NPFL123 Dialogue Systems 8. Voice Assistants & Question Answering

https://ufal.cz/npfl123

Ondřej Dušek, Mateusz Lango, Ondřej Plátek & Jan Cuřín 10.4.2025

Virtual Assistants (voice/smart/conversational assistants)

- "Definition": voice-operated software (dialogue system) capable of answering questions, performing tasks & basic dialogue in multiple domains
- Apple Siri (2011) question answering & iOS functions
- Every major IT company has/had them
 - Microsoft Cortana (2014-2023, now Copilot)
 - Amazon Alexa (2014)
 - Google Assistant (2016)
 - Samsung Bixby (2017)
 - Mycroft (now OpenVoiceOS), Rhasspy (open-source, 2018/2020)
 - Clova (Naver, 2017) Korean & Japanese
 - Alice (Yandex, 2017) Russian
 - DuerOS (Baidu, 2017), AliGenie (Alibaba, 2017) Chinese

Smart Speakers

- Internet-connected mic & speaker with a virtual assistant running
 - optionally video (display/camera)
 - ~ same functionality as virtual assistants in phones/computers
 - Amazon Echo (Alexa), Google Home (Assistant), Apple HomePod (Siri) [...]
- Main point: multiple microphones far-field ASR

Capabilities

- Out of the box:
 - Question answering
 - Web search
 - News & Weather
 - Scheduling
 - Navigation
 - Local information
 - Shopping
 - Media playback
 - Home automation
- a lot of it through 3rd party APIs
- the domains are well connected

Demos

Raven H (powered by DuerOS, Baidu)

https://www.youtube.com/watch?v=iqMjTNjFIMk

Google Assistant

https://www.youtube.com/watch?v=JONGt32mfRY

Smart Speaker Adoption

- >35% US/UK adults have a smart speaker
 - growth stalled, less adoption elsewhere (CZE very low)
 - Amazon had an early lead, now it's more Google
- People really use them
 - early adopters more intensively, correlated with phone assistant usage

Smart Speaker Use Case Frequency January 2020

Others

2018

52%

Others

12%

Google Home **32%**

2022

37%

How they work

- Device listens for wake word
 - after the wake word, everything is processed in vendor's cloud service
 - raw audio is sent to vendor
 - follow-up mode no wake word needed for follow-up questions (device listens for 5-10sec after replying)
 - privacy concerns
- Intents designed for each domain
 - NLU trained on examples
 - DM + NLG handcrafted
 - extensible by 3rd parties (Skills/Apps)
- No incremental processing

How they work

- NLU includes domain detection
 - "web" domain as fallback
- Multiple NLU analyses (ambiguous domain)
 - resolved in context (hypothesis ranking)
- State tracker & coreference
 - Rules on top of machine learning
 - All per-domain

Cortana structure

Why they are cool

- ASR actually impressive
 - NLU often compensates for problems
- Range of tasks is wide & useful
- 1st really large-scale dialogue system deployment ever
 - not just a novelty
 - actually boosted voice usage in other areas (phone, car etc.)

Assistants & Accents https://youtu.be/gNx0huL9qsQ?t=41

Why they are not so cool

- Still handcrafted to a large part
 - conversational architects are a thing now
- Not very dialogue-y
 - mostly just one turn, rarely more than a few
- Language limitations
 - only available in a few major languages (En, Zh, Jp, De, Es, Fr, Kr [...])
- ASR still struggling sometimes
 - noise + accents + kids
 - not that far-field
 - helped a lot by NLU / domain knowledge

https://youtu.be/CYvFxs32zvQ?t=65

Adding Skills/Apps

- Additional functionality by 3rd party developers
 - API/IDEs provided by vendors, enabled on demand (similar to installing phone apps)
- Not 1st-class citizens
 - need to be invoked specially
 - Alexa, tell Pizza Hut to place an order
 - Alexa, ask Uber to get me a car
 - much less used than the default ones
- There's thousands of them
 - many companies have a skill
 - many specific inventions
 - finance, fitness, food, games & trivia ...
- Going deprecated
 - few new skills, vendors dropping support

