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Abstract

Mitigation of biases, such as language mod-
els’ reliance on gender stereotypes, is a crucial
endeavor required for the creation of reliable
and useful language technology. The crucial
aspect of debiasing is to ensure that the models
preserve their versatile capabilities, including
their ability to solve language tasks and equi-
tably represent various genders. To address
these issues, we introduce Dual Debiasing Al-
gorithm through Model Adaptation (2DAMA).
Novel Dual Debiasing enables robust reduc-
tion of stereotypical bias while preserving de-
sired factual gender information encoded by
language models. We show that 2DAMA effec-
tively reduces gender bias in language models
for English and is one of the first approaches
facilitating the mitigation of their stereotypi-
cal tendencies in translation. The proposed
method’s key advantage is the preservation of
factual gender cues, which are useful in a wide
range of natural language processing tasks.

1 Introduction

Gender representation in large language models
(LLMs) has been the topic of significant research
effort (Stanczak and Augenstein, 2021; Kotek et al.,
2023). Past studies have predominantly focused on
such representation to identify and mitigate social
biases. Admittedly, biases are a challenging is-
sue limiting the reliability of LLMs in real-world
applications. However, we argue that preserving
particular types of gender representation is crucial
for fairness and knowledge acquisition in language
models.

To provide a more detailed perspective, we draw
examples of both unwanted and beneficial types of
gender signals in LLMs. Undesirable biases are
typically inherited from stereotypes and imbalances
in the training corpora and tend to be amplified fur-
ther during model training (Van Der Wal et al.,
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the hairdresser Marie Curie

she

the nurse die Ärztin

he

the scientist der Arzt

they

the doctor the doctor

Figure 1: Dual character of gender signals encoded in
language models: stereotypical cues are shown on the
left, and factual cues are shown on the right-hand side.
“Die Ärztin” and “der Arzt” are respectively female and
male German translation for “the doctor”.

2022; Gallegos et al., 2024). Biases are manifested
in multiple ways, including unequal representa-
tion (models are more likely to generate mentions
of a specific overrepresented gender), stereotypi-
cal associations (particular contexts are associated
with one gender based on stereotypical cues, e.g.,
“politics and business are male domains”, while
“family is a female domain”). It has been shown
that, due to bias, LLMs struggle with high-stakes
decision-making and are prone to produce discrim-
inatory predictions. Examples of such a sensitive
application are the automatic evaluation of CVs
and biographical notes (De-Arteaga et al., 2019),
where some professions are stereotypically associ-
ated with a specific gender. Therefore, individuals
of another gender could face an unfair disadvantage
when assessed by an LLM-based evaluator.

Nevertheless, LLMs should understand and rep-
resent gender signals. For instance, chatbots should
be persistent in addressing the user with their pre-
ferred gender pronouns after they are revealed
(Limisiewicz and Mareček, 2022). Adequate rep-
resentation of gender is also required for knowl-
edge acquisition, for example, in question answer-
ing (QA), to correctly answer “Maria Skłodowska-
Curie” to the question “Who was the first woman
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to win a Nobel Prize?”. Gender sensitivity is even
more critical in morphologically rich languages,
where gender mentions are much more ubiquitous,
e.g., through morphological markings (as in Ger-
man, Czech, or Russian) (Hellinger and Bußmann,
2002). Examples of dual characters (stereotypi-
cal vs. factual) of gender encoding are shown in
Figure 1.

To address these intricate ways gender signals
are present in natural language, we introduce a
new method, 2DAMA, that post-hoc modifies pre-
trained language models to represent gender in an
equitable way, i.e., without stereotypical bias but
with factual gender information. As the core con-
tribution, we introduce the novel method of Dual
Debiasing that aims at our core problem of de-
creasing bias while maintaining an equitable
representation of the factual gender. Specifi-
cally, we aim to reduce the models’ reliance on
stereotypes in predictions, e.g., given a stereotypi-
cal prompt as the one in Figure 2: “The salesperson
laughed because”, we intend to coerce equitable
probabilities of possible gender predictions mani-
fested by pronouns “he”, “she”, or “them”. On the
contrary, when considering a prompt that contains
factual gender information: “The king laughed be-
cause” the desired output distribution would assign
a high probability to the male pronoun.

2 Methodology

In this section, we formally introduce Dual De-
baising Algorithm through Model Adaptation
(2DAMA), a new dual debiasing method, and pro-
vide theoretical backing for the presented approach.
Appendix A contains the proofs and further termi-
nological explanations.

2.1 Background and Novel Methods

In 2DAMA, we introduce the novel Dual Debiasing
and incorporate it into the debiasing framework that
comprises of two previously established algorithms:
DAMA, LEACE. We provide a clear distinction be-
tween previous and novel approaches described in
this paper.

Background Methods: DAMA Debiasing Al-
gorithm through Model Adaptation (Limisiewicz
et al., 2024) is a method for adapting parameters
of language models to mitigate the encoding of
harmful biases without affecting their general per-
formance. The method employs model editing tech-
niques (Meng et al., 2022) to disassociate specific

signals provided in a prompt with the model out-
puts, i.e., stereotypes in prompts and gendered out-
put. LEACE LEAst-squares Concept Erasure (Bel-
rose et al., 2023) is a method of concept erasure
(such as bias signal) in latent representation.

Novel Methods: DAMA-LEACE (Section 2.2)
The first innovation is streamlining the base debias-
ing algorithm DAMA. We achieve it by replacing
the Partial Least Squares concept erasure used in
DAMA with LEACE, which does not require pre-
defining the dimensionality of erased signals. The
core novelty of this work is 2D Dual Debiasing, a
new algorithm that we formally introduce in Sec-
tion 2.3. The method uses covariance matrix de-
composition to identify correlates related to bias
and protected feature signals. A concept erasure al-
gorithm is modified to erase bias while preserving
protected features, such as factual gender.

