Introduction to Natural Language Processing I [Statistické metody zpracování přirozených jazyků I] (NPFL067)

http://ufal.mff.cuni.cz/courses/npfl067

prof. RNDr. Jan Hajič, Dr. / doc. RNDr. Pavel Pecina, Ph.D. ÚFAL MFF UK

{hajic,pecina}@ufal.mff.cuni.cz

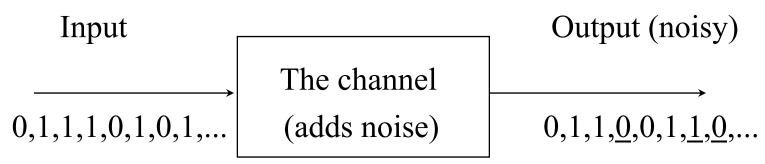
http://ufal.mff.cuni.cz/jan-hajic

http://ufal.mff.cuni.cz/~pecina/index.html

Language Modeling (and the Noisy Channel)

The Noisy Channel

• Prototypical case:



- Model: probability of error (noise):
- Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6
- The Task:

known: the noisy output; want to know: the input (decoding)

Noisy Channel Applications

- OCR
 - straightforward: text \rightarrow print (adds noise), scan \rightarrow image
- Handwriting recognition
 - text → neurons, muscles ("noise"), scan/digitize → image
- Speech recognition (dictation, commands, etc.)
 - text → conversion to acoustic signal ("noise") → acoustic waves
- Machine Translation
 - text in target language → translation ("noise") → source language
- Also: Part of Speech Tagging
 - sequence of tags \rightarrow selection of word forms \rightarrow text

Noisy Channel: The Golden Rule of ...

OCR, ASR, HR, MT,

• Recall:

```
p(A|B) = p(B|A) p(A) / p(B) (Bayes formula)

A_{best} = argmax_A p(B|A) p(A) (The Golden Rule)
```

- p(B|A): the acoustic/image/translation/lexical model
 - application-specific name
 - will explore later
- p(A): *the language model*

The Perfect Language Model

- Sequence of word forms [forget about tagging for the moment]
- Notation: $A \sim W = (w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question:

$$p(W) = ?$$

• Well, we know (Bayes/chain rule \rightarrow):

$$p(W) = p(w_1, w_2, w_3, ..., w_d) =$$

=
$$p(w_1) \times p(w_2|w_1) \times p(w_3|w_1,w_2) \times ... \times p(w_d|w_1,w_2,...,w_{d-1})$$

• Not practical (even short $W \rightarrow too many parameters)$

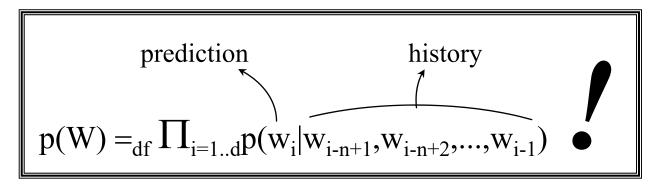
Markov Chain

- Unlimited memory (cf. previous foil):
 - for w_i , we know <u>all</u> its predecessors $w_1, w_2, w_3, ..., w_{i-1}$
- Limited memory:
 - we disregard "too old" predecessors
 - remember only k previous words: $w_{i-k}, w_{i-k+1}, ..., w_{i-1}$
 - called "kth order Markov approximation"
- + stationary character (no change over time):

$$p(W) \cong \prod_{i=1..d} p(w_i|w_{i-k}, w_{i-k+1}, ..., w_{i-1}), d = |W|$$

n-gram Language Models

• $(n-1)^{th}$ order Markov approximation \rightarrow n-gram LM:



- In particular (assume vocabulary |V| = 60k):
 - 0-gram LM: uniform model, p(w) = 1/|V|, 1 parameter
 - 1-gram LM: unigram model, p(w), 6×10^4 parameters
 - 2-gram LM: bigram model, $p(w_i|w_{i-1})$ 3.6×10⁹ parameters
 - 3-gram LM: trigram model, $p(w_i|w_{i-2},w_{i-1})$ 2.16×10¹⁴ parameters

