1 bit

 Any measure for comparing the entropy (i.e. uncertainty/difficulty of prediction) (also) for random variables with <u>different number of outcomes</u>?

Perplexity

• Perplexity:

 $-G(p) = 2^{H(p)}$

- ... so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc.
- it is easier to imagine:
 - NLP example: vocabulary size of a vocabulary with uniform distribution, which is equally hard to predict
- the "wilder" (biased) distribution, the better:
 - lower entropy, lower perplexity

Joint Entropy and Conditional Entropy

- Two random variables: X (space Ω), Y (Ψ)
- Joint entropy:
 - no big deal: ((X,Y) considered a single event):

 $H(X,Y) = -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(x,y)$

• Conditional entropy:

 $H(Y|X) = -\sum_{x \in \Omega} \sum_{y \in \Psi} \underline{p(x,y)} \log_2 p(y|x)$ recall that $H(X) = E(\log_2(1/p_X(x)))$ (weighted "average", and weights are not conditional)

Conditional Entropy (Using the Calculus)

• other definition:

 $H(Y|X) = \sum_{x \in \Omega} p(x) H(Y|X=x) =$

for H(Y|X=x), we can use the single-variable definition (x ~ constant)

$$= \sum_{x \in \Omega} p(x) \left(-\sum_{y \in \Psi} p(y|x) \log_2 p(y|x) \right) =$$
$$= -\sum_{x \in \Omega} \sum_{y \in \Psi} p(y|x) p(x) \log_2 p(y|x) =$$
$$= -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(y|x)$$

Properties of Entropy I

- Entropy is non-negative:
 - $H(X) \ge 0$
 - proof: (recall: $H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x)$)
 - log(p(x)) is negative or zero for $x \le 1$,
 - p(x) is non-negative; their product p(x)log(p(x) is thus negative;
 - sum of negative numbers is negative;
 - and -f is positive for negative f
- Chain rule:
 - H(X,Y) = H(Y|X) + H(X), as well as
 - H(X,Y) = H(X|Y) + H(Y)(since H(Y,X) = H(X,Y))

Properties of Entropy II

- Conditional Entropy is better (than unconditional): - $H(Y|X) \le H(Y)$ (proof on Monday)
- $H(X,Y) \le H(X) + H(Y)$ (follows from the previous (in)equalities)
 - equality iff X,Y independent
 - [recall: X,Y independent iff p(X,Y) = p(X)p(Y)]
- H(p) is concave (remember the book availability graph?)

- concave function <u>f</u> over an interval (a,b):

 $\forall x, y \in (a, b), \forall \lambda \in [0, 1]:$

 $f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y)$

- function <u>f</u> is convex if <u>-f</u> is concave
- [for proofs and generalizations, see Cover/Thomas]

V

Χ

"Coding" Interpretation of Entropy

- The least (average) number of bits needed to encode a message (string, sequence, series,...) (each element having being a result of a random process with some distribution p): = H(p)
- Remember various compressing algorithms?
 - they do well on data with repeating (= easily predictable = low entropy) patterns
 - their results though have high entropy ⇒ compressing compressed data does nothing

Coding: Example

- How many bits do we need for ISO Latin 1?
 - \Rightarrow the trivial answer: 8

2018/9

- Experience: some chars are more common, some (very) rare:
 - ...so what if we use more bits for the rare, and less bits for the frequent? [be careful: want to decode (easily)!]
 - suppose: p('a') = 0.3, p('b') = 0.3, p('c') = 0.3, the rest: p(x)≅
 .0004
 - code: 'a' ~ 00, 'b' ~ 01, 'c' ~ 10, rest: 11b₁b₂b₃b₄b₅b₆b₇b₈
 - code acbbécbaac: 00100101<u>1100001111</u>1001000010

- number of bits used: 28 (vs. 80 using "naive" coding)
- code length ~ 1 / probability; conditional prob OK!

Entropy of a Language

- Imagine that we produce the next letter using $p(l_{n+1}|l_1,...,l_n)$,
- where $l_1,...,l_n$ is the sequence of <u>all</u> the letters which had been uttered so far (i.e. <u>n</u> is really big!); let's call $l_1,...,l_n$ the <u>history</u> h (h_{n+1}), and all histories H:
- Then compute its entropy:
 - $- \sum_{h \in H} \sum_{l \in A} p(l,h) \log_2 p(l|h)$
- Not very practical, isn't it?

Kullback-Leibler Distance (Relative Entropy)

- Remember:
 - long series of experiments... c_i/T_i oscillates around some number... we can only estimate it... to get a distribution <u>q</u>.
- So we get a distribution <u>q</u>; (sample space Ω, r.v. X) the true distribution is, however, <u>p</u>. (same Ω, X) ⇒ how big error are we making?
- D(p||q) (the Kullback-Leibler distance):

 $D(p||q) = \sum_{x \in \Omega} \underline{p(x)} \log_2 (p(x)/q(x)) = E_p \log_2 (p(x)/q(x))$

Comments on Relative Entropy

- Conventions:
 - $-0\log 0 = 0$
 - $p \log (p/0) = \infty (for p > 0)$
- Distance? (less "misleading": Divergence)
 - not quite:
 - not symmetric: $D(p||q) \neq D(q||p)$
 - does not satisfy the triangle inequality
 - but useful to look at it that way
- H(p) + D(p||q): bits needed for encoding <u>p</u> if <u>q</u> is used

Mutual Information (MI) in terms of relative entropy

- Random variables X, Y; $p_{X \cap Y}(x,y)$, $p_X(x)$, $p_Y(y)$
- Mutual information (between two random variables X,Y):

 $I(X,Y) = D(p(x,y) \parallel p(x)p(y))$

- I(X,Y) measures how much (our knowledge of) Y contributes (on average) to easing the prediction of X
- or, how $\underline{p(x,y)}$ deviates from (independent) $\underline{p(x)p(y)}$

Mutual Information: the Formula

• Rewrite the definition: $[\text{recall: } D(r||s) = \sum_{v \in \Omega} r(v) \log_2 (r(v)/s(v));$ substitute $r(v) = p(x,y), s(v) = p(x)p(y); \langle v \rangle \sim \langle x,y \rangle]$

$$I(X,Y) = D(p(x,y) || p(x)p(y)) =$$

= $\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 (p(x,y)/p(x)p(y))$

• Measured in bits (what else? :-)

From Mutual Information to Entropy

• by how many bits the knowledge of Y *lowers* the entropy H(X):

$$I(X,Y) = \sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 (\underline{p(x,y)}/\underline{p(y)}p(x)) = \dots use \ p(x,y)/p(y) = p(x/y)$$

$$= \sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 (\underline{p(x|y)}/\underline{p(x)}) = \dots use \ log(a/b) = log \ a \ fog \ b \ (a \sim p(x/y), \ b \sim p(x)), \ distribute \ sums$$

$$= \underbrace{\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(x|y)}_{\dots use \ def. \ of \ H(X/Y) \ (left \ term), \ and \ \sum_{y \in \Psi} p(x,y) \log_2 p(x) = \dots use \ def. \ of \ H(X) \ (right \ term), \ swap \ terms$$

$$= H(X) - H(X|Y) \qquad \dots by \ symmetry, = H(Y) - H(Y|X)$$

2018/9

Properties of MI vs. Entropy

• I(X,Y) = H(X) - H(X|Y) = number of bits the knowledge of Y lowers the entropy of X = H(Y) - H(Y|X) (prev. foil, symmetry)

Recall: $H(X,Y) = H(X|Y) + H(Y) \Rightarrow -H(X|Y) = H(Y) - H(X,Y) \Rightarrow$

- $I(X,Y) = H(X) + \underline{H(Y)} \underline{H(X,Y)}$
- I(X,X) = H(X) (since H(X|X) = 0)
- I(X,Y) = I(Y,X) (just for completeness)
- $I(X,Y) \ge 0$... let's prove that now (as promised).

Jensen's Inequality

• Recall: <u>f</u> is convex on interval (a,b) iff $\forall x, y \in (a,b), \forall \lambda \in [0,1]:$ $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$

- J.I.: for distribution p(x), r.v. X on Ω , and convex f, $f(\sum_{x \in \Omega} p(x) x) \le \sum_{x \in \Omega} p(x) f(x)$
- <u>Proof</u> (idea): by induction on the number of basic outcomes;
- start with $|\Omega| = 2$ by:
 - $p(x_1)f(x_1) + p(x_2)f(x_2) \ge f(p(x_1)x_1 + p(x_2)x_2)$ (\Leftarrow def. of convexity)
 - for the induction step (|Ω| = k → k+1), just use the induction hypothesis and def. of convexity (again).