2.2 Contribution: DAMA-LEACE

LEACE guarantees erasing a specific concept’s in-
fluence on a latent vector. In a neural network, we
can consider a latent vector U to be an output of
one of the intermediate layers. LEACE aims to
de-correlate latent vectors with an unwanted sig-
nal (e.g., gender bias), whose distribution is repre-
sented as another vector Z.

In model editing, we are interested in how a
model’s layer maps its input vector U to output
vector V (unlike LEACE, which focuses on stand-
alone latent vector U ). We are specifically inter-
ested in a transformation that minimizes the dis-
tance between the input (keys: U ) and the predicted
variables (values: V ). Such U can be a latent vec-
tor obtained by feeding into a model a gendered
prompt, while Z is a vector corresponding to stereo-
typical output.

We reasonably assume that dense layers of
trained neural networks (e.g., feed-forward layers
in Transformer) fulfill this purpose, i.e.:

V = SU − ϵ, (1)

where S is a linear transformation and ϵ a vector of
errors. Due to gradient optimization in the model’s
pre-training, we assume that the feed-forward layer
approximates the least solution, i.e., FF ≈ S.

Taking this assumption, we can present a
theorem guaranteeing concept erasure (based
on LEACE) in the model adaptation algorithm
(DAMA):
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Theorem 1 (DAMA-LEACE). We consider ran-
dom vectors: U taking values in Rm, V and Z
taking values in Rn, where m ≥ n. Under as-
sumptions that: A) random vectors U , V , Z are
centered, and each of them has finite moment; B)
the regression relation between U and V fulfill the
assumption of ordinary least squares, and there
exist least squares estimator V = SU − ϵ.

Then the objective:

argmin
P∈Rn×m

E
[
||PU − V ||2

]
,

subject to:
Cov(PU,Z) = 0

is solved by:

P ∗ =
(
I−W∔PWΣW

)
S,

where W is the whitening transformation
(Σ

1/2
SU,SU )

∔; PWΣ is an orthogonal projection
matrix onto colspace of WΣSU,Z; S is a least
squares estimator of V given U : S = ΣU,V Σ

−1
U,U .1

Based on the theorem and the assumption that
FF ≈ S applying projections would break the cor-
relation between stereotypical keys and gendered
values with minimal impact on other correlations
stored by the feed-forward layer. We call the algo-
rithm realizing such adaptation in a neural network:
DAMA-LEACE.

2.3 Contribution: Dual Debiasing
In Dual Debiasing, we extend the concept erasure
problem by considering two type signals and cor-
responding random variables: Zb bias to be erased
and Zf feature to be preserved. We posit that:
Theorem 2 (DUAL-DEBIASING). We consider
random vectors X , Zb, and Zf in Rn. Under the
assumptions that: A) Zb ⊥ Zf |X , i.e., Zb and
Zf are conditionally independent, given X; B)
ΣX,Zb

ΣT
X,Zf

= 0, i.e., the variable X is corre-
lated with Zf and Zb through mutually orthogonal
subspaces of Rn. The solution of the objective:

argmin
P∈Rn×n

E
[
||PX −X||2

]
,

subject to:

Cov(PX,Zb) = 0,

satisfies:

Cov(PX,Zf ) = Cov(X,Zf ).
1Notation: ∔ denotes Moonrose-Penrose psuedoinverse.

For brevity, we use ΣV,Z for covariance matrix Cov(V,Z).
The complete terminological note can be found in Appendix A

The theorem shows that the correlation with the
conditionally independent features is left intact by
applying LEACE erasure to a bias signal. How-
ever, the assumption of conditional independence
is strong and unlikely to hold when considering
the actual signals encoded in the model. Thus, for
practical applications, we need to relax the require-
ments.

In Dual Debiasing, we relax the assumption of
the theorem in order to consider bias and feature
signals that can be conditionally correlated. In con-
structing the debiasing projection (P ∗), we must
decide whether specific dimensions should be nul-
lified or preserved. We propose to nullify dimen-
sions of X with t times higher correlation with Zf

than Zb, where the threshold t (later referred to
as bias-to-feature threshold) is empirically chosen.
To analyze the correlations we consider correla-
tion matrix WΣX,[Zf ,Zb]. By using singular value
decomposition, we can identify the share of vari-
ance in each column’s first n rows (associated with
Zf ) and the latter n rows (associated with Zb). In
modified colspace projection P̃WΣ, we only con-
sider the column with t times higher variance with
Zf than with Zb. Thus the final Dual Debiasing

LEACE projection P̃ ∗ =
(
I−W∔P̃WΣW

)
will

to large extent preserve the protected feature while
reliably erasing bias. In Section 4.2, we experimen-
tally study the impact of feature-to-bias threshold
t.

3 Experimental Setting

This section presents an empirical setting to ex-
amine the practical application of model editing
methods. We describe models, data, and evaluation
metrics for gender bias and general performance.

3.1 Models

In experiments, we focus on Llama family models
(Touvron et al., 2023; Dubey et al., 2024), which
are robust and publicly available language mod-
els developed by Meta AI. We analyze Llama 2
models of sizes 7 and 13 billion parameters and
Llama 3 with 8 billion parameters. In multilingual
experiments, we use ALMA-R 13 billion parame-
ter model (Xu et al., 2024). ALMA-R is based on
an instance of Llama 2 model that was fine-tuned
to translate using Contrastive Preference Optimiza-
tion. ALMA-R covers translation between English
and five languages (German, Czech, Russian, Ice-
landic, and Chinese).
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EN: “The salesperson laughed because” { he | she }
EN: “The saleseperson is not working today.” → DE: { Der | Die }
EN: “That saleseperson is not working today.” → CS: { Ten | Ta }

Figure 2: Sterotypical prompts with possible gendered outputs (in brackets) in three languages. We use prompts to
obtain stereotypical key vector U , the possible outputs are used to approximate gendered values vector V .

