
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL123 Dialogue Systems

7. Neural Policies
& Natural Language Generation

https://ufal.cz/npfl123

Ondřej Dušek, Mateusz Lango, Ondřej Plátek & Jan Cuřín

3. 4. 2024

https://ufal.cz/npfl123

Deep Reinforcement Learning

• Exactly the same as “plain” RL

• “deep” = part of the agent is handled by a NN
• value function (typically 𝑄)

• policy

• NN = parametric function approximation approach
• NN → complex non-linear functions

• REINFORCE / policy gradients: 𝝅(𝒂|𝒔, 𝜽) – works out of the box

• value functions: using 𝑉 𝑠; 𝜽 or 𝑄 𝑠, 𝑎; 𝜽 , regression

• assuming huge state space
• much fewer weights than possible states

• update based on one state changes many states

• no more summary space ☺

2NPFL123 L7 2025

(Sutton & Barto, 2018)

Deep Q-Networks

• Q-learning, where 𝑄 function is represented by a neural net

• “Usual” Q-learning doesn’t converge well with NNs:
a) SGD is unstable

b) correlated samples (data is sequential)

c) TD updates aim at a moving target (using 𝑄 in computing updates to 𝑄)

d) scale of rewards & 𝑄 values unknown → numeric instability

• Fixes in DQN:
a) minibatches (updates by averaged 𝑛 samples, not just one)

b) experience replay

c) freezing target Q function

d) clipping rewards

3NPFL123 L7 2025

cool!

common NN tricks

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

DQN tricks

• Experience replay – break correlated samples
• run through some episodes (dialogues, games…)

• store all tuples (𝑠, 𝑎, 𝑟′, 𝑠′) in a buffer

• for training, don’t update based on most recent moves – use buffer
• sample minibatches randomly from the buffer

• overwrite buffer as you go, clear buffer once in a while

• only possible for off-policy

• Target Q function freezing
• fix the version of Q function used in update targets

• have a copy of your Q network that doesn’t get updated every time

• once in a while, copy your current estimate over

NPFL123 L7 2025

loss ≔ 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈buf 𝑟′ + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

~ making it more like supervised learning

“generate your own
‘supervised’ training data”

“have a fixed target,
like in supervised learning”

DQN algorithm

• initialize 𝜽 randomly
• initialize replay memory 𝐷 (e.g. play for a while using current 𝑄(𝜽))
• repeat over all episodes:

• set initial state 𝑠
• for all timesteps 𝑡 = 1 … 𝑇 in the episode:

• select action 𝑎𝑡 from 𝜖-greedy policy based on 𝑄(𝜽)
• take 𝑎𝑡, observe reward 𝑟𝑡+1 and new state 𝑠𝑡+1

• store 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 in 𝐷

• sample a batch 𝐵 of random (𝑠, 𝑎, 𝑟′, 𝑠′)’s from 𝐷

• update 𝜽 using loss 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈𝐵 𝑟′ + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

• once every 𝜆 steps (rarely):
• ഥ𝜽 ← 𝜽

5NPFL123 L7 2025

storing experience
(1 step of Q-learning exploration)

“replay”
a. k. a. training

(1 update)

update the frozen target function

DQN for Dialogue Systems

• a simple DQN can drive a dialogue system’s action selection
• DQN is function approximation – works fine for POMDPs

• no summary space tricks needed here

6https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

(Li et al., 2017)
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

rule-based simulator
with agenda

running on DA level

error model controller
(simulating ASR/NLU noise)

DQN – feed-forward,
1 hidden ReLU layer replay memory

initialized using a
simple handcrafted policy

movie ticket booking:
better than rule-based

NPFL123 L7 2025

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

Natural Language Generation

• conversion of system action semantics → text (in our case)

• NLG output is well-defined, but input is not:
• DAs
• any other semantic formalism
• database tables
• raw data streams
• user model
• dialogue history

• general NLG objective:
• given input & communication goal
• create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
• variation
• simplicity
• adaptability

