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Motivation

Motivation (general)

Morphology needed in most NLP tasks

e Parsing
Structural MT
Factored phrase-based MT

Corpora

User interfaces
e Dialogue systems

Morphology module influences overall quality of the systems
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Motivation

Motivation (personal)
“Avoid the X@ tag in Czech as much as possible”

e Words unknown to the Czech dictionary are relatively
common in some applications
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“Avoid the X@ tag in Czech as much as possible”

e Words unknown to the Czech dictionary are relatively
common in some applications

e KHRESMOI - translation of medical text: terms
o ALEX dialogue system - public transport: stop names

e Up to 5% of words are not recognized in special domains

Dolnokréska X@-———---—-———-
artroplastika X@--—----—-—--—-
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Motivation

Motivation (personal)
“Avoid the X@ tag in Czech as much as possible”

e Words unknown to the Czech dictionary are relatively
common in some applications

e KHRESMOI - translation of medical text: terms
o ALEX dialogue system - public transport: stop names

e Up to 5% of words are not recognized in special domains

e There's no guesser in Treex (that | know of)

Dolnokréska X@-—--—-—--—---

“Inflect anything” artroplastika X@-----—---—-—--

e Translate and create unseen phrases
e Speak freely in dialogue systems
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Motivation

Exploiting the regularities in morphology

e Morphology of many languages is mostly regular, but for a
certain number of exceptions

¢ Size, number, and shape of inflection patterns differ
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Motivation

Exploiting the regularities in morphology

e Morphology of many languages is mostly regular, but for a
certain number of exceptions

¢ Size, number, and shape of inflection patterns differ

Proportion in Grammar

PastTense | PastParticiple
grew grown
flew ?

grew  flew

grown  x

e flew -grown
grew

= flown
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Motivation

Possible approaches to morphology

Dictionaries?

e Work well, reliable

e Limited coverage and/or availability
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Dictionaries?
e Work well, reliable
e Limited coverage and/or availability

Hand-written rules?

e Hard to maintain with complex morphology
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Motivation

Possible approaches to morphology

Dictionaries?

e Work well, reliable
e Limited coverage and/or availability

Hand-written rules?

e Hard to maintain with complex morphology

Learning from the data!

e Obtaining the rules automatically
e Plenty of corpora of sufficient size available
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Motivation

My experiments with morphology

e in chronological (less logical) order
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My experiments with morphology

e in chronological (less logical) order

1. Generation

e with Filip Jurci¢ek (see also: our paper at ACL-SRW 2013)
e Flect: statistical morphology generator
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Motivation

My experiments with morphology

e in chronological (less logical) order

1. Generation

e with Filip Jurci¢ek (see also: our paper at ACL-SRW 2013)
e Flect: statistical morphology generator

2. Analysis

e recent, only partially finished experiments on Czech

¢ a simple morphology module to go with the Featurama
tagger, comparison with others
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Motivation

My experiments with morphology
e in chronological (less logical) order

1. Generation

e with Filip Jurci¢ek (see also: our paper at ACL-SRW 2013)
e Flect: statistical morphology generator

2. Analysis

e recent, only partially finished experiments on Czech

¢ a simple morphology module to go with the Featurama
tagger, comparison with others

3. Discussion
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Introduction
Generation The system

Results

Flect: Morphology generator

¢ Using machine learning to predict inflection
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Results

Flect: Morphology generator

¢ Using machine learning to predict inflection

e Only previous statistical morphology module known to us:
Bohnet et al. (2010)
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Introduction
Generation The system

Results

Flect: Morphology generator

¢ Using machine learning to predict inflection

e Only previous statistical morphology module known to us:
Bohnet et al. (2010)

e Flect tested on 6 languages from the CoNLL 2009 data set
with a varying degree of morphological richness

: S<El T = o hm
Semantics EN DE ES CA JA CS

for these languages
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Introduction
Generation The system