In model editing experiments, we adapt the lay-
ers starting from the one found in the two-thirds of
the layer stack counted from the input to the output.
It is the 26th layer for 13 billion parameter models
and the 21st layer for smaller models. For example,
the adaptation of 11 mid-upper layers in the 13B
model modifies the layers from 26th through 37th.

3.2 Data for Dual Debiasing

Following Limisiewicz et al. (2024), we feed
prompts to the model in order to obtain the la-
tent embeddings in the input of intermediate layers.
We treat these embeddings as key vectors (U ) con-
taining stereotypical or factual gender signals. To
obtain gendered value vectors (V ), we find the out-
put vector of the layer that would maximize the
probability of predicting tokens corresponding to
gender.

Language Modeling Prompts For debiasing lan-
guage models, we use solely English prompts.
We design 11 prompt templates, such as “The X
laughed because ___”, where “X” should be re-
placed by profession name. This prompt construc-
tion provokes the model to predict one of the gen-
dered pronouns (“he”, “she”, or “they”). To distin-
guish stereotypical signals for debiasing, we use
219 professions without factual gender that were
annotated as stereotypically associated with one of
the genders by Bolukbasi et al. (2016).

Multilingual Prompts For debiasing machine
translation, we use prompts instructing the model to
translate sentences containing the same set of 219
professions to a target language that has the gram-
matical marking of gender, e.g., “English: The X is
there. German: ___”. The translation model would
naturally predict one of the German determiners,
which denotes gender (“Der” for male or “Die” for
female). For each model, we adjust the template
to include instructions suggested by the ALMA
authors. We construct translation prompts for two
target languages, Czech and German, proposing
11 templates, and thus 2409 prompts for each lan-
guage.

Factual Prompts Dual debiasing requires using
factual prompts to identify the signal to be pre-
served. For that purpose, we use the same prompt
templates as defined above (both English and mul-
tilingual) with the distinction of entities used to
populate them. For that purpose, we propose 13
pairs of factually male and female entities, e.g.,
“king” – “queen”, “chairman” – “chairwoman”.

The examples of language modeling and multi-
lingual prompts are given in Figure 2. We list all
the prompt templates in Appendix B.

3.3 Bias Evaluation

Language Modeling We assess the bias in lan-
guage generation following the methodology of
Limisiewicz et al. (2024). From the dataset of
Bolukbasi et al. (2016), we select the held-out
set of professions that were not included in the
219 used for debiasing. For each of these pro-
fessions, annotators had assigned two scores: fac-
tual score xf and stereotypical score xs. The
scores define how strongly a word (or a prompt)
is connected with the male or female gender, re-
spectively, through factual or stereotypical cues.
By convention, scores range from −1 for female-
associated words to 1 for male ones. We measure
the probabilities for gendered prediction for a given
prompt PM (o|X). For that purpose, we use the pro-
nouns o+ = “he” and o− = “she”, since they are
probable continuations of given prompts. Subse-
quently, for each prompt, we compute empirical
score y = PM (o+|X)− PM (o−|X). We estimate
the linear relationship between scores:

y = as · xs + af · xf + b0 (2)

The linear fit coefficients have the following inter-
pretations: as is an impact of stereotypical signal
on the model’s predictions; af is an impact of the
factual gender of the word. Noticeably, y, xs, and
xf take values in the same range. The slope coeffi-
cient tells how shifts in annotated scores across pro-
fessions impact the difference in prediction proba-
bilities of male and female pronouns. The intercept
b0 measures how much more probable the male
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Bias in LM WinoBias

↓ as ↑ af ↓ b ↓ ∆S ↓∆G

Llama 2 7B 0.234 0.311 0.090 33.6 7.3
DAMA 0.144 0.205 0.032 27.3 6.8
DAMA+LEACE 0.118 0.171 0.028 22.9 5.4
2DAMA 0.128 0.187 0.042 22.9 5.7

Llama 2 13B 0.244 0.322 0.097 35.0 0.3
DAMA 0.099 0.160 0.030 26.4 2.4
DAMA+LEACE 0.098 0.159 0.026 26.5 2.4
2DAMA 0.119 0.206 0.023 27.0 1.9

Llama 3 8B 0.262 0.333 0.082 36.8 2.7
DAMA 0.069 0.090 0.144 20.3 4.2
DAMA+LEACE 0.084 0.157 0.082 18.8 2.7
2DAMA 0.140 0.209 0.051 18.7 2.4

Table 1: Bias evaluation for the Llama family models,
and their adaptation with different debiasing algorithms
(DAMA, DAMA with LEACE, and 2DAMA). The debi-
asing adaptation was applied to 12 mid-upper layers for
the 13B model and 9 mid-upper layers for the smaller
ones. In 2DAMA, we set bias-to-feature threshold to
t = 0.05.

pronouns are than the female pronouns when we
marginalize the subject.

Other Bias Manifestations in English We eval-
uate the bias in coreference resolution based on
WinoBias dataset (Zhao et al., 2018). We use
metrics ∆G and ∆S to evaluate representational
and stereotypical bias, respectively. ∆G measures
the difference in coreference identification correct-
ness (accuracy) between masculine and feminine
entities; similarly, ∆S measures the difference
in accuracy between pro-stereotypical and anti-
stereotypical instances of gender role assignments.

Translation Stanovsky et al. (2019) proposed
using Winograd Challenge sentences for evaluat-
ing bias in translation from English into eight lan-
guages with morphological marking of gender (e.g.,
German, Spanish, Russian, Hebrew). In WinoMT,
the correctness of the translation is computed by
the F1 score of correctly generating gender inflec-
tion of profession words in the target language.
The evaluation of gender bias is analogical, as in
WinoBias. ∆G and ∆S measure the difference
in F1 scores: male vs. female and pro- vs. anti-
stereotypical sets of professions, respectively. The
more recent BUG (Levy et al., 2021) dataset is
based on the same principle of bias evaluation,
with the distinction that it contains naturally oc-
curring sentences instead of generic templates used
in WinoMT.