What people care about in smart speakers

Understanding, features, speed

- personality / dialogue not so much
- 3rd party apps not so popular (should work out-of-the-box)
- commerce not so popular, but growing
- QA: music, news, movies
- Privacy concerns don't stop people from buying/using smart speakers
 - privacy-conscious 16% less likely to own one

12

Question answering

- integral & important part of assistants
 - broadest domain available, apart from web search
- QA is not the same as web search
 - QA needs a specific, unambiguous answer, typically a (named) entity
 - person, object, location [...]
 - ~ factoid questions
 - Needs to be within inference capabilities of the system

Who is the president of Germany? How high is the Empire State Building?

X

Who is the best rapper?
Who will become the next U.S. president?
How much faster is a cheetah than an elephant?

Web search

- Given a query, find best-matching documents
 - Over unstructured/semi-structured data (e.g. HTML)
- Basic search
 - Candidates: find matching word occurrences in index
 - Reranking: many features
 - Location of words (body, title, links)
 - Frequency of words (TF-IDF →)
 - Word proximity
 - PageRank weighing links to documents/webpages (how many, from where)
 - 2nd level: personalized reranking
- Query reformulation & suggestion

QA approaches

Information Retrieval

- Basically improved web search
- IR + phrase extraction
 - getting not just relevant documents, but specific phrases within them

Knowledge Graphs

- KGs storage of structured information
- 1) Semantic parsing of the query
- 2) Mapping to KG(s)
- Hybrid (IBM Watson, probably most other commercial systems)
 - candidates from IR
 - reranking using KGs/semantic information

IR-based QA Pipeline

from Jurafsky & Manning QA slides, Coursera NLP course

Question Processing

Jurafsky & Manning
QA slides, Coursera NLP course reason

definition

DESCRIPTION

ABBREVIATION

individual

food

ENTITY

NUMERIC

group

animal

date

money

- Answer type detection
 - what kind of entity are we looking for?
 - rules / machine learning (with rules as features)
 - rules: regexes
 - headword = word right after wh-word
- Named entity recognition
- IR Query formulation keyword selection
 - ignore stop words (the, a, in)
 - prioritize important words (named entities)
 - stemming (remove inflection)
- Question type classification definition, math...
- Focus detection question words to replace with answer
- Relation extraction relations between entities in question
 - more for KGs, but can be used for ranking here

Who is the [...] <u>composer/football player</u> [...] Which city is the largest [...]

IR Document Retrieval

- Candidates find matching words in index (same as web search)
- Weighting
 - Frequency: TF-IDF (term frequency-inverse document frequency)
 - TF document more relevant if term is frequent in it
 - IDF document more relevant if term only appears in few other documents

- this is just one of many variants
- Other metrics **BM25** more advanced smoothing, heeds document length
- Proximity: also using n-grams in place of words

IR Passage Retrieval

- Passage segmentation split document into ~paragraphs
 - anything short enough will do
- Passage ranking typically machine learning based on:
 - named entities & their type (matching answer type?)
 - # query words contained
 - query words proximity
 - rank of the document containing passage

(Reimers & Gurevych, 2019) https://aclanthology.org/D19-1410/

- Neural ranking: 2x Transformer LM (BERT/SBERT) + dot product
 - or cosine similarity (~+normalization)
 - no need for specific features
 - alt: 1 transformer, feed both & classify