7NPFL123 L7 2025

can be any kind of
knowledge representation

e.g. “user wants short answers”

e.g. for referring expressions, avoiding repetition

NLG Use Cases

• dialogue systems
• very different for task/non-task-oriented/QA systems

• standalone
• data-to-text

• short text generation for web & apps
• weather, sports reports

• personalized letters

• creative generation (stories)

• machine translation
• now mostly integrated end-to-end

• formerly not the case

• summarization

8NPFL123 L7 2025

NLG Subtasks (textbook pipeline)

Inputs

• ↓ Content/text/document planning
• content selection according to communication goal
• basic structuring & ordering

Content plan

• ↓ Sentence planning/microplanning
• aggregation (facts → sentences)
• lexical choice
• referring expressions

Sentence plan

• ↓ Surface realization
• linearization according to grammar
• word order, morphology

Text

9NPFL123 L7 2025

organizing content into sentences
& merging simple sentences

this is needed for NLG
in dialogue systems

typically handled by
dialogue manager

in dialogue systemsdeciding
what to say

deciding
how to say it

e.g. restaurant vs. it

NLG Implementations

• Few systems implement the whole pipeline
• All stages: mostly domain-specific data-to-text, standalone

• e.g. weather reports

• Dialogue systems: just sentence planning + realization

• Systems focused on content + sentence planning with trivial realization
• frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer

• Surface realization only
• requires very detailed input

• some systems: just ordering words

• Pipeline vs. end-to-end approaches
• planning + realization in one go – popular for neural approaches

• pipeline: simpler components, might be reusable (especially realizers)

• end-to-end: no error accumulation, no intermediate data structures

10NPFL123 L7 2025

NLG Basic Approaches

• canned text
• most trivial – completely hand-written prompts, no variation
• doesn’t scale (good for DTMF phone systems)

• templates
• “fill in blanks” approach
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems, realization
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• neural nets made it work much better

11NPFL123 L7 2025

Template-based NLG

• Most common in dialogue systems
• especially commercial systems

• Simple, straightforward, reliable
• custom-tailored for the domain

• complete control of the generated content

• Lacks generality and variation
• difficult to maintain, expensive to scale up

• Can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases

• template coverage/selection rules, e.g.:
• select most concrete template

• cover input with as few templates as possible

• random variation

NPFL123 L7 2025

(Facebook, 2015)

(Facebook, 2019)

inflection rules

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex

https://github.com/UFAL-DSG/alex

Grammar/Rules for Sentence Planning

• Handcrafted grammar/rules
• input: base semantics (e.g. dialogue acts)

• output: detailed sentence representation (=realizer inputs, see →)

• Statistical enhancements:
generate more options & choose the best
• generate multiple outputs

• underspecified grammar

• rules with multiple options…

• choose the best one
• train just the selection – learning to rank

• any supervised approach possible
e.g. “best” = 1, “not best” = 0

13NPFL123 L7 2025

SpoT trainable planner
(RankBoost ranking)

H
u

m
a

n

R
a

n
kB

o
o

st

input DA

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003

NB: this is slow!

https://www.aclweb.org/anthology/N01-1003

Grammar-based realizers

• Various grammar formalisms
• production / unification rules in the grammar

• lexicons to go with it

• expect very detailed input (sentence plans)

• typically general-domain, reusable
• KPML – multilingual

• systemic functional grammar

• FUF/SURGE – English
• functional unification grammar

• OpenCCG – English
• combinatory categorial grammar

KPML input for A dog is in the park.