LM ARC MMLU

↓ ppl ↑ acc C ↑ acc E ↑ acc

Llama 2 7B 21.28 70.2 42.5 35.5
DAMA 21.51 69.8 42.8 35.2
DAMA+LEACE 23.81 68.3 41.2 34.3
2DAMA 23.66 67.5 42.0 34.0

Llama 2 13B 19.68 72.6 46.8 -
DAMA 18.94 71.6 45.0 -
DAMA+LEACE 19.67 71.3 46.4 -
2DAMA 19.90 71.2 46.1 -

Llama 3 8B - 67.1 39.9 -
DAMA - 64.6 38.1 -
DAMA+LEACE - 63.0 39.8 -
2DAMA - 63.5 37.9 -

Table 2: General performance in language modeling and
reasoning on ARC and MMLU datasets. We present
results for Llama family models, and their adaptation
with different debiasing algorithms (DAMA, DAMA with
LEACE, and 2DAMA). We do not present perplexity for
Llama 3 because the model has different vocabulary and
the results are not comparable. For ARC we present
results for both Challenge and Easy subsets. The hyper-
parameters are the same as in Table 1
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Figure 3: Visualization of dimensions and their vari-
ances related to stereotypical and factual gender signals
identified by Dual Debiasing algorithm in 26th layer of
Llama 2 13B. The red dots denote the bias-to-feature
threshold t = 0.05. In 2DAMA, the dimension is pre-
served if stereotypical covariance is below the threshold.

3.4 General Performance Evaluation

Language Modeling We evaluate perplexity on
general domain texts from Wikipedia-103 corpus
(Merity et al., 2016).

Reasoning Endtask To assess the models’ rea-
soning capabilities, we compute accuracy on AI2
Reasoning Challenge (ARC) (Clark et al., 2018)
in both easy and challenging subsets.

Translation To monitor the effect of debias-
ing on translation quality, we evaluate models on
WMT-22 (Kocmi et al., 2020) parallel corpora with
German, Czech, and Russian sentences and their
translations in English. We estimate the quality
by two automatic metrics: COMET-22 (Rei et al.,
2022) and chrf (Popović, 2015).
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Layer Bias Dimesnions Variance Erased

Erased Preserved Bias Factual

26 712 12 99.6% 69.4%
27 774 18 99.4% 64.0%
28 782 22 99.0% 62.4%
29 750 17 99.5% 65.4%
30 713 19 99.5% 64.0%
31 304 12 99.3% 57.6%
32 387 16 99.2% 57.0%
33 469 17 99.2% 60.1%
34 716 21 99.2% 61.3%
35 621 18 99.2% 62.2%
36 406 20 98.9% 54.0%
37 409 18 99.1% 57.2%

Table 3: Number of erased and preserved orthogonal di-
mensions with 2DAMA in each feed-forward layer. We
call a dimension “biased” when it belongs to col-space
spanned by covariance matrix between latent represen-
tation and bias signal (WΣSU,Z). We present the per-
centage of erased covariance with stereotypical bias and
factual gender as the result of the intervention in the lay-
ers. The bias-to-feature threshold was set at t = 0.05.

4 Debiasing Language Models

In the first batch of the experiments, we evaluate
the effectiveness of debiasing language models. In
these experiments, we solely focus on tasks in En-
glish. We specifically analyze three model editing
approaches: DAMA as a baseline; DAMA in combi-
nation with LEACE; and 2DAMA, which employs
Dual Debiasing to preserve factual gender informa-
tion.

4.1 Main Results
Model editing reduces bias and preserves the
model’s performance. All of the considered
methods reduce gender bias both in language mod-
eling and coreference resolution (Table 1). Re-
markably, we observe that the model’s overall per-
formance, i.e., unrelated to gender, is not signifi-
cantly affected, as demonstrated by perplexity and
question-answering results (Table 2). Relatively
worse performance preservation was observed for
Llama 3, which could be caused by intervening in
too many layers.

Streamlining the approach with LEACE. We
observe that DAMA-LEACE reduces bias to a larger
extent than baseline DAMA. The more substantial
debiasing effect comes in pair with a slightly higher
drop in general performance, as shown in Table 2.
Yet, the deterioration is still small compared to
the original models’ scores. The crucial benefit
of DAMA-LEACE is that projection dimensionality

does not need to be pre-defined because it is learned
implicitly (details in Section 2.2).2 That motivates
us to use DAMA-LEACE in further experiments.

Preserving factual gender with Dual Debiasing.
The coefficients as and af from Table 1 indicate
how much the models’ prediction is affected by
gender present through stereotypical and factual
cues, respectively. We see that 2DAMA enables,
to a significant extent, preserving factual gender
information (as indicated by higher af coefficient)
with a slight increase in susceptibility to gender
bias.

4.2 Relationship between Stereotypical and
Factual Signals

With Dual Debiasing, we can analyze the covari-
ance of embedding space orthogonal dimensions in
the model’s feed-forward layers with the stereotyp-
ical and factual signals (as detailed in Section 2.3).
In Figure 3, we plot these covariances for each di-
mension. The visualization reveals that the factual
gender is represented by relatively few dimensions
with high covariance. In contrast, stereotypical
bias is encoded in more-dimensional subspaces,
yet each dimension has low covariance.

This observation suggests that in debiasing, we
need to exempt just a small subset of dimensions
encoding factual gender. Accordingly, further anal-
ysis (shown in Table 3) shows that 2DAMA obtains
a reasonable threshold with low bias-to-feature
threshold t = 0.05. Such a setting preserves only a
few dimensions responsible for stereotypical bias
in each layer. Such intervention in the model erases
≈ 99% of covariance with a stereotypical signal
while keeping over 30% of covariance with a fac-
tual gender signal.

