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Speech recognition

• Task: convert audio (sound wave) → text
• generally just words, no punctuation or capitalization used

• Audio: waveform
• wave position in time (samples)

• 8 kHz – 44 kHz frequency
(telephone → CD quality)

• 8-16 kHz mostly used for speech

• quantized (=8-bit/16-bit number)

• lot more than just words:
• speaker identity (age, gender, dialect, speech defects), emotional state (pitch, loudness, health)

• environment, noise (reverb, distance, channel effects)

• ASR is basically very harsh lossy compression
• from ~ 64 kbps (8 kHz, 8-bit) to ~ 50 bps (text)

• for context, low-bitrate audio codecs are ~ 500 bps at least
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Speech

• composed of phones (distinct sounds) / phonemes (meaning-distinguishing)

• phones are realizations of phonemes

• different phonemes: cat vs. bat, phones: the same [k] in cat said twice

• compound sound wave, composed of many frequencies
• spectrogram – frequency-time-loudness graph

• F0 – vocal cord frequency (voice pitch)

• formants – loud multiples of F0 
(distinct for different phonemes)

• noise – broad sound spectrum
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ASR History

• First commercial success in “ASR”: Radio Rex (1920)
• spring triggered by 500 Hz audio (~F1 formant of [ɛ] in “Rex”)

• 1950’-60’s – rule-based formant detection
• digit recognition, isolated words

• 1970’s – first statistical modelling, HMMs

• 1980’s – larger models, adding language models

• 1990’s ~ first practically usable, large-vocab, continuous speech

• 2000’s – early neural approaches

• late 2010’s – fully neural, end-to-end ASR
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Conventional ASR



Speech Activity Detector

Preprocessing step in ASR
• Save CPU: run ASR only when 

there is speech

• Avoid confusing ASR with 
non-speech sounds

• Handcrafted (now obsolete)
• Track signal amplitude contours

• Simple, for low-resource tasks, 
assumes low noise

• Statistical / neural
• Trained on large corpora to tell speech from other sounds – binary classifier

• Input features same as ASR (→ →)

• Accurate but more CPU-demanding

• basic smoothing needs to be applied
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Wake words

• trigger to “start listening” (i.e. run full-scale ASR)

• simpler & more precise than VAD – detecting specific wake word
• OK Google, Alexa, Hey Siri

• simpler than to recognize that user is speaking to the system

• simpler to distinguish from background noise

• basically a small-vocabulary ASR problem
• ASR system running continuously

• low-power, low-accuracy, but good enough for wake word
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Features for ASR – Preprocessing

• In: Raw waveform ~ 1 number per 0.125 ms (8 kHz)
• current pos. of the sound wave (~continuous) – sample, 8-bit/16-bit quantized

• Out: Mel Frequency Cepstral Coefficients ~ 40 features per 10 ms
• step-wise (~discrete), dissected to frequency loudness & trends

• Inspired by humans:
• information for 1 phone spans 250-400ms (coarticulation)

• need to follow at least 4-7 freq. channels for intelligibility (10+ for better fidelity)

• speech ~ 2-10 phones/sec (peak 4), auditory cortex reaction ~ 2-20 Hz
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Features for ASR

• Preemphasis 
• boost higher frequencies

(equalization)

• Windowing ~ frames
• sliding: 25 ms / each 10 ms – overlapping

• Hamming window – middle is emphasized

• Energy = overall loudness (+Δ, ΔΔ)

9NPFL123 L10 2025

[a:]

(Jurafsky & Martin, 2009)

(Jurafsky & Martin, 2023)



Features for ASR

• Spectrum – Fourier transform
• loudness at different frequencies

• Mel bank filter
• loudness at ~12-16 mel banks

(i.e. frequency ranges)
• using triangular frequency filters

(sum everything within the filter)

• ranges equal on mel scale 
(get wider in terms of normal frequency)

• mel scale – logarithmic
• corresponds to human perception of pitch
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freq

700

sound wave spectrum (~ after FT)



Features for ASR

• Logarithmic volume
• ~human-like, robust to loudness variation

• Cepstrum – another (inverse) Fourier transform
• ~ “spectrum of log spectrum”

• “rate of change in various spectral bands”

• decorrelated (unlike filterbanks, which are overlapping)

• slow changes – relevant to phones
• ~ formants, other properties

• usual speech: 2-10 phones per sec.