(Bateman, 1997) http://www.academia.edu/download/3459017/bateman97-jnle.pdf
(Elhadad & Robin, 1996) https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download
(White & Baldridge, 2003) https://www.aclweb.org/anthology/W03-2316
(Moore et al., 2004) http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf

FUF/SURGE input for She hands the draft to the editor

OpenCCG input for The cheapest flight is on Ryanair

http://www.academia.edu/download/3459017/bateman97-jnle.pdf
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download
https://www.aclweb.org/anthology/W03-2316
http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf

Procedural realizers

• SimpleNLG – no grammar, code to build sentence

• “do-it-yourself” style – only cares about the grammar

• system then linearizes

• built for English, ports to other languages available

• RealPro (Meaning-Text-Theory)

• deep syntax/semantics → surface syntax → morphology

• Treex (Functional Generative Description)

• deep syntax → surface syntax
→ morphology, linearization

• Perl code operating over syntax trees

15

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613

SimpleNLG

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596

(Popel & Žabokrtský 2010; Dušek et al., 2015)
https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf
https://www.aclweb.org/anthology/W15-3009

Treex

https://www.aclweb.org/anthology/W09-0613
http://dl.acm.org/citation.cfm?id=974596
https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf
https://www.aclweb.org/anthology/W15-3009

Trainable Realizers

• Overgenerate & Rerank
• same approach as for sentence planning

• assuming a flexible handcrafted realizer (e.g., OpenCCG)

• underspecified input → more outputs possible

• generate more & use statistical reranker, based on:
• n-gram language models

• Tree language models

• expected text-to-speech output quality

• personality traits & alignment/entrainment

• more variance, but at computational cost

• Grammar/Procedural-based
• same as RealPro or TectoMT, but predict each step using a classifier

16NPFL123 L7 2025

StuMaBa (Bohnet et al., 2010)
https://www.aclweb.org/anthology/C10-1012

NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103

FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007

(Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140

CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405

this means
the grammar

may be smaller

https://www.aclweb.org/anthology/C10-1012
https://www.aclweb.org/anthology/P98-1116
https://www.aclweb.org/anthology/W02-2103
https://aclweb.org/anthology/C00-1007
https://www.aclweb.org/anthology/P06-1140
https://www.aclweb.org/anthology/W06-1405

Non-Neural End-to-End NLG

• NLG as language models
• hierarchy of language models

(HMM/MEMM/CRF style)

• DA → slot → word level

• NLG using context-free grammars
a) “language models” by probabilistic CFGs

• approximate search for best CFG derivation

b) synchronous PCFGs – MRs & text
• “translation” with hierarchical phrase-based system

• parsing MR & generating text

(Oh & Rudnicky, 2002) https://doi.org/10.1016/S0885-2308(02)00012-8
(Angeli et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
(Mairesse et al., 2010) https://www.aclweb.org/anthology/P10-1157
(Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003

(Wong & Mooney, 2007)
https://www.aclweb.org/anthology/N07-1022

(Konstas & Lapata, 2012)
https://www.aclweb.org/anthology/P12-1039

rule prob./parameter

https://doi.org/10.1016/S0885-2308(02)00012-8
https://www.aclweb.org/anthology/D10-1049
https://www.aclweb.org/anthology/P09-1011
https://www.aclweb.org/anthology/P10-1157
https://www.aclweb.org/anthology/J14-4003
https://www.aclweb.org/anthology/N07-1022
https://www.aclweb.org/anthology/P12-1039

Neural Generation: Seq2seq RNNs

18NPFL123 L7 2025

target word embeddingssource “word” embeddings

token representation: embeddings
= vectors of ~100-1000 numbers

encoder outputs
– “hidden states”
(=again, vectors of numbers)

vocabulary is numbered

attention = weighted combination
(weights different for each step)

encoder decoder

probability distribution
over the whole vocabulary

cells: identical (compound) neural layers
input: prev. output + token embedding

(see NLU for RNN intro)

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473

http://arxiv.org/abs/1409.0473

Neural End-to-End NLG: RNNs

• Unlike previous, doesn’t need alignments
• no need to know which word/phrase corresponds to which slot

• 1st system: RNN language model conditioned on DA (~decoder only)
• input: binary-encoded DA