4.3 Choice of Hyperparameters

We present the impact of two parameters on the
effectiveness of 2DAMA in Figure 4. The first is
the bias-to-feature threshold t. We observe that its
choice controls the trade-off between mitigating
bias and preserving factual information. We set it a
low value of 0.05 because our primary objective is
the reduction of bias. The second hyperparameter
is the number of layers that should be edited. We
confirm the findings of Limisiewicz et al. (2024)
that adaptation should applied to approximately

2In baseline DAMA, the projection dimensionality is pre-
set to d = 256 for the 7B model and d = 512 for the 13B
models.
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Figure 4: The hyperparameter analysis for 2DAMA applied to Llama 2 13B model on performance and bias in
language modeling. We measured bias on gendered prompts by linear coefficients: as and af , the language modeling
capabilities are measured by perplexity. Stars mark the performance of the best setting. The dashed line corresponds
to the scores of the original model.

one-third of the midd-upper layers. Notably, the
top two layers (38th and 39th) should be left out.

5 Beyond English: Multilingual Debiasing

In a multilingual setting, we debias a model fine-
tuned for translation: ALMA-R 13B (Xu et al.,
2024) by employing the collection of the new mul-
tilingual debiasing prompts. We specifically evalu-
ate gender bias and quality of translation between
English and Czech, German, and Russian.3

5.1 Main Results

Model editing generalizes to the multilingual set-
tings. Analogically to experiments for English,
we show that model editing reduces bias in trans-
lation and has a small impact on the translation
quality (as shown in Table 4). We observe some
differences in results between the two analyzed
languages. Overall, the scores after debiasing are
better for German than Czech, indicating that Ger-
man prompts are of better quality.

Dual Debiasing is required to mitigate repre-
sentational bias. Our methods are more effec-
tive for the stereotypical manifestation of bias ∆S
than the representational one ∆G. In the repre-
sentational bias, we sometimes observe bias in-
crease after model editing. To remedy that, we
use 2DAMA with higher values of feature-to-bias
threshold (t = 1.00 instead of t = 0.05), which
tends to preserve more factual signal. Factual gen-
der understanding is especially essential for equi-

3We do not perform debiasing on Russian prompt (as in-
dicated in Section 3.2. We include Russian in evaluation to
observe if debiasing generalizes across languages.

table representation of factual gender in morpholog-
ically rich languages, as evidenced by ∆G scores
for t = 1.00 setting. This finding emphasizes the
utility of 2DAMA in a multilingual setting. 4

5.2 Cross-lingual Debiasing

An intriguing question of multilingual bias is
whether its encoding is shared across languages
(Gonen et al., 2022). We test this hypothesis by
editing models with prompts in one or multiple lan-
guages and testing on another language. The results
show evidence of effectiveness in cross-lingual mit-
igation of stereotypical gender bias. In Table 5b,
we observe that some languages are more effec-
tive in debiasing than others, e.g., German prompts
offer the strongest ∆S reduction for both Czech
and German. Whereas to control representational
bias mitigation (∆G), it is recommended to use in-
language prompts, as indicated by Czech, German,
and Russian results in Table 5a.

6 Related Work

6.1 Model Editing and Concept Erasure

Model editing is a method of applying targeted
changes to the parameters of the models to mod-
ify information encoded in them. Notable exam-
ples of model editing include targeted changes in
the model’s weight (Mitchell et al., 2022; Meng
et al., 2023, 2022) or adaptation with added mod-
ules (adapters) (Houlsby et al., 2019; Hu et al.,
2022). The technique showed promising results as
the tool to erase specific information (Patil et al.,

4The extended study of hyperparameters in translation
debiasing is presented in Appendix C.
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Language Translation to English Translation from English WinoMT BUG

↑ comet ↑ chrf ↑ comet ↑ chrf ↓ ∆S ↓∆G ↓ ∆S ↓∆G

German

ALMA-R 13B 85.0 57.0 86.7 58.1 30.5 3.7 7.8 32.5
DAMA+LEACE 85.0 56.7 85.3 55.4 20.5 10.0 5.4 33.6
2DAMA (t = 0.05) 84.9 56.7 85.1 54.8 22.6 3.3 4.4 27.8
2DAMA (t = 1.00) 84.9 56.6 85.4 55.4 22.1 -10.1 7.7 28.4

Czech

ALMA-R 13B 87.0 68.6 89.7 53.8 26.3 2.1 11.7 9.2
DAMA+LEACE 86.9 68.2 88.6 50.1 21.6 17.7 10.4 18.0
2DAMA (t = 0.05) 86.9 68.1 88.5 49.9 18.0 14.6 4.5 11.0
2DAMA (t = 1.00) 86.9 68.1 88.8 50.4 22.4 7.2 8.6 9.8

Table 4: Evaluation of gender bias and quality of translation. In all the methods, ALMA-R was used as the base
model. Adaptations were applied to 11 mid-upper feed-forward layers. Translation quality was evaluated on the
WMT-22 dataset.

Prompt Lang. ↓ German Czech Russian

∅ 3.7 2.1 25.7
English 11.1 7.9 31.4
German 3.3 21.6 31.3
Czech 6.2 14.6 32.0

All Above 8.1 23.2 33.4

(a) Representational bias (∆G)

Prompt Lang. ↓ German Czech Russian

∅ 30.5 26.3 10.2
English 28.5 21.2 7.0
German 14.4 15.1 4.0
Czech 24.3 17.2 3.9

All Above 24.0 18.7 1.3

(b) Stereotypical bias (∆S)

Table 5: Bias evaluation based on WinoMT challenge-set. The evaluation language is shown at the top of each
column. Each row corresponds to a set of languages for which prompts were used in model adaptation (∅ denotes
the model without any adaptation). The debiasing adaptation was performed with 2DAMA on 11 mid-upper layers
with the bias-to-feature threshold set to t = 0.05.