Results

The need to generate morphology

e English - not so much:
hard-coded solutions often work well enough

Ondrej Dusek Learning Morphology from the Corpus



Introduction
Generation The system

Results

The need to generate morphology

e English - not so much:
hard-coded solutions often work well enough

e Languages with more inflection (e.g. Czech):
even the simplest applications have trouble with
morphology

Toto se libi uyzivateh- Janiﬁ\e Novékovéa.
This is liked by userImascl — (name) [fem]
[dat] [nom]

Dékujeme, Jart Novak! vase hlasovani
Thank you,  (name)[nom] bylo vytvoreno.

your poll has been created
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Introduction
Generation The system

Results

The task at hand

word + NNS — words
Wort + NN NeutplDat — Wortern
be + VBZ — s

gen=c,num=s,person=3,
ser + Vmood=indicative,tense=present > es

e Input: Lemma (base form) or stem
+ morphological properties (POS, case, gender, etc.)

e Qutput: Inflected word form
¢ Inverse to POS tagging
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Introduction
Generation The system

Results

Casting inflection patterns as multi-class classification

[at the end]
[delete one letter]

E:y >1-ies
1€s [and :mhese]

Our inflection rules: edit scripts

¢ A kind of diffs: how to modify the lemma to get the form
e Based on Levenshtein distance
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Introduction
Generation The system

Results

Casting inflection patterns as multi-class classification

[at the end]
[delete one letter]

e
E:y >1-ies
1es [and :hthese]

sparen >2-t, <gex
gespart [add this]
[at the beginning]

Our inflection rules: edit scripts

¢ A kind of diffs: how to modify the lemma to get the form
e Based on Levenshtein distance
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Introduction
Generation The system

Results

Casting inflection patterns as multi-class classification

[at the end]
[delete one letter]

e
fly  “s15es
flies o~
[and add these]
[5 letters from the end]
\ [delete one letter]
sparen >2°t, <ge Mutter “. <5~
gespart [add this] MUtter
[at the beginning] [and add this]

Our inflection rules: edit scripts

¢ A kind of diffs: how to modify the lemma to get the form
e Based on Levenshtein distance
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Introduction
Generation The system

Results

Casting inflection patterns as multi-class classification

[at the end] [replace the whole word]
delet lett
ﬂ [.ee e one letter] be o
Y l-ies is
flies o~
[and add these]
[5 letters from the end]
\ [delete one letter]
gespart [add this] MUtter
[at the beginning] [and add this]

Our inflection rules: edit scripts

¢ A kind of diffs: how to modify the lemma to get the form
e Based on Levenshtein distance
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Introduction
Generation The system

Results

Features useful for morphology generation

e Same POS + same ending = (often) same inflection

K
Sﬂ§’/+ NNS — —ies

bind
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Introduction
Generation The system

Results

Features useful for morphology generation

e Same POS + same ending = (often) same inflection

K
Sﬂ§’/+ NNS — —ies

bind
. -+ VBD — -ound

find

o Suffixes = good features to generalize to unseen inputs

e Machine learning should be able to deal with
counter-examples
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Introduction
Generation The system

Results

Features useful for morphology generation

e Same POS + same ending = (often) same inflection

K
Sﬂ§’/+ NNS — —ies

bind
. -+ VBD — -ound

find

o Suffixes = good features to generalize to unseen inputs

e Machine learning should be able to deal with
counter-examples

o Capitalization: no influence on morphology
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Introduction
Generation The system

Results

Our system Flect: Overall procedure

Wort

NN

Pl
Neut
Dat
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Introduction
Generation The system

Results

Our system Flect: Overall procedure

1. Get features from lemma, POS, suffixes
(+morph. properties & their combinations, possibly context)

Wort
ort
rc

NN

Pl
Neut
Dat
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Introduction
Generation The system

Results

Our system Flect: Overall procedure

1. Get features from lemma, POS, suffixes
(+morph. properties & their combinations, possibly context)

2. Predict edit scripts using Logistic regression

>ern, 3:1-0

Neut
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Introduction
Generation The system