Information Inequality

• Proof:

$$\underbrace{\bigcirc}_{x \in \Omega} 1 = -\log \sum_{x \in \Omega} q(x) = -\log \sum_{x \in \Omega} (q(x)/p(x))p(x) \le$$

...apply Jensen's inequality here $(-\log is \text{ convex})...$
$$\underbrace{\bigotimes}_{x \in \Omega} p(x) (-\log(q(x)/p(x))) = \sum_{x \in \Omega} p(x) \log(p(x)/q(x)) =$$

$$= \underbrace{\bigcirc}_{p||q)}$$

Other (In)Equalities and Facts

- Log sum inequality: for r_i , $s_i \ge 0$ $\sum_{i=1..n} (r_i \log(r_i/s_i)) \le (\sum_{i=1..n} r_i) \log(\sum_{i=1..n} r_i/\sum_{i=1..n} s_i))$
- D(p||q) is convex [in p,q] ($\leftarrow \log sum inequality$)
- $H(p_X) \le \log_2 |\Omega|$, where Ω is the sample space of p_X Proof: uniform u(x), same sample space Ω : $\sum p(x) \log u(x) = -\log_2 |\Omega|$; $\log_2 |\Omega| - H(X) = -\sum p(x) \log u(x) + \sum p(x) \log p(x) = D(p||u) \ge 0$
- H(p) is concave [in p]: Proof: from $H(X) = \log_2 |\Omega| - D(p||u), D(p||u)$ convex $\Rightarrow H(x)$ concave

Cross-Entropy

Typical case: we've got series of observations
 T = {t₁, t₂, t₃, t₄, ..., t_n}(numbers, words, ...; t_i ∈ Ω); estimate (simple):

 $\forall y \in \Omega: \tilde{p}(y) = c(y) / |T|, \text{ def. } c(y) = |\{t \in T; t = y\}|$

- ...but the true p is unknown; every sample is too small!
- Natural question: how well do we do using \tilde{p} [instead of p]?
- Idea: simulate actual p by using a different T' (or rather: by using different observation we simulate the insufficiency of T vs. some other data ("random" difference))

Cross Entropy: The Formula

•
$$H_{p'}(\tilde{p}) = H(p') + D(p' \| \tilde{p})$$

$$H_{p'}(\tilde{p}) = -\sum_{x \in \Omega} p'(x) \log_2 \tilde{p}(x) \bullet$$

- p' is certainly not the true p, but we can consider it the "real world" distribution against which we test \tilde{p}
- note on notation (confusing...): p/p' ↔ p̃, also H_T(p)
 (Cross)Perplexity: G_{p'}(p) = G_{T'}(p)= 2^{Hp'(p̃)}

Conditional Cross Entropy

- So far: "unconditional" distribution(s) p(x), p'(x)...
- In practice: virtually always conditioning on context
- Interested in: sample space Ψ, r.v. Y, y ∈ Ψ; context: sample space Ω, r.v. X, x ∈ Ω;: "our" distribution p(y|x), test against p'(y,x), which is taken from some independent data:

$$H_{p'}(p) = -\sum_{y \in \Psi, x \in \Omega} p'(y,x) \log_2 p(y|x)$$

Sample Space vs. Data

- In practice, it is often inconvenient to sum over the sample space(s) Ψ , Ω (especially for cross entropy!)
- Use the following formula:

$$H_{p'}(p) = -\sum_{y \in \Psi, x \in \Omega} p'(y,x) \log_2 p(y|x) = -\frac{1}{|T'|} \sum_{i=1..|T'|} \log_2 p(y_i|x_i)$$

• This is in fact the normalized log probability of the "test" data:

$$H_{p'}(p) = -1/|T'| \log_2 \prod_{i=1..|T'|} p(y_i|x_i)$$

Computation Example

- $\Omega = \{a, b, ..., z\}$, prob. distribution (assumed/estimated from data): p(a) = .25, p(b) = .5, p(α) = 1/64 for $\alpha \in \{c..r\}$, = 0 for the rest: s,t,u,v,w,x,y,z
- Data (test): <u>barb</u> p'(a) = p'(r) = .25, p'(b) = .5
- Sum over Ω :

α a bcdefg...pq r st...z -p'(α)log₂p(α) .5+.5+0+0+0+0+0+0+0+0+1.5+0+0+0+0 = 2.5

• Sum over data:

i/s_i 1/b 2/a 3/r 4/b 1/|T'|-log₂p(s_i) 1 + 2 + 6 + 1 = 10 (1/4) × 10 = 2.5

2018/9 UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina

Cross Entropy: Some Observations

- H(p) ?? <, =, > ?? $H_{p'}(p)$: ALL!
- Previous example: $[p(a) = .25, p(b) = .5, p(\alpha) = 1/64 \text{ for } \alpha \in \{c..r\}, = 0 \text{ for the rest: } s,t,u,v,w,x,y,z]$ $H(p) = 2.5 \text{ bits} = H(p') (\underline{barb})$
- Other data: <u>probable</u>: (1/8)(6+6+6+1+2+1+6+6) = 4.25H(p) < 4.25 bits = H(p') (probable)
- And finally: <u>abba</u>: (1/4)(2+1+1+2) = 1.5H(p) > 1.5 <u>bits</u> = H(p') (<u>abba</u>)
- But what about: <u>baby</u> $-\underline{p'}('y')\log_2p('y') = -.25\log_20 = \infty$ (??)

Cross Entropy: Usage

• Comparing data??

 $-\underline{NO!}$ (we believe that we test on <u>real</u> data!)

- Rather: <u>comparing distributions</u> (<u>vs.</u> real data)
- Have (got) 2 distributions: p and q (on some Ω, X)
 which is better?
 - better: has lower cross-entropy (perplexity) on real data S
- "Real" data: S

•
$$H_{S}(p) = -1/|S| \sum_{i=1..|S|} \log_2 p(y_i|x_i)$$
 ?? $H_{S}(q) = -1/|S| \sum_{i=1..|S|} \log_2 q(y_i|x_i)$

Comparing Distributions

Test data S: probable

• p(.) from prev. example:

$$H_{\rm S}(p) = 4.25$$

p(a) = .25, p(b) = .5, $p(\alpha) = 1/64$ for $\alpha \in \{c..r\}$, = 0 for the rest: s,t,u,v,w,x,y,z

• q(.|.) (conditional; defined by a table):

$$(1/8) (0 + 3 + 0 + 0 + 1 + 0 + 1 + 0)$$

$$(1/8) (-0 + 3 + 0 + 0 + 1 + 0 + 1 + 0)$$

$$H_{s}(q) = .625$$

2018/9

Language Modeling (and the Noisy Channel)

The Noisy Channel

• Prototypical case:

- Model: probability of error (noise):
- Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6
- <u>The Task</u>:

known: the noisy output; want to know: the input (*decoding*)

Noisy Channel Applications

- OCR
 - straightforward: text \rightarrow print (adds noise), scan \rightarrow image
- Handwriting recognition
 - text \rightarrow neurons, muscles ("noise"), scan/digitize \rightarrow image
- Speech recognition (dictation, commands, etc.)
 - text \rightarrow conversion to acoustic signal ("noise") \rightarrow acoustic waves
- Machine Translation
 - text in target language \rightarrow translation ("noise") \rightarrow source language
- Also: Part of Speech Tagging
 - sequence of tags \rightarrow selection of word forms \rightarrow text

Noisy Channel: The Golden Rule of ...

• Recall:

p(A|B) = p(B|A) p(A) / p(B) (Bayes formula)

 $A_{best} = \operatorname{argmax}_A p(B|A) p(A)$ (The Golden Rule)

- p(B|A): the acoustic/image/translation/lexical model
 - application-specific name
 - will explore later
- p(A): *the language model*

The Perfect Language Model

- Sequence of word forms [forget about tagging for the moment]
- Notation: $A \sim W = (w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question:

p(W) = ?

• Well, we know (Bayes/chain rule \rightarrow):

$$p(W) = p(w_1, w_2, w_3, ..., w_d) =$$

 $= p(w_1) \times p(w_2|w_1) \times p(w_3|w_1,w_2) \times ... \times p(w_d|w_1,w_2,...,w_{d-1})$

• Not practical (even short $W \rightarrow$ too many parameters)

Markov Chain

• Unlimited memory (cf. previous foil):

- for w_i , we know <u>all</u> its predecessors $w_1, w_2, w_3, ..., w_{i-1}$

- Limited memory:
 - we disregard "too old" predecessors
 - remember only *k* previous words: $w_{i-k}, w_{i-k+1}, \dots, w_{i-1}$
 - called "kth order Markov approximation"
- + stationary character (no change over time): $p(W) \cong \prod_{i=1} p(W_i | W_{i-k}, W_{i-k+1}, \dots, W_{i-1}), d = |W|$

n-gram Language Models

• $(n-1)^{\text{th}}$ order Markov approximation \rightarrow n-gram LM:

- In particular (assume vocabulary |V| = 60k): •
 - 0-gram LM: uniform model, p(w) = 1/|V|, 1 parameter
 - 1-gram LM: unigram model, p(w), 6×10⁴ parameters

- 2-gram LM: bigram model, $p(w_i|w_{i-1}) = 3.6 \times 10^9$ parameters
- 3-gram LM: trigram model, $p(w_i|w_{i-2},w_{i-1})$ 2.16×10¹⁴ parameters

LM: Observations

- How large *n*?
 - nothing is enough (theoretically)
 - but anyway: as much as possible (\rightarrow close to "perfect" model)
 - empirically: <u>3</u>
 - parameter estimation? (reliability, data availability, storage space, ...)
 - 4 is too much: |V|=60k → 1.296×10¹⁹ parameters
 - but: 6-7 would be (almost) ideal (having enough data): in fact, one can recover the original text ssequence from 7-grams!
- Reliability ~ $(1 / Detail) (\rightarrow need compromise)$
- For now, keep word forms (no "linguistic" processing)