2024).
In the literature, bias mitigation was perceived

as a theoretically interesting and practical appli-
cation for concept erasure. Ravfogel et al. (2020,
2022); Belrose et al. (2023) proposed effective lin-
ear methods of erasing gender bias from the la-
tent representation of language models. Other ap-
proaches aimed to edit pre-trained language models
to reduce their reliance on stereotypes. They in-
clude: causal intervention (Vig et al., 2020), model
adapters (Fu et al., 2022), rate-distortion (Chowd-
hury and Chaturvedi, 2022), or targeted weight
editing (Limisiewicz et al., 2024).

6.2 Debiasing Machine Translation

Machine translation systems have been shown to
exhibit gender bias in their predictions (Savoldi
et al., 2021). The problem is especially severe in
translation from languages that do not grammati-
cally mark gender (e.g., English, Finnish) to ones
that do (e.g., German, Czech, Spanish) because
translation requires predicting gender, which is not
indicated in the reference (Stanovsky et al., 2019).
There have been a few past attempts to mitigate
biases in translation systems (Saunders and Byrne,
2020; Iluz et al., 2023; Zmigrod et al., 2019). Nev-

ertheless, these approaches are based on fine-tuning
for non-stereotypical sentences, which increases
the model’s specialization but significantly reduces
usability, e.g., in tasks unrelated to gender (Luo
et al., 2023).

One key constraint of multilingual debiasing
is the scarcity of bias annotations in various lan-
guages. Notable datasets were introduced by Levy
et al. (2021); Névéol et al. (2022). The difficulty
of obtaining reliable cross-lingual bias resources
stems from the need for deep knowledge of culture
in addition to understanding a language. To the
best of our knowledge, we are the first to propose a
method for debiasing LLM in machine translation
tasks.

7 Conclusion

We highlight the importance of considering the
dual character of gender encoding in model edit-
ing. The theoretical and empirical results show that
our novel model editing methods: 2DAMA effec-
tively reduces the impact of stereotypical bias on
the predictions while preserving equitable represen-
tation of (factual) gender based on grammar and
semantics. Maintaining the factual component of
gender representation is crucial for debiasing in lan-
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guages other than English, for which gender mark-
ings are ubiquitous. Furthermore, our method does
not significantly deteriorate the high performance
of LLMs in various evaluation settings unrelated to
gender.

Limitations

The main drawback of the Dual Debiasing ap-
proach is the high likelihood of stereotypical and
factual signals being correlated, as mentioned in
Section 2.3. We hypothesize that the model at-
tained this correlation from training data because
the distinction between factual and stereotypical
gender cues is often vague and depends on context.
Nevertheless, we show that with Dual Debiasing
we can control the tradeoff, and with proper choice
of hyperparameters, we can keep strong factual
signals while discarding the majority of bias.

Another drawback of our method is that we ob-
serve a small deterioration in non-gender-related
tasks, such as language modeling and translation.
Some of the drop may be attributed to the fact that
test sets may exhibit representational bias. For in-
stance, there could be a higher frequency of male
than female mentions, which would unfairly advan-
tage a biased model in evaluation.
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A Proofs

A.1 Terminological Note
For brevity of theorems and proofs, we adopt the
following notation convention:

Definition 1 (Moore-Penrose Pseudoinvers). We
denote Moore-Penrose pseudoinverse of matrix M
as M∔:

M∔ = (MTM)−1MT

Definition 2 (Matrix Square Root). We denote a
positive semi-definite square root of positive semi-
definite matrix M as M1/2.

Definition 3 (Covariance Matrix). For two ran-
dom vectors: X ∈ Rm and Y ∈ Rn. We denote
the covariance matrix as:

ΣX,Y = Cov(X,Y )

A.2 LEACE Theorem
For reference, we present the original LEACE theo-
rem from Belrose et al. (2023). The proof can be
found in ibid..

Theorem 3 (LEACE). We consider random vec-
tors X and Z taking values in Rn. Both random
vectors are centered, each with a finite moment.

Then the objective:

argmin
P∈Rn×n

E
[
||PX −X||2

]

subject to:
Cov(PX,Z) = 0

is solved by:

P ∗ = I−W∔PWΣW ,

where W is the whitening transformation (Σ1/2
V,V )

∔;
PWΣ is an orthogonal projection matrix onto
colspace of WΣV,Z .

A.3 Proof for DAMA-LEACE Theorem
We formalize the requirements and implications of
that assumption in the following theorem:

Theorem 4 (Gauss-Markov: Probabilistic Least
Squares). We consider random vectors: U taking
values in Rm, V , and Z taking values in Rn; both
are centered and have finite second moments. We
seek the linear regression model given by:

V = SU − ϵ,

given the following assumptions:

A No Multicollinearity: there is no linear re-
lationship among the independent variables,
i.e., matrix ΣU,U is of full rank m.

B Exogeneity: the expected value of error terms
given independent variables E[ϵ|U ] = 0, this
also implies that Cov(ϵ, U) = 0.

C Homoscedasticity: the covariance of the error
terms is constant and does not depend on the
independent variables Cov(ϵ, ϵ|U) = σ I.

Then, the ordinary least squares estimator is
given by the formula:

S∗ = ΣU,V Σ
−1
U,U

Such estimator is best linear unbiased estima-
tor and minimizes the variance of error terms:
Tr(Cov(ϵ, ϵ)).

The proof of the Theorem 4 can be found in the
classical statistics literature. For instance, Eaton
(1983) presents proof for the multivariate case pre-
sented above.