Results

Our system Flect: Overall procedure

1. Get features from lemma, POS, suffixes
(+morph. properties & their combinations, possibly context)

2. Predict edit scripts using Logistic regression
3. Use them as rules to obtain form from lemma

Wort @ Woértern
ort
re I
t >ern, 3:1-6

Neut
Dat
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Introduction
Generation The system
Results

Testing Flect on 6 languages
e CoNLL 2009 data: varying morphology richness & tagsets
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Results

Testing Flect on 6 languages
e CoNLL 2009 data: varying morphology richness & tagsets

accuracy (%)

100
98
96
® Total
94
.Unseen
92 forms
90
e e G dh Bn o
N7 —— ]
> e ¢ = " R
EN cS JA CA ES DE
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Introduction
Generation The system

Results

Testing Flect on 6 languages
e CoNLL 2009 data: varying morphology richness & tagsets

accuracy (%)
100
98
96
94
92
90
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® Total
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forms
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e Works well even on unseen forms: suffixes help
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Introduction
Generation The system
Results

Testing Flect on 6 languages
e CoNLL 2009 data: varying morphology richness & tagsets

accuracy (%)
h . —

100
EN JA CA E

—
e Works well even on unseen forms: suffixes help
e over-generalization errors, e.g. torpedo + VBN = torpedone
e German: syntax-sensitive morphology
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Introduction
Generation The system
Results

Flect vs. a dictionary from the same data
e English: Dictionary gets OK relatively soon

accuracy (%)

100
58% error reduction
95
76% error reduction
90 Dictionary (Total)
o S Dictionary (Unknown forms)
S —— Flect (Total)
8 EN —— Flect (Unknown forms)
75

01 05 1 5 10 20 30 50 75 100
training data part (%)
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Introduction
Generation The system
Results

Flect vs. a dictionary from the same data

e English: Dictionary gets OK relatively soon
e (Czech: Dictionary fails on unknown forms, our system works

accuracy(%)

1
00 I 92% error reduction

% /
80
h Dictionary (Total)
70 cs Dictionary (Unknown forms)

60 —— Flect (Total)
—— Flect (Unknown forms)

50

40

01 05 1 5 10 20 30 50 75 100
training data part (%)
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Introduction
Generation The system
Results

Flect vs. a dictionary from the same data

e English: Dictionary gets OK relatively soon
e (Czech: Dictionary fails on unknown forms, our system works

accuracy(%)

1
00 I 92% error reduction

% /
80
h Dictionary (Total)
70 cs Dictionary (Unknown forms)

—— Flect (Total)

60
—— Flect (Unknown forms)
50
40
Dict | Hajic | Flect
92.88 | 98.25 | 99.45

01 05 1 5 10 20 30 50 75 100
training data part (%)
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Introduction
Generation The system
Results

Conclusions (morphology generation)

General observations:

¢ Inflection rules/patterns can be learned from a corpus
o Suffix features are useful to inflect unseen words
e Detailed morphological features and context features help
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Introduction
Generation The system
Results

Conclusions (morphology generation)

General observations:

¢ Inflection rules/patterns can be learned from a corpus
o Suffix features are useful to inflect unseen words
e Detailed morphological features and context features help

Our system Flect:

e improves on a dictionary learnt from the same data
e gains more in morphologically rich languages (Czech)
e can be combined with a dictionary as a back-off for 00Vs
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Introduction
Experiments

Analysis Results

Morphological analysis/Tagging

The task of finding the right lemma (stem/base form) and
part-of-speech tag for a word form can be (and is) divided into:

zenu
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Introduction
Experiments

Analysis Results

Morphological analysis/Tagging

The task of finding the right lemma (stem/base form) and
part-of-speech tag for a word form can be (and is) divided into:

1. Morphological analysis
finding all possible POS tags / lemmas for the word form

zenu zena NNFS4-—- A-——-
hnat VB-S-—-1P-AA--—-
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Morphological analysis/Tagging

The task of finding the right lemma (stem/base form) and
part-of-speech tag for a word form can be (and is) divided into:

1. Morphological analysis
finding all possible POS tags / lemmas for the word form

2. Tagging
selecting the one correct POS tag / lemma for the word

form according to the context

zenu zena NNFS4-——-- A-——-
X
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Introduction
Experiments

Analysis Results

Morphological analysis/Tagging

The task of finding the right lemma (stem/base form) and
part-of-speech tag for a word form can be (and is) divided into:

1. Morphological analysis
finding all possible POS tags / lemmas for the word form

2. Tagging
selecting the one correct POS tag / lemma for the word

form according to the context

Lemmas are sometimes predicted separately from POS tags (or
not at all); we try to predict lemmas and tags together.

zenu zena NNFS4-——-- A-——-
X
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Introduction
Experiments

Analysis Results

A side note

Lemma simplifications compared to Haji¢ (2004)'s morphological
dictionary:

Tatra-2_;R_"*(vozidlo)
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Experiments

Analysis Results

A side note

Lemma simplifications compared to Haji¢ (2004)'s morphological
dictionary:

1. No lemma “tails” (AddInfo)

Tatra

Ondrej Dusek Learning Morphology from the Corpus



Introduction
Experiments

Analysis Results

A side note

Lemma simplifications compared to Haji¢ (2004)'s morphological
dictionary:

1. No lemma “tails” (AddInfo)
2. Lemmas are case-insensitive

tatra
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Introduction
Experiments

Analysis Results

A side note

Lemma simplifications compared to Haji¢ (2004)'s morphological
dictionary:

1. No lemma “tails” (AddInfo)
2. Lemmas are case-insensitive

This enables us to learn the lemmas from data (while generating
from such lemmas is still possible).

tatra
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Introduction
Experiments

Analysis Results

Learning morphological analysis from the data

o Parallel to learning generation
e We can use similar edit scripts (reversed: form to lemma)

nejhez¢imu >4-ky, <nej\
hezky

[remove beginning]
[replace ending]
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Introduction
Experiments

Analysis Results

Learning morphological analysis from the data

o Parallel to learning generation
e We can use similar edit scripts (reversed: form to lemma)

nejhez¢imu >4-ky, <nej\
hezky

[replace ending]

[remove beginning]

e Not so new — some of the previous systems:
e Haji¢ (2004): statistical guesser (for forms that are not in
the dictionary)
e Chrupata et al. (2008) - Morfette: completely statistical
(predicting probability distributions for lemmas and tags +
global optimization)
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Introduction
Experiments

Analysis Results

My experiments
Preconsiderations

e only analysis (leave the hard work to the tagger)
e for all words (no dictionary needed)
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Introduction
Experiments

Analysis Results

My experiments
Preconsiderations

e only analysis (leave the hard work to the tagger)

e for all words (no dictionary needed)
... "ebi"; {"INNNS1----- A-——-",

The Solution ">1-it|VB-S-—-3P-AA-—-"
. i . ">1-it|VB-P---3P-AA---",
¢ Just memorize suffixes of certain length  "|pp-———————- "3

with tags + lemma edit-scripts
e No machine learning here
(pass all variants matching the suffix to the tagger)
e Similar to Haji¢ (2004)'s guesser
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Introduction
Experiments

Analysis Results

My experiments
Preconsiderations

e only analysis (leave the hard work to the tagger)

e for all words (no dictionary needed)
... "ebi"; {"INNNS1----- A-——-",

The Solution ">1-it|VB-S-—-3P-AA-—-"
. i . ">1-it|VB-P---3P-AA---",
¢ Just memorize suffixes of certain length  "|pp-———————- "3

with tags + lemma edit-scripts

e No machine learning here
(pass all variants matching the suffix to the tagger)
e Similar to Haji¢ (2004)'s guesser

e Small improvements: smoothing, irregular words
remembered as a whole

e Parameters: length of suffixes, occurence count threshold
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Introduction
Experiments
Analysis Results