The Length Issue

- $\forall n; \Sigma_{w \in \Omega^n} p(w) = 1 \Longrightarrow \Sigma_{n=1..\infty} \Sigma_{w \in \Omega^n} p(w) \gg 1 (\rightarrow \infty)$
- We want to model <u>all</u> sequences of words
 - for "fixed" length tasks: no problem n fixed, sum is 1
 - tagging, OCR/handwriting (if words identified ahead of time)
 - for "variable" length tasks: have to account for
 - discount shorter sentences
- General model: for each sequence of words of length n,

define p'(w) = $\lambda_n p(w)$ such that $\sum_{n=1..\infty} \lambda_n = 1 \Longrightarrow$

$$\sum_{n=1..\infty} \sum_{w \in \Omega^n} p'(w) = 1$$

e.g., estimate λ_n from data; or use normal or other distribution

Parameter Estimation

- Parameter: numerical value needed to compute p(w|h)
- From data (how else?)
- Data preparation:
 - get rid of formatting etc. ("text cleaning")
 - define words (separate but include punctuation, call it "word")
 - define sentence boundaries (insert "words" <s> and </s>)
 - letter case: keep, discard, or be smart:
 - name recognition
 - number type identification
 - [these are huge problems per se!]
 - numbers: keep, replace by <num>, or be smart (form ~ pronunciation)
Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the "training data")
- Trigrams from Training Data T:
 - count sequences of three words in T: $c_3(w_{i-2}, w_{i-1}, w_i)$ [NB: notation: just saying that the three words follow each other]
 - count sequences of two words in T: $c_2(w_{i-1}, w_i)$:
 - either use $c_2(y,z) = \sum_w c_3(y,z,w)$
 - or count differently at the beginning (& end) of data!

$$p(w_{i}|w_{i-2},w_{i-1}) = c_{est.} c_{3}(w_{i-2},w_{i-1},w_{i}) / c_{2}(w_{i-2},w_{i-1})$$

Character Language Model

• Use individual characters instead of words:

$$p(W) =_{df} \prod_{i=1..d} p(c_i | c_{i-n+1}, c_{i-n+2}, \dots, c_{i-1})$$

- Same formulas etc.
- Might consider 4-grams, 5-grams or even more
- Good only for language comparison
- Transform cross-entropy between letter- and word-based models:

 $H_{S}(p_{c}) = H_{S}(p_{w}) / avg. \# of characters/word in S$

LM: an Example

• Training data:

<s> <s> He can buy the can of soda.

- Unigram:
$$p_1(He) = p_1(buy) = p_1(the) = p_1(of) = p_1(soda) = p_1(.) = .125$$

 $p_1(can) = .25$

- Bigram:
$$p_2(He|~~) = 1~~$$
, $p_2(can|He) = 1$, $p_2(buy|can) = .5$,
 $p_2(of|can) = .5$, $p_2(the|buy) = 1$,...

- Trigram:
$$p_3(He|~~,~~) = 1~~~~$$
, $p_3(can|~~,He) = 1~~$,
 $p_3(buy|He,can) = 1$, $p_3(of|the,can) = 1$, ..., $p_3(.|of,soda) = 1$.

- Entropy: $H(p_1) = 2.75$, $H(p_2) = .25$, $H(p_3) = 0$ \leftarrow Great?!

LM: an Example (The Problem)

- Cross-entropy:
- $S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
- Even $H_{S}(p_{1})$ fails (= $H_{S}(p_{2}) = H_{S}(p_{3}) = \infty$), because:
 - all unigrams but p_1 (the), p_1 (buy), p_1 (of) and p_1 (.) are 0.
 - all bigram probabilities are 0.
 - all trigram probabilities are 0.
- We want: to make all (theoretically possible^{*}) probabilities non-zero.

^{*} in fact, <u>all</u>: remember our graph from day 1?

LM Smoothing (And the EM Algorithm)

The Zero Problem

- "Raw" n-gram language model estimate:
 - necessarily, some zeros
 - !many: trigram model \rightarrow 2.16×10¹⁴ parameters, data ~ 10⁹ words
 - which are true 0?
 - optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it's probability vs. other trigrams
 - optimal situation cannot happen, unfortunately (open question: how many data would we need?)
 - \rightarrow we don't know
 - we must eliminate the zeros
- Two kinds of zeros: p(w|h) = 0, or even p(h) = 0!

Why do we need Nonzero Probs?

- To avoid infinite Cross Entropy:
 - happens when an event is found in test data which has not been seen in training data

 $H(p) = \infty$: prevents comparing data with > 0 "errors"

- To make the system more robust
 - low count estimates:
 - they typically happen for "detailed" but relatively rare appearances
 - high count estimates: reliable but less "detailed"

Eliminating the Zero Probabilities: Smoothing

- Get new p'(w) (same Ω): almost p(w) but no zeros
- Discount w for (some) p(w) > 0: new p'(w) < p(w) $\Sigma_{w \in discounted} (p(w) - p'(w)) = D$
- Distribute D to all w; p(w) = 0: new p'(w) > p(w)

possibly also to other w with low p(w)

- For some w (possibly): p'(w) = p(w)
- Make sure $\Sigma_{w \in \Omega} p'(w) = 1$
- There are many ways of *smoothing*

Smoothing by Adding 1

- Simplest but not really usable:
 - Predicting words w from a vocabulary V, training data T: p'(w|h) = (c(h,w) + 1) / (c(h) + |V|)
 - for non-conditional distributions: p'(w) = (c(w) + 1) / (|T| + |V|)
 - Problem if |V| > c(h) (as is often the case; even >> c(h)!)
- Example: Training data: $\langle s \rangle$ what is it what is small? |T| = 8
 - V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
 - p(it)=.125, p(what)=.25, p(.)=0 $p(what is it?) = .25^2 \times .125^2 \cong .001$ $p(it is flying.) = .125 \times .25 \times 0^2 = 0$
 - p'(it) =.1, p'(what) =.15, p'(.)=.05 p'(what is it?) = .15²×.1² ≅ .0002 p'(it is flying.) = .1×.15×.05² ≅ .00004

Adding less than 1

- Equally simple:
 - Predicting words w from a vocabulary V, training data T: p'(w|h) = (c(h,w) + λ) / (c(h) + λ |V|), λ < 1
 - for non-conditional distributions: $p'(w) = (c(w) + \lambda) / (|T| + \lambda |V|)$
- Example: Training data: $\langle s \rangle$ what is it what is small? |T| = 8
 - V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
 - p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = $.25^2 \times .125^2 \cong .001$ p(it is flying.) = $.125 \times .25 \times 0^2 = 0$
 - Use $\lambda = .1$:
 - p'(it) \cong .12, p'(what) \cong .23, p'(.) \cong .01 p'(what is it?) = .23²×.12² \cong .0007 p'(it is flying.) = .12×.23×.01² \cong .000003

Good - Turing

- Suitable for estimation from large data
 - similar idea: discount/boost the relative frequency estimate: $p_r(w) = (c(w) + 1) \times N(c(w) + 1) / (|T| \times N(c(w))),$

where N(c) is the count of words with count c (count-ofcounts)

specifically, for c(w) = 0 (unseen words), $p_r(w) = N(1) / (|T| \times N(0))$

- good for small counts (< 5-10, where N(c) is high)
- variants (see MS)
- normalization! (so that we have $\Sigma_w p'(w) = 1$)

Good-Turing: An Example

- Example: remember: $p_r(w) = (c(w) + 1) \times N(c(w) + 1) / (|T| \times N(c(w)))$ Training data: $\langle s \rangle$ what is it what is small? |T| = 8
 - V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12 p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = .25²×.125² ≅ .001 p(it is flying.) = .125×.25×0² = 0
 - Raw reestimation (N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0 for i > 2): $p_r(it) = (1+1) \times N(1+1)/(8 \times N(1)) = 2 \times 2/(8 \times 4) = .125$ $p_r(what) = (2+1) \times N(2+1)/(8 \times N(2)) = 3 \times 0/(8 \times 2) = 0$: keep orig. p(what) $p_r(.) = (0+1) \times N(0+1)/(8 \times N(0)) = 1 \times 4/(8 \times 6) \approx .083$
 - Normalize (divide by 1.5 = Σ_{w∈|V|}p_r(w)) and compute: p'(it)≅ .08, p'(what)≅ .17, p'(.)≅ .06 p'(what is it?) = .17²×.08² ≅ .0002 p'(it is flying.) = .08×.17×.06² ≅ .00004

Smoothing by Combination: Linear Interpolation

- Combine what?
 - distributions of various level of detail vs. reliability
- n-gram models:
 - use (n-1)gram, (n-2)gram, ..., uniform

 \rightarrow reliability

detail

- Simplest possible combination:
 - sum of probabilities, normalize:
 - p(0|0) = .8, p(1|0) = .2, p(0|1) = 1, p(1|1) = 0, p(0) = .4, p(1) = .6:
 - p'(0|0) = .6, p'(1|0) = .4, p'(0|1) = .7, p'(1|1) = .3

Typical n-gram LM Smoothing

• Weight in less detailed distributions using $\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$:

$$p'_{\lambda}(w_{i}|w_{i-2},w_{i-1}) = \lambda_{3} p_{3}(w_{i}|w_{i-2},w_{i-1}) + \lambda_{2} p_{2}(w_{i}|w_{i-1}) + \lambda_{1} p_{1}(w_{i}) + \lambda_{0}/|V|$$

• Normalize:

$$\lambda_i > 0, \ \Sigma_{i=0..n} \lambda_i = 1$$
 is sufficient ($\lambda_0 = 1 - \Sigma_{i=1..n} \lambda_i$) (n=3)