Equipped with the theorems above, we are ready
to present the theorem that is the main theoretical
contribution of this work:

Theorem 1. We consider random vectors: U tak-
ing values in Rm, V and Z taking values in Rn,
where m ≥ n. Under assumptions that: A) random
vectors U , V , Z are centered, and each of them has
finite moment; B) the regression relation between
U and V fulfill the assumption of ordinary least
squares, and there exist least squares estimator
V = SU − ϵ.

Then the objective:

argmin
P∈Rn×m

E
[
||PU − V ||2

]
,

subject to:
Cov(PU,Z) = 0

is solved by:

P ∗ =
(
I−W∔PWΣW

)
S,

where W is the whitening transformation
(Σ

1/2
SU,SU )

∔; PWΣ is an orthogonal projection
matrix onto colspace of WΣSU,Z; S is a least
squares estimator of V given U : S = ΣU,V Σ

−1
U,U .

Proof. For simplicity, we will decompose the prob-
lem into independent optimization objectives cor-
responding to each dimension in Rn. For the ith
dimension, we write the objective as:
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argminPi∈Rn E
[
P T
i V − Vi

]2 s.t. Cov(PiU,Z) = 0,

(3)
where Pi is ith column of matrix P . From the
assumption (B) of the theorem, we can represent
the linear relation between U and V , as SU =
V+ϵ, where ϵ is an error term of regression. We use
this property to rewrite the minimization objective
from expression 3, as:

argmin
P̃i∈Rn,S∈Rm×n

E
[
P̃i

T
SU − Vi

]2
(4)

We manipulate the term under argmin to rewrite
it as a sum of three terms:

E
[
P̃i

T
SU − Vi

]2
= E

[
P̃i

T
(V + ϵ)− Vi

]2
=

= E
[
P̃i

T
(V + ϵ)− (Vi + ϵi) + ϵi

]2
=

= 2E
[(

P̃i
T
(V + ϵ)− (Vi + ϵi)

)
ϵi

]

︸ ︷︷ ︸
I

+

+E[ϵi]2︸ ︷︷ ︸
II

+E
[
P̃i

T
(V + ϵ)− (Vi + ϵi)

]2

︸ ︷︷ ︸
III

(5)

We will now consider each of the three sum-
mands one by one to find the solution to the opti-
mization objective P ∗ = P̃ ∗S∗.

Summand I zeros out. We show that by observ-
ing that the summand is doubled covariance5:

E
[(

P̃i
T
(V + ϵ)− (Vi + ϵi)

)
ϵi

]
=

= Cov
(
P̃i

T
(V + ϵ)− (Vi + ϵi), ϵi

)
=

=
(
P̃i

T − 1T
i

)
Cov(V + ϵ, ϵ) =

=
(
P̃i

T − 1T
i

)
S Cov(U, ϵ)

(6)

From assumption B of Theorem 4 (exogeneity)
and, by extension, assumption of this theorem, we
have that Cov(U, ϵ) = 0 and thus Summand I zeros
out.

5From the fact that both factors under E are centered.

Summand II by the conclusion of Theorem 4 is
minimized by setting:

S∗ = ΣU,V Σ−1
U,U (7)

We can also set S to S∗ in summand III, as the
variable under E is independent of ϵ, as shown in
the previous paragraph. By finding S∗, we have
solved part of the objective in expression 4.

Summand III we find the matrix P̃ minimizing
the value of the summand under constraines. By
rewriting Cov(PiU,Z) as Cov(P̃i(V + ϵ), Z), we
observe that minimizing the value of summand
III under constraint is analogical to solving the
problem stated in LEACE (Theorem 3):

argmin
P̃i∈Rn

E
[
P̃i

T
(V + ϵi)− (Vi + ϵ)

]2

such that Cov(P̃i(V + ϵ), Z) = 0

(8)

We find the solution based on Theorem 3, where
we substitute X with V + ϵ and find P̃ ∗ =
I−W∔PWΣW , where W is the whitening trans-
formation (Σ

1/2
V+ϵ,V+ϵ)

∔; PWΣ is an orthogonal
projection matrix onto colspace of WΣV+ϵ,Z

Conclusion for summands II and III, we indepen-
dently found the matrices minimizing their values.
We obtain the matrix P ∗ solving our original ob-
jective in expression 3 by multiplying them:

P ∗ = P̃ ∗S∗ =
(
I−W∔PWΣW

)
ΣU,V Σ

−1
U,U

(9)

A.4 Proof for Dual-Debiasing Theorem
Theorem 2. We consider random vectors X , Zb,
and Zf in Rn. Under the assumptions that: A) Zb

and Zf Zb ⊥ Zf |X , i.e., Zb and Zf are condition-
ally independent, given X; B) ΣX,Zb

ΣT
X,Zf

= 0,
i.e., the variable X is correlated with Zf and Zb

through mutually orthogonal subspaces of Rn. The
solution of the objective:

argmin
P∈Rn×n

E
[
||PX −X||2

]
,

subject to:

Cov(PX,Zb) = 0,

satisfies:

Cov(PX,Zf ) = Cov(X,Zf ).
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Proof. First, we observe that the assumption A)
can be generalized to any coordinate system. For
an orthogonal matrix W , we have:

ΣWX,Zb
ΣT

WX,Zf
= WΣX,Zb

ΣT
X,Zf

W T = 0
(10)

This guarantees the orthogonality of spaces
spanned by columns of two orthogonality matri-
ces. The property will be useful for the second part
of the proof:

Col(ΣWX,Zb
) ⊥ Col(ΣWX,Zf

) (11)

Secondly, we remind the reader that the solution
to the objective provided in the theorem (based on
Theorem 3) is as follows:

P ∗ = I−W∔PWΣW (12)

Now, we evaluate the covariance matrix between
P ∗X and Zf to check that it is the same as the
covariance matrix between X and Zf .