LM: Observations

- How large *n*?
 - nothing is enough (theoretically)
 - but anyway: as much as possible (\rightarrow close to "perfect" model)
 - empirically: <u>3</u>
 - parameter estimation? (reliability, data availability, storage space, ...)
 - 4 is too much: $|V|=60k \rightarrow 1.296 \times 10^{19}$ parameters
 - but: 6-7 would be (almost) ideal (having enough data): in fact, one can recover the original text ssequence from 7-grams!
- Reliability ~ (1 / Detail) (→ need compromise)
- For now, keep word forms (no "linguistic" processing)

The Length Issue

- $\forall n; \ \Sigma_{w \in \Omega^n} p(w) = 1 \Longrightarrow \Sigma_{n=1..\infty} \Sigma_{w \in \Omega^n} p(w) \Longrightarrow 1 \ (\rightarrow \infty)$
- We want to model <u>all</u> sequences of words
 - for "fixed" length tasks: no problem n fixed, sum is 1
 - tagging, OCR/handwriting (if words identified ahead of time)
 - for "variable" length tasks: have to account for
 - discount shorter sentences
- General model: for each sequence of words of length n,

define
$$p'(w) = \lambda_n p(w)$$
 such that $\sum_{n=1...\infty} \lambda_n = 1 = \sum_{n=1...\infty} \sum_{w \in O^n} p'(w) = 1$

e.g., estimate λ_n from data; or use normal or other distribution

Parameter Estimation

- Parameter: numerical value needed to compute p(w|h)
- From data (how else?)
- Data preparation:
 - get rid of formatting etc. ("text cleaning")
 - define words (separate but include punctuation, call it "word")
 - define sentence boundaries (insert "words" <s> and </s>)
 - letter case: keep, discard, or be smart:
 - name recognition
 - number type identification[these are huge problems per se!]
 - numbers: keep, replace by <num>, or be smart (form ~ pronunciation)

Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the "training data")
- Trigrams from Training Data T:
 - count sequences of three words in T: $c_3(w_{i-2}, w_{i-1}, w_i)$ [NB: notation: just saying that the three words follow each other]
 - count sequences of two words in T: $c_2(w_{i-1}, w_i)$:
 - either use $c_2(y,z) = \sum_w c_3(y,z,w)$
 - or count differently at the beginning (& end) of data!

$$p(w_i|w_{i-2},w_{i-1}) =_{est.} c_3(w_{i-2},w_{i-1},w_i) / c_2(w_{i-2},w_{i-1}) \bullet$$

Character Language Model

• Use individual characters instead of words:

$$p(W) =_{df} \prod_{i=1..d} p(c_i | c_{i-n+1}, c_{i-n+2}, ..., c_{i-1})$$

- Same formulas etc.
- Might consider 4-grams, 5-grams or even more
- Good only for language comparison
- Transform cross-entropy between letter- and word-based models:

$$H_S(p_c) = H_S(p_w) / avg. \# of characters/word in S$$

LM: an Example

• Training data:

<s> <s> He can buy the can of soda.

- Unigram: $p_1(He) = p_1(buy) = p_1(the) = p_1(of) = p_1(soda) = p_1(.) = .125$ $p_1(can) = .25$
- Bigram: $p_2(He|<s>) = 1$, $p_2(can|He) = 1$, $p_2(buy|can) = .5$, $p_2(of|can) = .5$, $p_2(the|buy) = 1$,...
- Trigram: $p_3(He|<s>,<s>) = 1, p_3(can|<s>,He) = 1,$ $p_3(buy|He,can) = 1, p_3(of|the,can) = 1, ..., p_3(.|of,soda) = 1.$
- Entropy: $H(p_1) = 2.75$, $H(p_2) = .25$, $H(p_3) = 0$ \leftarrow Great?!

LM: an Example (The Problem)

- Cross-entropy:
- $S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
- Even $H_S(p_1)$ fails (= $H_S(p_2) = H_S(p_3) = \infty$), because:
 - all unigrams but $p_1(the)$, $p_1(buy)$, $p_1(of)$ and $p_1(.)$ are 0.
 - all bigram probabilities are 0.
 - all trigram probabilities are 0.
- We want: to make all (theoretically possible*) probabilities non-zero.

^{*}in fact, <u>all</u>: remember our graph from day 1?