- Estimation using MLE:
 - \underline{fix} the p_3 , p_2 , p_1 and |V| parameters as estimated from the training data
 - then find such $\{\lambda_i\}$ which minimizes the cross entropy (maximizes probability of data): $-(1/|D|)\sum_{i=1..|D|}log_2(p'_{\lambda}(w_i|h_i))$

Held-out Data

- What data to use?
 - try the training data T: but we will always get $\lambda_3 = 1$
 - why? (let p_{iT} be an i-gram distribution estimated using r.f. from T)
 - minimizing $H_T(p'_{\lambda})$ over a vector λ , $p'_{\lambda} = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$
 - remember: $H_T(p'_{\lambda}) = H(p_{3T}) + D(p_{3T}||p'_{\lambda});$
 - $(p_{3T} \text{ fixed} \rightarrow H(p_{3T}) \text{ fixed, best})$
 - which p'_{λ} minimizes $H_T(p'_{\lambda})$? ... a p'_{λ} for which $D(p_{3T} || p'_{\lambda})=0$
 - ...and that's p_{3T} (because D(p||p) = 0, as we know).
 - ...and certainly $p'_{\lambda} = p_{3T}$ if $\lambda_3 = 1$ (maybe in some other cases, too).

$$(p'_{\lambda} = 1 \times p_{3T} + 0 \times p_{2T} + 0 \times p_{1T} + 0/|V|)$$

- thus: do not use the training data for estimation of λ !
 - must hold out part of the training data (heldout data, <u>H</u>):
 - ...call the remaining data the (true/raw) training data, \underline{T}
 - the *test* data <u>S</u> (e.g., for comparison purposes): still different data!

The Formulas

• Repeat: minimizing -(1/|H|) $\Sigma_{i=1..|H|}\log_2(p'_{\lambda}(w_i|h_i))$ over λ

 $p'_{\lambda}(w_{i}|h_{i}) = p'_{\lambda}(w_{i}|w_{i-2},w_{i-1}) = \lambda_{3} p_{3}(w_{i}|w_{i-2},w_{i-1}) + \lambda_{2} p_{2}(w_{i}|w_{i-1}) + \lambda_{1} p_{1}(w_{i}) + \lambda_{0}/|V|$

• "Expected Counts (of lambdas)": j = 0..3

$$\mathbf{c}(\lambda_j) = \sum_{i=1..|\mathbf{H}|} \left(\lambda_j \mathbf{p}_j(\mathbf{w}_i | \mathbf{h}_i) / \mathbf{p'}_{\lambda}(\mathbf{w}_i | \mathbf{h}_i) \right)$$

• "Next λ ": j = 0..3

$$\lambda_{j,next} = c(\lambda_j) / \Sigma_{k=0..3} (c(\lambda_k))$$

The (Smoothing) EM Algorithm

- 1. Start with some λ , such that $\lambda_j > 0$ for all $j \in 0..3$.
- 2. Compute "Expected Counts" for each λ_i .
- 3. Compute new set of λ_i , using the "Next λ " formula.
- 4. Start over at step 2, unless a termination condition is met.
- Termination condition: convergence of λ .
 - Simply set an ε , and finish if $|\lambda_j \lambda_{j,next}| < \varepsilon$ for each j (step 3).
- Guaranteed to converge:

follows from Jensen's inequality, plus a technical proof.

Remark on Linear Interpolation Smoothing

- "Bucketed" smoothing:
 - use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$
 - e.g. for h = (micrograms,per) we will have

 $\lambda(h) = (.999, .0009, .00009, .00001)$

(because "cubic" is the only word to follow...)

actually: not a separate set for each history, but rather a set for "similar" histories ("bucket"):

 $\lambda(b(h))$, where b: V² \rightarrow N (in the case of trigrams)

<u>b</u> classifies histories according to their reliability (~ frequency)

Bucketed Smoothing: The Algorithm

- First, determine the bucketing function <u>b</u> (use heldout!):
 - decide in advance you want e.g. 1000 buckets
 - compute the total frequency of histories in 1 bucket $(f_{max}(b))$
 - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed $f_{max}(b)$ (you might end up with slightly more than 1000 buckets)
- Divide your heldout data according to buckets
- Apply the previous algorithm to each bucket and its data

Simple Example

- Raw distribution (unigram only; smooth with uniform): $p(a) = .25, p(b) = .5, p(\alpha) = 1/64$ for $\alpha \in \{c..r\}, = 0$ for the rest: s,t,u,v,w,x,y,z
- Heldout data: <u>baby</u>; use one set of λ (λ_1 : unigram, λ_0 : uniform)
- Start with $\lambda_1 = .5$; $p'_{\lambda}(b) = .5 \times .5 + .5 / 26 = .27$ $p'_{\lambda}(a) = .5 \times .25 + .5 / 26 = .14$ $p'_{\lambda}(y) = .5 \times 0 + .5 / 26 = .02$ $c(\lambda_1) = .5 \times .5 / .27 + .5 \times .25 / .14 + .5 \times .5 / .27 + .5 \times 0 / .02 = 2.72$ $c(\lambda_0) = .5 \times .04 / .27 + .5 \times .04 / .14 + .5 \times .04 / .27 + .5 \times .04 / .02 = 1.28$ Normalize: $\lambda_{1,next} = .68$, $\lambda_{0,next} = .32$.

Repeat from step 2 (recompute p'_{λ} first for efficient computation, then $c(\lambda_i)$, ...) Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).

Some More Technical Hints

- Set V = {all words from training data}.
 - You may also consider $V = T \cup H$, but it does not make the coding in any way simpler (in fact, harder).
 - But: you must never use the test data for you vocabulary!
- Prepend two "words" in front of all data:
 - avoids beginning-of-data problems
 - call these index -1 and 0: then the formulas hold exactly
- When $c_n(w,h) = 0$:
 - Assign 0 probability to $p_n(w|h)$ where $c_{n-1}(h) > 0$, but a uniform probability (1/|V|) to those $p_n(w|h)$ where $c_{n-1}(h) = 0$ [this must be done both when working on the heldout data during EM, as well as when computing cross-entropy on the test data!]

Words and the Company They Keep

Motivation

- Environment:
 - mostly "not a full analysis (sentence/text parsing)"
- Tasks where "words & company" are important:
 - word sense disambiguation (MT, IR, TD, IE)
 - lexical entries: subdivision & definitions (lexicography)
 - language modeling (generalization, [kind of] smoothing)
 - word/phrase/term translation (MT, Multilingual IR)
 - NL generation ("natural" phrases) (Generation, MT)
 - parsing (lexically-based selectional preferences)

Collocations

- Collocation
 - Firth: "word is characterized by the company it keeps"; collocations of a given word are statements of the habitual or customary places of that word.
 - non-compositionality of meaning
 - cannot be derived directly from its parts (heavy rain)
 - non-substitutability in context
 - for parts (<u>red</u> light)
 - non-modifiability (& non-transformability)
 - kick the <u>yettow</u> bucket; take exceptions to

Association and Co-occurence; Terms

- Does not fall under "collocation", but:
- Interesting just because it does often [rarely] appear together or in the same (or similar) context:
 - (doctors, nurses)
 - (hardware,software)
 - (gas, fuel)
 - (hammer, nail)
 - (communism, free speech)
- Terms:
 - need not be > 1 word (notebook, washer)

Collocations of Special Interest

- Idioms: really fixed phrases
 - kick the bucket, birds-of-a-feather, run for office
- Proper names: difficult to recognize even with lists
 - Tuesday (person's name), May, Winston Churchill, IBM, Inc.
- Numerical expressions
 - containing "ordinary" words
 - Monday Oct 04 1999, two thousand seven hundred fifty
- Phrasal verbs
 - Separable parts:
 - look up, take off

Further Notions

- Synonymy: different form/word, same meaning:
 - notebook / laptop
- Antonymy: opposite meaning:
 - new/old, black/white, start/stop
- Homonymy: same form/word, different meaning:
 - "true" (random, unrelated): can (aux. verb / can of Coke)
 - related: polysemy; notebook, shift, grade, ...
- Other:
 - Hyperonymy/Hyponymy: general vs. special: vehicle/car
 - Meronymy/Holonymy: whole vs. part: body/leg

How to Find Collocations?

- Frequency
 - plain
 - filtered
- Hypothesis testing
 - -t test
 - $-\chi^2$ test
- Pointwise ("poor man's") Mutual Information
- (Average) Mutual Information

Frequency

- Simple
 - Count n-grams; high frequency n-grams are candidates:
 - mostly function words
 - frequent names
- Filtered
 - Stop list: words/forms which (we think) cannot be a part of a collocation
 - a, the, and, or, but, not, ...
 - Part of Speech (possible collocation patterns)
 - A+N, N+N, N+of+N, ...