• ~ only keep coeffs 2-13 (or thereabouts)

• high range – harmonics (F0)

• Δ, ΔΔ: (× 3 features) – trends, speed of trends
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Features for ASR
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• MFCCs used mainly in older/low-resource systems

• newer: mel spectrograms (filterbank) / raw spectrograms / raw audio

spectrogram mel filtered spectrogram MFCCs

less detail

general shape preserved

wider in low frequencies,
narrower in higher frequencies

hard to interpret,
uncorrelated

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC


Conventional ASR

• We want to model 𝑃(text|audio)

• Can’t model directly, so using Bayes:

𝑃 text audio =
𝑃 audio text 𝑃(text)

𝑃(audio)
• 𝑃(audio) is a constant, we’re ignoring that

• 𝑃 audio text  ~ acoustic model 𝑷𝑨

• 𝑃(text) ~ language model 𝑷𝑻

• decoder then combines information from both
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Acoustic model

• 𝑃𝐴 = 𝑃(audio|text), where
• audio = ASR features, i.e. spectrograms

• text = sequence of phone[me]s

• assuming independence between audio frames:

𝑃 audio text =ෑ

𝑖

𝑃(𝑎𝑖|𝑡𝑖)

• 𝑖 – time (frame no.)

• 𝑎𝑖  – audio feature vector (~ spectrum)

• 𝑡𝑖  – acoustic class (~ phone[me], context-dependent phone)
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Acoustic model
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Acoustic model

• Representing each phone by an HMM
• start – mid – end, with loops (~ different lengths)

• Original: GMM – Gaussian mixtures
• each HMM transition/emission is a multivariate Gaussian 

• clustering, as there are too many options

• Improvement: DNN 
(=feed forward neural net) instead of GMM

• Training – Baum Welch force-alignment
• start from equal lengths of all phonemes, 

iteratively shift & increase likelihood

• GMMs used to produce alignment to train DNN
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Language model

• 𝑃(text), where text ~ sentence, consisting of words 𝑤1, …𝑤𝑛

• sequence probability modeled with a LM:

𝑃𝑇 text = ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … )

• words given preceding context

• traditionally n-gram LMs 

• more recently neural LMs

• Words 𝑤𝑖  mapped to acoustic classes 𝑡𝑖  using a pronouncing dictionary
• or rules – essentially reverse of TTS’s grapheme-to-phoneme conversion (→next time)

• multiple pronunciation variants considered
e.g. S EH V AX R AX L ['sɛvəɹəl] vs. S EH V R AX L [‘sɛvɹəl]
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Decoder

• Text encoded into acoustic signal / audio features → decoding back

• Hidden Markov Models
• decoding word sequence from observed sequence of features

• Dynamic programming (Viterbi)

• Finding the best path through a finite state transducer
composed of acoustic model & language model & pronouncing dictionary
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End-to-End ASR: Encoder-decoder

• Models 𝑃 text audio  directly

• Attention encoder-decoder (AED) as in language tasks 
• a.k.a. listen-attend-spell (LAS)

1. encode audio features

2. decode text character-by-character

• RNN (LSTM) + attention / Transformer

• Audio is too fast/long → slowing it down
(“low frame rate”)
• e.g. concatenate every 3 frames of audio

~ 40-dim → 120-dim at ⅓ speed

• Optional external language model: beam search & rerank
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Encoder-decoder ASR Pros & Cons

• Easier to train
• pronunciation not modeled explicitly – direct audio to letter

• no need to align phones & audio frames

• audio & transcript is enough to train

• Easier to run – simpler decoder

• Inaccurate word/character timestamps

• Not low-latency
• assuming whole sentence input → output

• Harder to customize: retrain everything
• dictionary – unknown words may be guessed well as-is

• language model – can use beam search & rescoring by an external LM
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CTC (Connectionist Temporal Classification)

• Alt. idea: predict something for every input frame
• _/ε (“blank”) for silence & double letters 

• collapse duplicates & remove blanks later

• Problem: many-to-one alignments
• Many predicted sequences align 

to the same collapsed output

• solution: clever summing

• training: minimizing CTC loss 
• sum over all possible alignments

• computed by dynamic programming (forward-backward algorithm)

• inference: modified beam search
• beam of output prefixes after collapsing
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(Jurafsky & Martin, 2023)

(Hannun, 2017)
https://distill.pub/2017/ctc/ 
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CTC Model

• Encoder + softmax classifier only
• output something for every step

• Great for low latency
• can work in parallel too

• Worse performance overall
• strong assumption: outputs independent 

of each other (non-autoregressive)

• Can be combined with encoder-decoder
• CTC as additional encoder loss

• inference: combine probs. from both

22NPFL123 L10 2025

(Jurafsky & Martin, 2023)