(Jurafsky & Martin, 2023) https://web.stanford.edu/~jurafsky/slp3/14.pdf

- Working with a neural-ranking-like approach on the whole data
 - less focus on words, more on semantics/embeddings
- Precompute & store all document embeddings
 - compare via cosine similarity to query embeddings
- Less accurate than full (S)BERT finetuning
 - but that wouldn't be viable over large data
 - **ColBERT**: compromise precomputed token embeddings & compute + aggregate similarities on the fly
- Larger-scale: clustering (**Faiss**)
 - cluster embeddings into Voronoi cells (centroids & L2 dist.)
 - only search in the closest cell
 - & some other efficiency tricks (e.g. quantization)

(Khattab & Zakharia, 2020) https://arxiv.org/abs/2004.12832

IR Answer Extraction

- NER on passages looking for the right answer type
- 1 entity found → we're done
- More entities present → needs another ranking, based on:
 - answer type match
 - distance from query keywords in passage
 - novelty factor not contained in query
 - position in sentence
 - semantic parse / relation
 - passage source rank/reliability

Neural answer extraction

- Feed in question + extracted passage(s) to a Transformer model
 - typically a pretrained LM (e.g. BERT)
- 2 classifiers: start + end of answer span
 - softmax over passage(s) tokens
- NB: LLMs (ChatGPT) do no retrieval!
 - they just generate reply from scratch
 - it's not ideal, high risk of hallucination
- alternative: generative QA
 - feed in passage
 - generate reply word-by-word (see NLG)

(Jurafsky & Martin, 2023) https://web.stanford.edu/~jurafsky/slp3/14.pdf

Retrieval-augmented Generation QA

- Not just extraction, but full-sentence answer formulation
- Transformer generative (L)LMs
 - decoder models
 - input: retrieved passage
 - output: full-sentence response
- Train/prompt to provide reply
 - avoid hallucination
 - avoid copying everything verbatim

https://lilianweng.github.io/posts/2020-10-29-odqa/

- Retriever & generator can be trained jointly (Lewis et al., 2020) https://arxiv.org/abs/2005.1140
- Option: ask LM if the retrieved is relevant, then generate

(Wang et al., 2023) https://arxiv.org/abs/2309.02233

Option: ask LM to link to sources

(Chen et al., 2023) https://arxiv.org/abs/2310.12150

Knowledge Graphs

- Large repositories of **structured**, **linked** information
 - entities (nodes) + relations (edges)
 - typed (for both)
 - entity/relation types form an ontology (itself a similar graph)

from Jens Lehman's QA keynote

- Open KGs (millions of entities, billions of relations)
 - Freebase (freely editable, many sources, bought by Google & shut down)
 - DBPedia (based on Wikipedia)
 - Wikidata (part of Wikipedia project, freely editable)
 - Yago (Wikipedia + WordNet + GeoNames)
 - NELL (learning from raw texts)
- Commercial KGs: Google KG, Microsoft Satori, Facebook Entity Graph
 - domain specific: Amazon products, Domino's pizza [...]

RDF Representation

- RDF = Resource Description Framework
 - Most popular KG representation
 - Wikidata different format but accessible as RDF
- Triples: <subject, predicate, object>
 - predicate = relation
 - subject, object = entities
 - can also include relation confidence (if extracted automatically)
- Entities & relations typically represented by URI (not always)
 - objects can also be constants (string, number)

subject: Leonard Nimoy

object: played object: Spock [confidence: 0.993]

SPARQL

- Query language over RDF databases
 - relatively efficient
 - can query multiple connected triples (via ?variables)
- can be used directly
 - if you know the domain/application
- QA need to map user question to this
 - or use IR-based methods instead