Hypothesis Testing

- Hypothesis
 - something we test (against)
- Most often:
 - compare possibly interesting thing vs. "random" chance
 - "Null hypothesis":
 - something occurs by chance (that's what we suppose).
 - Assuming this, prove that the probability of the "real world" is then too low (typically < 0.05, also 0.005, 0.001)... therefore reject the null hypothesis (thus confirming "interesting" things are happening!)
 - Otherwise, it's possibile there is nothing interesting.

t test (Student's *t* test)

- Significance of difference
 - compute "magic" number against normal distribution (mean μ)
 - using real-world data: (x' real data mean, s² variance, N size):

•
$$t = (x' - \mu) / \sqrt{s^2 / N}$$

- find in tables (see MS, p. 609):
 - d.f. = degrees of freedom (parameters which are not determined by other parameters)
 - percentile level p = 0.05 (or better)
- the bigger t:
 - the better chances that there is the interesting feature we hope for (i.e. we can reject the null hypothesis)
 - t: at least the value from the table(s)

t test on words

- null hypothesis: independence
 - mean µ: p(w₁) p(w₂)
- data estimates:
 - x' = MLE of joint probability from data
 - s² is p(1-p), i.e. almost p for small p; N is the data size
- Example: (d.f. ~ sample size)
 - 'general term' (homework corpus): c(general) = 108, c(term) = 40
 - c(general,term) = 2; expected p(general)p(term) = 8.8E-8
 - t = (9.0E-6 8.8E-8) / (9.0E-6 / 221097)^{1/2} = 1.40 (not > 2.576) thus 'general term' is <u>not</u> a collocation with confidence 0.005
 - 'true species': (84/1779/9): t = 2.774 > 2.576 !!

Pearson's Chi-square test

- χ^2 test (general formula): $\sum_{i,j} (O_{ij}-E_{ij})^2 / E_{ij}$ - where O_{ij}/E_{ij} is the observed/expected count of events i, j
- for two-outcomes-only events:

$w_{right} \setminus w_{left}$	= true	≠ true
= species	9	1,770
≠ species	75	219,243

 $\chi^2 = 221097(219243x9-75x1770)^2/1779x84x221013x219318 = 103.39 > 7.88$ (at .005 thus we can reject the independence assumption)

Pointwise Mutual Information

- This is <u>NOT</u> the MI as defined in Information Theory

 (IT: average of the following; not of <u>values</u>)
- ...but might be useful:
 I'(a,b) = log₂ (p(a,b) / p(a)p(b)) = log₂ (p(a|b) / p(a))
- Example (same):

I'(true,species) = $\log_2 (4.1e-5 / 3.8e-4 \times 8.0e-3) = 3.74$

I'(general,term) = $\log_2 (9.0e-6 / 1.8e-4 \times 4.9e-4) = 6.68$

- measured in bits but it is difficult to give it an interpretation
- used for ranking (7 the null hypothesis tests)

Mutual Information and Word Classes

The Problem

- Not enough data
 - Language Modeling: we do not see "correct" n-grams
 - solution so far: smoothing
 - suppose we see:
 - short homework, short assignment, simple homework
 - but not:
 - simple assignment
 - What happens to our (bigram) LM?
 - p(homework | simple) = high probability
 - p(assignment | simple) = low probability (smoothed with p(assignment))
 - They should be much closer!
Word Classes

- Observation: similar words behave in a similar way
 - trigram LM:
 - trigram LM, conditioning:
 - a ... homework (any atribute of homework: short, simple, late, difficult),
 - ... the woods (any verb that has the woods as an object: walk, cut, save)
 - trigram LM: both:
 - a (short,long,difficult,...) (homework,assignment,task,job,...)

Solution

- Use the Word Classes as the "reliability" measure
- Example: we see
 - short homework, short assignment, simple homework
 - but not:
 - simple assigment
 - Cluster into classes:
 - (short, simple) (homework, assignment)
 - covers "simple assignment", too
- Gaining: realistic estimates for unseen n-grams
- Loosing: accuracy (level of detail) within classes

The New Model

- Rewrite the n-gram LM using classes:
 - Was: [k = 1..n]
 - $p_k(w_i|h_i) = c(h_i,w_i) / c(h_i)$ [history: (k-1) words]
 - Introduce classes:

$$p_k(w_i|h_i) = p(w_i|c_i) p_k(c_i|h_i) \bullet$$

• history: <u>classes</u>, too: [for trigram: $h_i = c_{i-2}, c_{i-1}$, bigram: $h_i = c_{i-1}$]

- Smoothing as usual
 - over $p_k(w_i|h_i),$ where each is defined as above (except uniform which stays at 1/|V|)

Training Data

- Suppose we already have a mapping:
 - r: V \rightarrow C assigning each word its class ($c_i = r(w_i)$)
- Expand the training data:
 - $T = (w_1, w_2, ..., w_{|T|})$ into
 - $T_{C} = (\langle w_{1}, r(w_{1}) \rangle, \langle w_{2}, r(w_{2}) \rangle, ..., \langle w_{|T|}, r(w_{|T|}) \rangle)$
- Effectively, we have two streams of data:
 - word stream: $w_1, w_2, ..., w_{|T|}$
 - class stream: $c_1, c_2, ..., c_{|T|}$ (def. as $c_i = r(w_i)$)
- Expand Heldout, Test data too

Training the New Model

- As expected, using ML estimates:
 - $p(w_i|c_i) = p(w_i|r(w_i)) = c(w_i) / c(r(w_i)) = c(w_i) / c(c_i)$
 - $!!! c(w_i, c_i) = c(w_i)$ [since c_i determined by w_i]
 - $p_k(c_i|h_i)$:
 - $\mathbf{p}_3(\mathbf{c}_i|\mathbf{h}_i) = \mathbf{p}_3(\mathbf{c}_i|\mathbf{c}_{i-2},\mathbf{c}_{i-1}) = \mathbf{c}(\mathbf{c}_{i-2},\mathbf{c}_{i-1},\mathbf{c}_i) / \mathbf{c}(\mathbf{c}_{i-2},\mathbf{c}_{i-1})$
 - $p_2(c_i|h_i) = p_2(c_i|c_{i-1}) = c(c_{i-1},c_i) / c(c_{i-1})$
 - $p_1(c_i|h_i) = p_1(c_i) = c(c_i) / |T|$
- Then smooth as usual
 - not the $p(w_i|c_i)$ nor $p_k(c_i|h_i)$ individually, but the $p_k(w_i|h_i)$

Classes: How To Get Them

- We supposed the classes are given
- Maybe there are in [human] dictionaries, but...
 - dictionaries are incomplete
 - dictionaries are unreliable
 - do not define classes as equivalence relation (overlap)
 - do not define classes suitable for LM
 - small, short... maybe; small and difficult?
- \rightarrow we have to construct them <u>from data</u> (again...)

Creating the Word-to-Class Map

- We will talk about <u>bigrams</u> from now
- Bigram estimate:

• $p_2(c_i|h_i) = p_2(c_i|c_{i-1}) = c(c_{i-1},c_i) / c(c_{i-1}) = c(r(w_{i-1}),r(w_i)) / c(r(w_{i-1}))$

• Form of the model:

just raw bigram for now:

• $P(T) = \prod_{i=1.,|T|} p(w_i | r(w_i)) p_2(r(w_i) | r(w_{i-1})) \quad (p_2(c_1 | c_0) =_{df} p(c_1))$

- Maximize over r (given $r \rightarrow fixed p, p_2$):
 - define objective $L(r) = 1/|T| \sum_{i=1..|T|} \log(p(w_i|r(w_i)) p_2(r(w_i))|r(w_{i-1})))$
 - $r_{best} = argmax_r L(r)$ (L(r) = norm. logprob of training data... as usual)

Simplifying the Objective Function

- Start from $L(r) = 1/|T| \sum_{i=1..|T|} \log(p(w_i|r(w_i)) p_2(r(w_i)|r(w_{i-1})))$:
 - $1/|T| \sum_{i=1.|T|} log(p(w_i | r(w_i)) \underline{p(r(w_i))} p_2(r(w_i) | r(w_{i-1})) / \underline{p(r(w_i))}) =$
 - $1/|T| \sum_{i=1..|T|} log(\underline{p(w_{\underline{i}}, \underline{r(w_{\underline{i}})})} p_2(r(w_i)|r(w_{i-1})) / p(r(w_i))) =$
 - $1/|T| \sum_{i=1..|T|} log(\underline{p(w_i)}) + 1/|T| \sum_{i=1..|T|} log(p_2(r(w_i)|r(w_{i-1})) / p(r(w_i))) = 0$
 - $-H(W) + 1/|T| \sum_{i=1..|T|} log(p_2(r(w_i)|r(w_{i-1})) \underline{p(r(w_{i-1})) / (p(r(w_{i-1})) p(r(w_i)))}) = 0$
 - $-H(W) + 1/|T| \sum_{i=1..|T|} log(\underline{p(r(w_{\underline{i}}), r(w_{\underline{i-1}}))} / (p(r(w_{i-1})) p(r(w_{i})))) =$

 $-H(W) + \sum_{d,e \in C} p(d,e) \log(p(d,e) / (p(d) p(e))) =$

-H(W) + I(D,E)

(event E picks class adjacent (to the right) to the one picked by D)

• Since W does not depend on r, we ended up with I(D,E). • the need to maximize

Maximizing Mutual Information (dependent on the mapping r)

- Result from previous foil:
 - Maximizing the probability of data amounts to maximizing I(D,E), the mutual information of the <u>adjacent classes</u>.
- Good:
 - We know what a MI is, and we know how to maximize.
- Bad:
 - There is no way how to maximize over so many possible partitionings: $|V|^{|V|}$ no way to test them all.

Training or Heldout?