Results: Morphological analysis

Coverage (recall) measured on the PDT 2.5 development test set
(lemmas lowercased, no Addinfo)

cov (%) | & sugg.
Hajic (060406) 98.82 385
Hajic (060406) + guesser 99.35 4.06
Haji¢ (131023) 98.52 4.00
Hajic (131023) + guesser 99.01 4.18
Memo-Suffixes (len 4) 98.71 5.69
Memo-Suffixes (len 3) 99.30 11.83
Memo-Suffixes (len 4, thr 2) 98.07 4.75
Memo-Suffixes (len 3, thr 2) 98.91 9.27
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Results: Morphological analysis

Coverage (recall) measured on the PDT 2.5 development test set
(lemmas lowercased, no Addinfo)

cov (%) | & sugg.
Hajic (060406) 98.82 385
Hajic (060406) + guesser 99.35 4.06
Haji¢ (131023) 98.52 4.00
Hajic (131023) + guesser 99.01 4.18
Memo-Suffixes (len 4) 98.71 5.69
Memo-Suffixes (len 3) 99.30 11.83
Memo-Suffixes (len 4, thr 2) 98.07 4.75
Memo-Suffixes (len 3, thr 2) 98.91 9.27

Coverage quite OK, but a lot of false positives.
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Introduction
Experiments
Analysis Results

Results: Tagging

Taggers trained on PDT 2.5 (training + development set),
tested on the evaluation set (accuracy in %).

analysis tagger tag lemma | joint
Hajic (060406) 95.38 99.27 95.29
Haji¢ (060406) + guesser Featurama 95.77 99.31 95.64
Haji¢ (131023) 95.15 99.13 94.95
Haji¢ (131023) + guesser 95.49 | 99.18 | 95.26
Milan Straka's tagger beta (131023) 9472 | 99.13 | 94.53
Milan Straka's tagger beta (131023) + guesser | 95.07 99.15 94.85
Morfette (trained on tamw only) 89.79 | 97.65 | 89.39
Memo-Suffixes (len 4) 94.12 | 97.80 | 93.34
Memo-Suffixes (len 3) Featurama 9428 | 96.84 | 92.59
Memo-Suffixes (len 4, thr 2) 93.64 | 97.86 | 93.09
Memo-Suffixes (len 3, thr 2) - - -
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Results: Tagging

Taggers trained on PDT 2.5 (training + development set),
tested on the evaluation set (accuracy in %).

analysis tagger tag lemma | joint
Hajic (060406) 95.38 99.27 95.29
Haji¢ (060406) + guesser Featurama 95.77 99.31 95.64
Haji¢ (131023) 95.15 99.13 94.95
Haji¢ (131023) + guesser 95.49 | 99.18 | 95.26
Milan Straka's tagger beta (131023) 9472 | 99.13 | 94.53
Milan Straka's tagger beta (131023) + guesser | 95.07 99.15 94.85
Morfette (trained on tamw only) 89.79 | 97.65 | 89.39
Memo-Suffixes (len 4) 94.12 | 97.80 | 93.34
Memo-Suffixes (len 3) Featurama 9428 | 96.84 | 92.59
Memo-Suffixes (len 4, thr 2) 93.64 | 97.86 | 93.09
Memo-Suffixes (len 3, thr 2) - - -

Prof. Haji¢'s analysis with guesser is the best option.
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Thank you for your attention

Comments and suggestions are welcome

Referenced works
Bohnet, B. et al. (2010). Broad coverage multilingual deep sentence generation with a
stochastic multi-level realizer. COLING

Chrupata, G. et al. (2008). Learning morphology with Morfette. LREC

Hajic, J. (2004). Disambiguation of rich inflection: Computational morphology of Czech.
Karolinum.

The Flect generator is available for download:
http://bit.ly/flect

Contact me:
odusek@ufal .mff.cuni.cz, office 424

Ondrej Dusek Learning Morphology from the Corpus


http://bit.ly/flect
odusek@ufal.mff.cuni.cz

	Motivation
	Generation
	Introduction
	The system
	Results

	Analysis
	Introduction
	Experiments
	Results

	End