Cov(P ∗X,Zf ) =

= ΣX,Zf
−W∔PWΣWΣX,Zf

=

= ΣX,Zf
−W∔PWΣΣWX,Zf

(13)

we note that PWΣ is the projection matrix onto
the column space of ΣWX,Zf

. From that fact and
Equation 11, we have:

PWΣΣWX,Zf
= 0 (14)

Thus the last component in Equation 13 nullifies
and we conclude that:

Cov(P ∗X,Zf ) = ΣX,Zf
= Cov(X,Zf ) (15)

B Prompts

B.1 Monolingual Prompts
The list of 11 prompt templates is given in
Table 6. The term <profession> is substi-
tuted by 219 professions without factual gender
(from Bolukbasi et al., 2016) and 26 gendered
entities (“man”, “boy”, “gentleman”, “father”,
“son”, “brother”, “husband”, “king”, “prince”,
“uncle”, “nephew”, “groom”, “duke”, “grandfa-
ther”, “widower”, “hero”, “wizard”, “baron”,
“emperor”, “anchorman”, “clergyman”, “chair-
man”, “alumnus”, “woman”, “girl”, “lady”,
“mother”, “daughter”, “sister”, “wife”, “queen”,

“princess”, “aunt”, “niece”, “bride”, “duchess”,
“grandmother”, “widow”, “heroine”, “witch”,
“baroness”, “empress”, “anchorwoman”, “clergy-
women”, “chairwomen”, “alumna”) which makes
2409 stereotypical and 286 factual prompts in total
used for Dual Debiasing.

B.2 Multilingual Prompts

For debiasing the translation models, we use 11
English-German and 11 English-Czech prompt
templates shown in Table 7. These prompts were
designed to be as general as possible, and so that
the target language prefix does not include any gen-
der information, while the proposed completions,
which are always one-token words, do specify the
gender. In German, these completions may be de-
terminers. Czech does not use determiners, but gen-
der is included, for example, in the past form of the
verb “to be”. We use the same sets of professions,
and therefore, we generate additional data of equal
size for each language. To match the intended use,
we wrap them into ALMA-R translation prompt
template:

Translate this from {src_lang} to {tgt_lang}:
{src_lang}: <English source>
{tgt_lang}: <Target prefix>

English prompt Completions

The <profession> wanted that [he, she, they]
The <profession> laughed because [he, she, they]
The <profession> went home because [he, she, they]
The <profession> desired that [he, she, they]
The <profession> wished that [he, she, they]
The <profession> cried because [he, she, they]
The <profession> ate because [he, she, they]
The <profession> said that [he, she, they]
The <profession> ran because [he, she, they]
The <profession> stayed up because [he, she, they]
The <profession> whispered that [he, she, they]

Table 6: Monolingual English prompt templates.

C Additional Results

C.1 Stereotypical and Factual Signals across
Layers

In Figure 6, we observe the variances with stereo-
typical and factual gender signals in subsequent
layers. We see that the number of biased dimen-
sions differs across layers. Nevertheless, we ob-
serve the same pattern in each layer: stereotypical
signal is encoded in a relatively small number of
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English source German prefix Completions

This is the <profession>. Das ist ___ [der, die]
There is the <profession>. Da ist ___ [der, die]
The <profession> is not working today. ___ [Der, Die]
The <profession> was fired. ___ [Der, Die]
The <profession> is busy. ___ [Der, Die]
Do you know the <profession> Kennen Sie ___ [den, die]
I was there with the <profession> Ich war dort mit ___ [dem, der]
I asked the <profession>. Ich fragte ___ [den, die]
We met the <profession>. Wir trafen ___ [den, die]
I answered the <profession>. Ich antwortete ___ [dem, der]
The salary of the <profession> has increased. Das Gehalt ___ [des, der]

English source Czech prefix Completions

This is that <profession>. To je ___ [ten, ta]
There is that <profession>. Tam je ___ [ten, ta]
That <profession> is not working today. ___ [Ten, Ta]
That <profession> was fired. ___ [Ten, Ta]
That <profession> is busy. ___ [Ten, Ta]
I was a <profession> two years ago. Před dvěma lety jsem ___ [byl, byla]
You were a <profession> two years ago. Před dvěma lety jste ___ [byl, byla]
If only I were a <profession>. Kdybych tak ___ [byl, byla]
I was a <profession> at that time. V té době jsem ___ [byl, byla]
You were a <profession> at that time. V té době jsi ___ [byl, byla]
You were a <profession> at that time. V té době jste ___ [byl, byla]

Table 7: Multilingual prompt templates for English-to-German and English-to-Czech translation

dimensions with high variance, while the stereo-
typical variance is spread across more dimensions
with lower values in each.

C.2 Choice of Hyperparameters in
Translation

Analogically to Section 4.3, we present the im-
pact of bias-to-feature threshold t and the number
of edited layers on translation to German in Fig-
ure 5. We observe that stronger factual regular-
ization (high t) helps in reducing representational
bias (∆G) yet offers weaker stereotypical bias mit-
igation (∆S). Similar to the results in language
modeling, the best performance is obtained when
editing 12 mid-upper layers with t = 0.05.

D Technical Details

To find the value representation V , we run gradi-
ent optimization for 20 steps with Adam scheduler
(Kingma and Ba, 2015) and learning rate: lr = 0.5.
We picked the following regularization constants:
λ1 = 0.0625 and λ2 = 0.2.

The optimization was run on a Nvidia A40
GPU. For Llama 2 7B, processing one prompt took
around 10 seconds.
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Figure 5: The hyperparameter analysis for 2DAMA applied to ALMA-R 13B model on performance and bias in
translation to German. We measured bias via WinoMT metrics ∆S and ∆G. The translation quality to Germna is
measured by chrf on WMT-22. Stars mark the performance of the best setting. The dashed line corresponds to the
scores of the original model.
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Figure 6: Visualization of dimensions and their vari-
ances related to stereotypical and factual gender signals
identified by Dual Debiasing algorithm across different
layers of Llama 2 13B.
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