- Training:
 - best I(D,E): all words in a class of its own
 - \rightarrow will not give us anything new.
- Heldout: ok, but:
 - must smooth to test any possible partitioning (unfeasible):
 - \rightarrow using raw model: 0 probability of heldout (almost) guaranteed
 - \rightarrow will not be able to compare anything
 - some smoothing estimates? (to be explored...)
- Solution:
 - use training anyway, but only keep I(D,E) as large as possible

The Greedy Algorithm

- Define merging operation on the mapping r: $V \rightarrow C$:
 - merge: $R \times C \times C \rightarrow R' \times C^{-1}$: (r,k,l) \rightarrow r',C' such that
 - C⁻¹ = {C {k,l} \cup {m}} (throw out k and l, add new m \notin C)
 - $r'(w) = \dots m \text{ for } w \in r_{INV}(\{k,l\}),$ $\dots r(w) \text{ otherwise.}$
- 1. Start with each word in its own class (C = V), r = id.
- 2. Merge two classes k,l into one, m, such that

 $(k,l) = \operatorname{argmax}_{k,l} I_{\operatorname{merge}(r,k,l)}(D,E).$

- 3. Set new (r,C) = merge(r,k,l).
- 4. Repeat 2 and 3 until |C| reaches predetermined size.

Word Classes in Applications

- Word Sense Disambiguation: context not seen [enough(-times)]
- Parsing: verb-subject, verb-object relations
- Speech recognition (acoustic model): need more instances of [rare(r)] sequences of phonemes
- Machine Translation: translation equivalent selection [for rare(r) words]

Word Classes: Programming Tips & Tricks

The Algorithm (review)

- Define merge(r,k,l) = (r',C') such that
 - C' = C $\{k,l\} \cup \{m \text{ (a new class)}\}$
 - r'(w) = r(w) except for k,l member words for which it is m.
- 1. Start with each word in its own class (C = V), r = id.
- 2. Merge two classes k,l into one, m, such that

 $(k,l) = \operatorname{argmax}_{k,l} I_{\operatorname{merge}(r,k,l)}(D,E).$

- 3. Set new (r,C) = merge(r,k,l).
- 4. Repeat 2 and 3 until |C| reaches a predetermined size.

Complexity Issues

- Still too complex:
 - |V| iterations of the steps 2 and 3.
 - $|V|^2$ steps to maximize $\operatorname{argmax}_{k,l}$ (selecting k,l freely from |C|, which is in the order of $|V|^2$)
 - |V|² steps to compute I(D,E) (sum within sum, all classes, also: includes log)
 - \Rightarrow total: $|V|^5$
 - i.e., for |V| = 100, about 10^{10} steps; ~ several hours!
 - but $|V| \sim 50,000$ or more

Trick #1: Recomputing The MI the Smart Way: Subtracting...

• Bigram count table:

- Test-merging c_2 and c_4 : recompute only rows/cols 2 & 4:
 - subtract column/row (2 & 4) from the MI sum (intersect.!)
 - add sums of merged counts (row & column)

...and Adding

• Add the merged counts:

Trick #2: Precompute the Counts-to-be-Subtracted

- Summing loop goes through i,j
- ...but the single row/column sums do not depend on the (resulting sums after the) merge
- \Rightarrow can be precomputed
 - only 2k logs to compute at each algorithm iteration, instead of k²
- Then for each "merge-to-be" compute only add-on sums, plus "intersection adjustment"

Formulas for Tricks #1 and #2

Let's have <u>k</u> classes at a certain iteration. Define:
 q_k(l,r) = p_k(l,r) log(p_k(l,r) / (p_{kl}(l) p_{kr}(r)))
 now the same, but using counts:

 $q_k(l,r) = c_k(l,r)/N \log(N c_k(l,r)/(c_{kl}(l) c_{kr}(r)))$

• Define further (row+column <u>i</u> sum): precomputed $s_k(a) = \sum_{l=1..k} q_k(l,a) + \sum_{r=1..k} q_k(a,r) - q_k(a,a)$ • Then, the subtraction part of Trick #1 amounts to $sub_k(a,b) = s_k(a) + s_k(b) - q_k(a,b) - q_k(b,a)$ remaining intersect. adj.

Formulas - cont.

• After-merge add-on:

 $add_{k}(a,b) = \sum_{l=1..k, l \neq a, b} q_{k}(l,a+b) + \sum_{r=1..k, r \neq a, b} q_{k}(a+b,r) + q_{k}(a+b,a+b)$

- What is it <u>a+b</u>? Answer: the <u>new (merged) class</u>.
- Hint: use the definition of q_k as a "macro", and then $p_k(a+b,r) = p_k(a,r) + p_k(b,r)$ (same for other sums, equivalent)
- The above sums cannot be precomputed
- After-merge Mutual Information (I_k is the "old" MI, kept from previous iteration of the algorithm):

 $I_k(a,b)$ (MI after merge of cl. a,b) = I_k - sub_k(a,b) + add_k(a,b)

Trick #3: Ignore Zero Counts

- Many bigrams are 0
 - (see the paper: Canadian Hansards, < .1 % of bigrams are non-zero)
- Create linked lists of non-zero counts in columns and rows (similar effect: use perl's hashes)
- Update links after merge (after step 3)

Trick #4: Use Updated Loss of MI

- We are now down to |V|⁴: |V| merges, each merge takes |V|² "test-merges", each test-merge involves order-of-|V| operations (add_k(i,j) term, foil #8)
- <u>Observation</u>: many numbers (s_k, q_k) needed to compute the mutual information loss due to a merge of i+j *do not change*: namely, those which are not in the vicinity of neither i nor j.
- <u>*Idea*</u>: keep the MI loss matrix for all pairs of classes, and (after a merge) update only those cells which have been influenced by the merge.

Formulas for Trick #4 (s_{k-1}, L_{k-1})

- Keep a matrix of "losses" $L_k(d,e)$.¹
- Init: $L_k(d,e) = sub_k(d,e) add_k(d,e)$ [then $I_k(d,e) = I_k L_k(d,e)$]
- Suppose a,b are now the two classes merged into a:
- Update (k-1: index used for the <u>*next*</u> iteration; $i, j \neq a, b$):

 $\begin{aligned} &-s_{k-1}(i) = s_k(i) - q_k(i,a) - q_k(a,i) - q_k(i,b) - q_k(b,i) + q_{k-1}(a,i) + q_{k-1}(i,a) \\ &- {}^2L_{k-1}(i,j) = L_k(i,j) - s_k(i) + s_{k-1}(i) - s_k(j) + s_{k-1}(j) + q_k(i+j,a) + q_k(a,i+j) + q_k(i+j,b) + q_k(b,i+j) - \end{aligned}$

- $q_{k-1}(i+j,a)$ - $q_{k-1}(a,i+j)$ [NB: may substitute even for s_k , s_{k-1}]

NB ¹ L_k is symmetrical L_k(d,e) = L_k(e,d) (q_k is something different!) ²The update formula L_{k-1}(l,m) is wrong in the Brown et. al paper

Completing Trick #4

- $s_{k-1}(a)$ must be computed using the "Init" sum.
- $L_{k-1}(a,i) = L_{k-1}(i,a)$ must be computed in a similar way, for all $i \neq a,b$.
- $s_{k-1}(b)$, $L_{k-1}(b,i)$, $L_{k-1}(i,b)$ are not needed anymore (keep track of such data, i.e. mark every class already merged into some other class and do not use it anymore).
- Keep track of the minimal loss during the $L_k(i,j)$ update process (so that the next merge to be taken is obvious immediately after finishing the update step).

Efficient Implementation

- Data Structures: (N # of bigrams in data [fixed])
 - Hist(k) history of merges
 - Hist(k) = (a,b) merged when the remaining number of classes was k
 - $c_k(i,j)$ bigram class counts [updated]
 - $c_{kl}(i), c_{kr}(i)$ unigram (marginal) counts [updated]
 - $-L_k(a,b)$ table of losses; upper-right trianlge [updated]
 - $s_k(a)$ "subtraction" subterms [optionally updated]
 - $q_k(i,j)$ subterms involving a log [opt. updated]
 - The optionally updated data structures will give linear improvement only in the subsequent steps, but at least $s_k(i)$ is necessary in the initialization phase (1st iteration)

Implementation: the Initialization Phase

- 1 Read data in, init counts $c_k(l,r)$; then $\forall l,r,a,b$; a < b:
- 2 Init unigram counts:

 $c_{kl}(l) = \sum_{r=1..k} c_k(l,r), \quad c_{kr}(r) = \sum_{l=1..k} c_k(l,r)$

- complicated? remember, must take care of start & end of data!

- 3 Init $q_k(l,r)$: use the 2nd formula (count-based) on foil 7, $q_k(l,r) = c_k(l,r)/N \log(N c_k(l,r)/(c_{kl}(l) c_{kr}(r)))$
- 4 Init $s_k(a) = \sum_{l=1..k} q_k(l,a) + \sum_{r=1..k} q_k(a,r) q_k(a,a)$
- 5 Init $L_k(a,b) = s_k(a) + s_k(b) q_k(a,b) q_k(b,a) q_k(a+b,a+b) +$

-
$$\sum_{l=1..k, l \neq a, b} q_k(l, a+b)$$
 - $\sum_{r=1..k, r \neq a, b} q_k(a+b, r)$

2018/9

Implementation: Select & Update

- 6 Select the best pair (a,b) to merge into <u>a</u> (watch the candidates when computing L_k(a,b)); save to Hist(k)
- 7 Optionally, update q_k(i,j) for all i,j ≠ b, get q_{k-1}(i,j)
 remember those q_k(i,j) values needed for the updates below
- 8 Optionally, update s_k(i) for all i ≠ b, to get s_{k-1}(i)
 again, remember the s_k(i) values for the "loss table" update
- 9 Update the loss table, $L_k(i,j)$, to $L_{k-1}(i,j)$, using the tabulated q_k , q_{k-1} , s_k and s_{k-1} values, or compute the needed $q_k(i,j)$ and $q_{k-1}(i,j)$ values dynamically from the counts: $c_k(i+j,b) = c_k(i,b) + c_k(j,b)$; $c_{k-1}(a,i) = c_k(a+b,i)$

2018/9

Towards the Next Iteration

- 10 During the $L_k(i,j)$ update, keep track of the minimal loss of MI, and the two classes which caused it.
- 11 Remember such best merge in Hist(k).
- 12 Get rid of all s_k , q_k , L_k values.
- 13 Set k = k -1; stop if k == 1.
- 14 Start the next iteration
 - either by the optional updates (steps 7 and 8), or
 - directly updating $L_k(i,j)$ again (step 9).