Transducers (RNN-T): Low-latency & accuracy

• Remove output independence

• Add RNN prediction network conditioned on prev. output
• i.e. a language model component

• (RNN) acoustic model & RNN LM → joint (feed-forward) decoder

• Still predicts 1 output per frame

• All trained with CTC loss
• You can retrain LM & keep acoustics

• Transformer variant
(s/RNN/Transformer/g)
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RNN (LM)

RNN (acoustic model)
(He et al., 2019) http://arxiv.org/abs/1811.06621 
(Zhang et al., 2020) https://arxiv.org/abs/2002.02562 

feed forward

https://lorenlugosch.github.io/posts/2020/11/transducer/ 
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Conformer – better representation

• Transformer-like architecture, but with convolutions
• CNN: applying same parameters (kernel) repeatedly over shifted inputs

• CNN for local interaction

• Transformer-like for global

• Used as acoustic model
(encoder) in a Transducer
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https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d 

feed forward
split into two

~embeddings

lower frame rate 
by convolution (over time)

convolution module added

warping/masking
for robustness

https://arxiv.org/abs/2005.08100
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d


Transformers & Streaming

• Problem: attention is costly & assumes whole sequence

• Solution: attention masking

a) Mask out all future & distant past
• visible history gets longer over layers

b) Tiny lookahead: split into chunks
• only attend to the future within a chunk

• history longer into past, not into future

• reasonable latency & better performance
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(image: Li, 2023)

(Chen et al., 2021)
https://ieeexplore.ieee.org/abstract/document/9413535 
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Self-supervised models

• Learning from large data without transcriptions
• ~ 1000s of hours of audio

• input: raw audio & convolutions

• creating some inventory of pseudo-phonemes
• HuBERT – clustering based on MFCC

• Wav2Vec2 – jointly trained quantization

• masking out some pseudo-phonemes 
& learning to predict them

• Finetuning on transcriptions (CTC loss)
• works with ~ minutes of labeled data

• usable with Transducers / attention too
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HuBERT

Wav2Vec2
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Weak supervision & multi-tasking

• Any transcriptions 
available
• scraping the web 

(even low-quality)

• + speech translation

• + many languages

• aim: no finetuning

• Option: pretrain
on non-transcribed

NPFL123 L10 2025

(Radford et al., 2022)
https://arxiv.org/abs/2212.04356 

(Zhang et al., 2023)
http://arxiv.org/abs/2303.01037 

OpenAI Whisper

https://arxiv.org/abs/2212.04356
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Challenges

• Human-human spontaneous speech harder than human-system
• unscripted speech, disfluencies, repairs

• stark topic shifts

• multiple speakers

• Specific domains

• Demographics
• gender imbalances

• non-native speech

• Language coverage

• Noise

• Latency/on-device

• Trend: End-to-end speech LLMs
28NPFL123 L10 2025 (Szymański et al., 2020) https://aclanthology.org/2020.findings-emnlp.295/

(Ji et al., 2024)  https://arxiv.org/abs/2411.13577 
(Defossez et al., 2024)   https://arxiv.org/abs/2410.00037 

https://aclanthology.org/2020.findings-emnlp.295/
https://arxiv.org/abs/2411.13577
https://arxiv.org/abs/2410.00037


Summary

• VAD → features → ASR → text

• Features: MFCCs/filter banks/raw

• Traditional: separate acoustic & language models

• Neural: 
• Attention-based

• CTC-based

• Transducers

• Pretrained models

• Weak supervision
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Thanks

Contact us: 
 https://ufaldsg.slack.com/ 
 odusek@ufal.mff.cuni.cz
 Zoom/Troja (by agreement) 

Get these slides here:

 http://ufal.cz/npfl123 

References/Inspiration/Further:
• Jurafsky & Martin’s Speech & Language Processing (3rd ed., 2023): https://web.stanford.edu/~jurafsky/slp3/16.pdf 

• Jurafsky & Martin’s Speech & Language Processing (2nd ed., 2009)

• Li, 2022/2023: Recent Advances in End-to-End Automatic Speech Recognition. 
https://www.nowpublishers.com/article/Details/SIP-2021-0050 
https://www.microsoft.com/en-us/research/uploads/prod/2023/11/ASC2023_E2E-ASR_final.pdf 

• https://en.wikipedia.org/wiki/Speech_recognition 

• https://speechprocessingbook.aalto.fi/Recognition_tasks_in_speech_processing.html 

• https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing 
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