Wikidata: largest cities with female mayors

https://query.wikidata.org/

```
SELECT DISTINCT ?city ?cityLabel ?mayor ?mayorLabel
WHERE
 BIND (wd:Q6581072 AS ?sex)
 BIND (wd:Q515 AS ?c)
    ?city wdt:P31/wdt:P279* ?c . # find instances of subclasses of city
    ?citv p:P6 ?statement .
                                       # with a P6 (head of government) statement
    ?statement ps:P6 ?mayor .
                                       # ... that has the value ?mayor
                                # ... where the ?mayor has P21 (sex or gender) female
    ?mayor wdt:P21 ?sex .
    FILTER NOT EXISTS { ?statement pg:P582 ?x } # ... but the statement has no P582 (end date) qualifier
    # Now select the population value of the ?city
   # (wdt: properties use only statements of "preferred" rank if any, usually meaning "current population")
    ?city wdt:P1082 ?population .
    # Optionally, find English labels for city and mayor:
   SERVICE wikibase: label {
       bd:serviceParam wikibase:language "[AUTO LANGUAGE],en" .
ORDER BY DESC(?population)
LIMIT 10
```

KG Retrieval

- Problem: synonymy many ways to ask the same question
 - RDF relations have a specific surface form (not just wd:1234)
 - needs normalization/lexical mapping/usage of synonyms

How fast do jaguars run? What is a top speed of a jaguar?

- WordNet expansion
- stemming/lemmatization
- multiple labels for entities/relations
- string similarity/word embeddings
- Problem: ambiguity
 - needs entity/relation disambiguation/grounding/linking (to KG-compatible URIs)
 - context used to disambiguate (neighbour words, syntax, parts-of-speech)
 - KG itself used closest/semantically related entities

How fast is a Jaguar [I-Pace]?

KG Retrieval

- Semantic parsing can be used for query normalization
- Dependencies help decompose complex questions
 - Doesn't have to be syntactic dependencies
 - Template mapping: map simple question patterns that have SPARQL equivalents

from Jens Lehmann's OA keynote

http://dbpedia.org/ontology/elevation

(Zheng et al., 2018) http://www.vldb.org/pvldb/ vol11/p1373-zheng.pdf

KG Maintenance

- Information needs to be up-to-date
- Deduplication
- Ontology changes
 - need to version ontologies (and data) (for new/split/merged entity & relation types)
- Integrating multiple KGs
 - larger world knowledge coverage
 - company suppliers, mergers
 - → ontology bridging/mapping needed

"Basically, we're all trying to say the same thing." http://dit.unitn.it/~accord/RelatedWork/Matching/Noy-MappingAlignment-SSSW-05.pdf

from Alex Marin's KG QA slides

Ontology mapping

Mismatch types

- different labels (easiest)
- same term, different thing & vice-versa
- different modelling approaches (e.g. subclass or property?)
- different granularity (more/less subclasses)

Mappings

- handcrafted (best results, but expensive)
- rule-based map into a common ontology
 - string distances, WordNet
- graph-based compare ontology structure
- machine learning

Summary

- Virtual assistants/smart speakers are booming
 - large variety of tasks, interconnected
 - most part of the processing happens online
 - impressive ASR, typically handcrafted dialogue policy, NLG
- Question answering factoids
 - IR approaches: word-based document retrieval, passage extraction, ranking
 - **TF-IDF** & co. for retrieval, answer type selection
 - dense retrieval using vector representation & similarity
 - ranking with word features or NNs
 - generative QA retrieve passages & compose reply with LM
 - KG approach: semantic parsing & mapping to SPARQL queries
 - **RDF** triple representations

Thanks

Contact us:

Labs at 3:40pm

https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Zoom/Troja (by agreement)

Get the slides here:

http://ufal.cz/npfl123

References/Further:

- Dan Jurafsky & Chris Manning's slides at Stanford/Coursera: https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html
- Alex Marin's slides at Uni Washington: https://hao-fang.github.io/ee596 spr2018/
- Anton Leuski's slides at UCSC: http://projects.ict.usc.edu/nld/cs599s13/
- VoiceBot smart speaker report: https://voicebot.ai/smart-speaker-consumer-adoption-report-2019/
- Jens Lehmann's keynote: http://jens-lehmann.org/files/2017/fqas_keynote.pdf
- Wikipedia pages of the individual KGs, assistants + Smart speaker, Okapi BM25, TF-IDF