Moving Words Around

- Improving Mutual Information
 - take a word from one class, move it to another (i.e., two classes change: the moved-from and the moved-to), compute $I_{new}(D,E)$; keep change permanent if $I_{new}(D,E) > I(D,E)$

keep moving words until no move improves I(D,E)

- Do it at every iteration, or at every <u>m</u> iterations
- Use similar "smart" methods as for merging

Using the Hierarchy

- Natural Form of Classes
 - follows from the sequence of merges:

evaluation assessment analysis understanding opinion

Numbering the Classes (within the Hierarchy)

• Binary branching

2018/9

• Assign 0/1 to the left/right branch at every node:

Markov Models

Review: Markov Process

• Bayes formula (chain rule):

 $P(W) = P(W_1, W_2, ..., W_T) = \prod_{i=1..T} p(W_i | W_1, W_2, ..., W_{i-n+1}, ..., W_{i-1})$ Proximation

• n-gram language models:

2018/9

- Markov process (chain) of the order n-1:

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1..T} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1})$$

Using just one distribution (Ex.: trigram model: $p(w_i | w_{i-2}, w_{i-1})$):

1 2 <u>3 4 5</u> 6 7 8 9 10 11 <u>12 13 14</u> 15 16 Positions: My car(broke down) and within hours Bob 's car(broke down) Words: too .

 $p(|broke down) = p(w_5|w_3,w_4)) = p(w_{14}|w_{12},w_{13})$

Markov Properties

- Generalize to any process (not just words/LM):
 - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$
 - Sample space S (*states*), size N: S = $\{s_0, s_1, s_2, ..., s_N\}$
 - 1. Limited History (Context, Horizon):

 $\forall i \in 1...T; P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$ 1 7 3 7 9 0 6 7 3 4 5...2. Time invariance (M.C. is stationary, homogeneous) $\forall i \in 1...T, \forall y, x \in S; P(X_i=y|X_{i-1}=x) = p(y|x)$ 1 7 3 7 9 0 6 7 3 4 5... $\downarrow \uparrow \uparrow \uparrow ? \downarrow \uparrow ok...same \underline{distribution}$

Long History Possible

- What if we want trigrams: 1 7 3 7 9 0 $\boxed{673}$ 4 5...
- Formally, use transformation:

Define new variables Q_i , such that $X_i = \{Q_{i-1}, Q_i\}$:

Then

$$P(X_{i}|X_{i-1}) = P(Q_{i-1},Q_{i}|Q_{i-2},Q_{i-1}) = P(Q_{i}|Q_{i-2},Q_{i-1})$$
Predicting (X_i):

$$1 7 3 7 9 0 6 7 3 4 5 ...$$
History (X_{i-1} = {Q_{i-2},Q_{i-1}}):

$$X_{i-1} = \{Q_{i-2},Q_{i-1}\}$$

Graph Representation: State Diagram

- $S = \{s_0, s_1, s_2, ..., s_N\}$: states
- Distribution $P(X_i|X_{i-1})$:
 - transitions (as arcs) with probabilities attached to them:

The Trigram Case

- $S = \{s_0, s_1, s_2, ..., s_N\}$: states: pairs $s_i = (x, y)$
- Distribution $P(X_i|X_{i-1})$: (r.v. X: generates pairs s_i)

2018/9 UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 145

Finite State Automaton

- States ~ symbols of the [input/output] alphabet \sim
 - pairs (or more): last element of the n-tuple
- Arcs ~ transitions (sequence of states)
- [Classical FSA: alphabet symbols on arcs:

- transformation: arcs \leftrightarrow nodes]

- Possible thanks to the "limited history" M'ov Property
- So far: *Visible* Markov Models (VMM)

Hidden Markov Models

• The simplest HMM: states generate [observable] output (using the "data" alphabet) but remain "invisible":

2018/9

Added Flexibility

• So far, no change; but different states may generate the same output (why not?):

2018/9

Output from Arcs...

• Added flexibility: Generate output from arcs, not states:

2018/9 UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 149

... and Finally, Add Output Probabilities

• Maximum flexibility: [Unigram] distribution (sample space: output alphabet) at each output arc:

Slightly Different View

• Allow for multiple arcs from $s_i \rightarrow s_j$, mark them by output symbols, get rid of output distributions:

In the future, we will use the view more convenient for the problem at hand.

2018/9 UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina 151

Formalization

- HMM (the most general case):
 - five-tuple (S, s_0 , Y, P_S , P_Y), where:
 - $S = \{s_0, s_1, s_2, \dots, s_T\}$ is the set of states, s_0 is the initial state,
 - $Y = \{y_1, y_2, ..., y_V\}$ is the output alphabet,
 - $P_S(s_j|s_i)$ is the set of prob. distributions of transitions, - size of P_S : $|S|^2$.
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions. - size of P_Y : $|S|^2 \times |Y|$
- Example:

$$-S = \{x, 1, 2, 3, 4\}, s_0 = x$$

 $- Y = \{ t, o, e \}$

Formalization - Example

• Example (for graph, see foils 11,12):

$$- S = \{x, 1, 2, 3, 4\}, s_0 = x$$

2018/9

$$-Y = \{ e, o, t \}$$

$$-P_{S}: \qquad x \ 1 \ 2 \ 3 \ 4 \\ \hline x \ 0 \ .6 \ 0 \ .4 \ 0 \\ \hline 1 \ 0 \ 0 \ .12 \ 0 \ .88 \\ \hline 2 \ 0 \ 0 \ 0 \ 0 \ 1 \\ \hline 3 \ 0 \ 1 \ 0 \ 0 \\ \hline 4 \ 0 \ 0 \ 1 \\ \hline 0 \ 0 \\ \hline \end{bmatrix} P_{Y}: \qquad e \ x \ 1 \ 2 \ 3 \ 4 \\ \hline x \ 1 \ 2 \ 3 \ 4 \\ \hline x \ 1 \ 2 \ 3 \ 4 \\ \hline x \ .8 \ .5 \ .7 \\ \hline 1 \ 0 \ .1 \\ \hline 2 \ 0 \ 0 \\ \hline 1 \ 0 \ .1 \\ \hline 2 \ 0 \ 0 \\ \hline 1 \ 0 \ 0 \\ \hline 1 \ 0 \ 0 \\ \hline \end{bmatrix} \Sigma = 1$$

Using the HMM

- The generation algorithm (of limited value :-)):
 - 1. Start in $s = s_0$.
 - **2.** Move from s to s' with probability $P_{S}(s'|s)$.
 - 3. Output (emit) symbol y_k with probability $P_S(y_k|s,s')$.
 - 4. Repeat from step 2 (until somebody says enough).
- More interesting usage:
 - Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute its probability.
 - Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute the most likely sequence of states which has generated it.
 - ...plus variations: e.g., <u>n</u> best state sequences

HMM Algorithms: Trellis and Viterbi

HMM: The Two Tasks

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_S , P_Y), where:
 - $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $Y = \{y_1, y_2, ..., y_V\}$ is the output alphabet,
 - $P_{S}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence Y = {y₁,y₂,...,y_k}: (Task 1) compute the probability of Y;
 - (Task 2) compute the most likely sequence of states which has generated Y.

Trellis - Deterministic Output

- trellis state: (HMM state, position)
- each state: holds <u>one</u> number (prob): α
- probability or Y: $\Sigma \alpha$ in the last state

 $\alpha(C,1) = .4$

 $\alpha(',0) = 1$

 $\alpha(A,1) = .6$ $\alpha(D,2) = .568$ $\alpha(B,3) = .568$

Creating the Trellis: The Start

Trellis: The Next Step

- Suppose we are in stage *i*
- Creating the next stage:
 - create all trellis states in the next stage which generate y_{i+1} , but only those reachable from any of the stage-*i* states
 - set their $\alpha(state,i+1)$ to:

 $P_{s}(state|prev.state) \times \alpha(prev.state, i)$ (add up all such numbers on arcs going to a common trellis state)

- ...and forget about stage *i*

Trellis: The Last Step

• Continue until "output" exhausted

-|Y| = 3: until stage 3

- Add together all the $\alpha(state, |Y|)$
- That's the $\underline{P(Y)}$.
- Observation (pleasant):
 - memory usage max: 2|S|
 - multiplications max: $|S|^2|Y|$

Trellis: The General Case (still, bigrams)

• Start as usual:

- start state ('), set its $\alpha(',0)$ to 1.

General Trellis: The Next Step

- We are in stage *i* :
 - Generate the next stage i+1 as before (except now <u>arcs</u> generate output, thus use only those arcs marked by the output symbol y_{i+1})

2018/9

...and forget about stage *i* as usual.

y₁: t

 $\alpha =$

position/stage

 Λ , $\alpha = .48$

 $\alpha = .2$

Trellis: The Complete Example

Stage:

2018/9

The Case of Trigrams

• Like before, but:

2018/9

- states correspond to bigrams,
- output function always emits the second output symbol of the pair (state) to which the arc goes:

Multiple paths not possible \rightarrow trellis not really needed

Trigrams with Classes

• More interesting:

- n-gram class LM: $p(w_i|w_{i-2},w_{i-1}) = p(w_i|c_i) p(c_i|c_{i-2},c_{i-1})$

 \rightarrow states are pairs of classes (c_{i-1},c_i), and emit "words":

2018/9

Class Trigrams: the Trellis

2018/9

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina

Overlapping Classes

- Imagine that classes may overlap
 - e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well as C:

2018/9

Overlapping Classes: Trellis Example

2018/9

168

Trellis: Remarks

- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 supposed we know where to start (finite data)
- In fact, we might start in the middle going left <u>and</u> right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers
 & addition problems with many transitions

The Viterbi Algorithm

- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

 $S_{best} = argmax_{S}P(S|Y)$

which is equal to (Y is constant and thus P(Y) is fixed):

$$S_{best} = \operatorname{argmax}_{S} P(S,Y) =$$

= $\operatorname{argmax}_{S} P(s_0,s_1,s_2,...,s_k,y_1,y_2,...,y_k) =$
= $\operatorname{argmax}_{S} \Pi_{i=1..k} p(y_i|s_i,s_{i-1})p(s_i|s_{i-1})$

170

The Crucial Observation

• Imagine the trellis build as before (but do not compute the αs yet; assume they are o.k.); stage *i*:

Viterbi Example

• 'r' classification (C or V?, sequence?):

Possible state seq.: (',v)(v,c)(c,v)[VCV], (',c)(c,c)(c,v)[CCV], (',c)(c,v)(v,v)[CVV]

2018/9

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Pavel Pecina

173

<u>n</u>-best State Sequences

Tracking Back the n-best paths

- Backtracking-style algorithm:
 - Start at the end, in the best of the n states (s_{best})
 - Put the other n-1 best nodes/back pointer pairs on stack, except those leading from s_{best} to the same best-back state.
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the <u>best</u> back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the topmost node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

Pruning

• Sometimes, too many trellis states in a stage:

criteria: (a) α < threshold (b) $\Sigma \pi$ < threshold (c) # of states > threshold (get rid of smallest α)

2018/9

HMM Parameter Estimation: the Baum-Welch Algorithm

HMM: The Tasks

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_S , P_Y), where:
 - $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $Y = \{y_1, y_2, \dots, y_V\}$ is the output alphabet,
 - $P_{S}(s_{i}|s_{i})$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence Y = {y₁,y₂,...,y_k}:
 ✓(Task 1) compute the probability of Y;
 - ✓ (Task 2) compute the most likely sequence of states which has generated Y.

(Task 3) Estimating the parameters (transition/output distributions)

A Variant of EM

- Idea (~ EM, for another variant see LM smoothing):
 - Start with (possibly random) estimates of P_S and P_Y .
 - Compute (fractional) "counts" of state transitions/emissions taken, from P_s and P_y, given data Y.
 - Adjust the estimates of P_S and P_Y from these "counts" (using the MLE, i.e. relative frequency as the estimate).
- Remarks:
 - many more parameters than the simple four-way smoothing
 - no proofs here; see Jelinek, Chapter 9

Setting

- HMM (without P_S , P_Y) (S, S₀, Y), and data $T = \{y^i \in Y\}_{i=1..|T|}$
 - will use $T \sim |T|$
 - HMM structure is given: (S, S_0)
 - P_s:Typically, one wants to allow "fully connected" graph
 - (i.e. no transitions forbidden ~ no transitions set to hard 0)
 - why? → we better leave it on the learning phase, based on the data!
 - sometimes possible to remove some transitions ahead of time
 - P_{Y} : should be restricted (if not, we will not get anywhere!)
 - restricted ~ hard 0 probabilities of p(y|s,s')
 - "Dictionary": states ↔ words, "m:n" mapping on S × Y (in general)
- 2018/9 UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic Pavel Pecina
Initialization

- For computing the initial expected "counts"
- Important part
 - EM guaranteed to find a *local* maximum only (albeit a good one in most cases)
- P_Y initialization more important
 - fortunately, often easy to determine
 - together with dictionary ↔ vocabulary mapping, get counts, then MLE
- P_s initialization less important

- e.g. uniform distribution for each p(.|s)

Data Structures

- Will need storage for:
 - The predetermined structure of the HMM

(unless fully connected \rightarrow need not to keep it!)

- The parameters to be estimated (P_S, P_Y)
- The expected counts (same size as P_S , P_Y)
- The training data $T = \{y^i \in Y\}_{i=1..T}$

The Algorithm Part I

- 1. Initialize P_S, P_Y
- 2. Compute "forward" probabilities:
 - follow the procedure for trellis (summing), compute $\alpha(s,i)$
 - use the current values of P_S , P_Y (p(s'|s), p(y|s,s')):

 $\alpha(s',i) = \sum_{s \to s'} \alpha(s,i-1) \times p(s'|s) \times p(y_i|s,s')$

- NB: do not throw away the previous stage!
- 3. Compute "backward" probabilities
 - start at all nodes of the last stage, proceed backwards, $\beta(s,i)$
 - i.e., probability of the "tail" of data from stage *i* to the end of data

 $\beta(s',i) = \sum_{s \leftarrow s'} \beta(s,i+1) \times p(s|s') \times p(y_{i+1}|s',s)$

• also, keep the $\beta(s,i)$ at all trellis states

The Algorithm Part II

4. Collect counts:

for each output/transition pair compute

5. Reestimate: $p'(s'|s) = c(s,s')/c(s) \quad p'(y|s,s') = c(y,s,s')/c(s,s')$

6. Repeat 2-5 until desired convergence limit is reached.

Baum-Welch: Tips & Tricks

- Normalization badly needed
 - long training data \rightarrow extremely small probabilities
- Normalize α , β using the same norm. factor:

 $N(i) = \sum_{s \in S} \alpha(s, i)$

as follows:

- compute α(s,i) as usual (Step 2 of the algorithm), computing the sum N(i) at the given stage *i* as you go.
- at the end of each stage, recompute all αs (for each state s):

$$\alpha^*(s,i) = \alpha(s,i) / N(i)$$

• use the same N(i) for β s at the end of each backward (Step 3) stage:

$$\beta^*(\mathbf{s},\mathbf{i}) = \beta(\mathbf{s},\mathbf{i}) / \mathbf{N}(\mathbf{i})$$

Example

- Task: pronunciation of "the"
- Solution: build HMM, fully connected, 4 states:
 - S short article, L long article, C,V starting w/consonant, vowel
 - thus, only "the" is ambiguous (a, an, the not members of C,V)
- Output from states only (p(w|s,s') = p(w|s'))
- Data Y: an egg and a piece of the big the end $(\overline{y}, \overline{y})$ (\overline{y}) $(\overline{y}, \overline{y})$ (\overline{y}) $(\overline{y$

Example: Initialization

• Output probabilities:

 $p_{init}(w|c) = c(c,w) / c(c)$; where c(S,the) = c(L,the) = c(the)/2(other than that, everything is deterministic)

- Transition probabilities:
 - $p_{init}(c'|c) = 1/4$ (uniform)
- Don't forget:
 - about the space needed
 - initialize $\alpha(X,0) = 1$ (X : the never-occurring front buffer st.)
 - initialize $\beta(s,T) = 1$ for all s (except for s = X)

Fill in alpha, beta

• Left to right, alpha:

 $\alpha(s',i) = \sum_{s \to s'} \alpha(s,i-1) \times p(s'|s) \times p(w_i|s')$

- Remember normalization (N(i)). Output from states
- Similarly, beta (on the way back from the end).

Counts & Reestimation

- One pass through data
- At each position *i*, go through all pairs (s_i, s_{i+1})
- Increment appropriate counters by frac. counts (Step 4):
 - $\operatorname{inc}(y_{i+1},s_i,s_{i+1}) = a(s_i,i) p(s_{i+1}|s_i) p(y_{i+1}|s_{i+1}) b(s_{i+1},i+1)$
 - $c(y,s_i,s_{i+1}) \neq inc (for y at pos i+1)$
 - $c(s_i,s_{i+1}) \neq inc$ (always)
 - $c(s_i) \neq inc$ (always)

inc(big,L,C) = $\alpha(L,7)p(C|L)p(big,C)\beta(C,8)$ inc(big,S,C) = $\alpha(S,7)p(C|S)p(big,C)\beta(C,8)$

• Reestimate p(s'|s), p(y|s)

- and hope for increase in p(C|S) and p(V|L)...!!

HMM: Final Remarks

- Parameter "tying":
 - keep certain parameters same (~ just one "counter" for all of them)
 - any combination in principle possible
 - ex.: smoothing (just one set of lambdas)
- Real Numbers Output
 - Y of infinite size (R, Rⁿ):
 - parametric (typically: few) distribution needed (e.g., "Gaussian")
- "Empty" transitions: do not generate output
 - ~ vertical arcs in trellis; do not use in "counting"