• 1 if intent/slot-value present, 0 if not

• delexicalized: much fewer values, shorter vector

• modified LSTM cells
• input DA passed in every time step

• generating delexicalized texts word-by-word
• i.e. decoder only

(Wen et al, 2015; 2016) http://aclweb.org/anthology/D15-1199 http://arxiv.org/abs/1603.01232

delexicalized (~generated templates)

after lexicalization (templates filled in)

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

dialogue act
binary representation

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

Seq2seq NLG with reranking (TGen)

• Encode DAs as sequences, apply standard RNN seq2seq
• encoder: triples <DA type, slot, value>

• decoder: words (possibly delexicalized)

• Beam search & reranking
• DA classification of outputs

• checking against input DA

NPFL123 L7 2025

attention model

encoder decoder

output beam

penalty: distance
from input DA

DA classifier

checking against
input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008

https://aclweb.org/anthology/P16-2008

• no RNN → parallel training → faster, allows larger models (more layers)

Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

21

no recurrent connections

attention over all of input

attention over all of input
& output generated so far (self-attention)

encoder decoder
positional encoding

(fixed / trained, indicate position in sentence)

feed-forward (fully connected) network
• ReLU activations
• tricks for better training
• (+normalization & bypass)

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762

uses more layers (“blocks”)
(6-100, only 2 pictured)

http://arxiv.org/abs/1706.03762

Transformer Decoders

• Prompting = force-decoding
• feed something into the decoder, don’t use its output

• Currently the prevailing approach

22NPFL123 L7 2025

= seq2seq with a decoder model only

Transformers & Pretrained Language Models

• Pretrained language models – on large data w/o annotation (self-supervised)

• guess masked word (encoder only: BERT)

• generate next word (decoder only: GPT-2)

• fix distorted sentences (both: BART, T5)

• Can be finetuned for your domain & task (just continue training)

• less data than w/o pretraining, extremely fluent

• i.e. finetune for MR → text, can learn implicit copying

• Lot of them released online, plug-and-play
• incl. multilingual versions (mBART, mT5)

23NPFL123 L7 2025 https://github.com/huggingface/transformers

(Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/

https://github.com/huggingface/transformers
https://aclanthology.org/2020.acl-main.703/

Large Language Models

• Transformer decoder models (slightly updated)

• Large (10-100B params, pretrained on trillions of words)

• Instruction tuning – finetune on problems & solutions

• Reinforcement learning from human feedback (RLHF)
1) generate lots of solutions for instructions

2) pay humans to rate them

3) learn a rating model (another LM: instruction + solution → score)

4) use rating model score as reward in RL

• main point: reward is global (not token-by-token) – RL-free alternatives exist

• somewhat safer (low reward for bad behavior)

• Can just use prompting, no need for finetuning (though you can still can)

• just feed in instructions/questions/example → LLM generates solution

24NPFL123 L7 2025

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1 https://huggingface.co/blog/rlhf

(Axelsson and Skantze, 2023) http://arxiv.org/abs/2307.07312

(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223

https://arxiv.org/abs/2109.01652
https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
https://huggingface.co/blog/rlhf
http://arxiv.org/abs/2307.07312
http://arxiv.org/abs/2303.18223

Problems with neural NLG

• Checking the semantics
• neural models tend to forget input / make up irrelevant stuff

• reranking / decoding changes work, but not perfectly

• Generally hard to control (especially LLMs)
• sensitive to prompts – prompt engineering may be required

• parsing replies “Sure, here’s the sentence you wanted…”

• Need quite a lot of data (except for LLMs with prompting)

• Diversity & complexity of outputs
• still can’t match humans

• needs specific tricks to improve this

• Still might be more hassle than writing up templates

25NPFL123 L7 2025

(Dušek et al., 2020)
http://arxiv.org/abs/1901.07931

(Kasner & Dušek, 2024)
https://aclanthology.org/2024.acl-long.651

http://arxiv.org/abs/1901.07931
https://aclanthology.org/2024.acl-long.651

Summary

Deep Reinforcement Learning
• same as plain RL – agent + states, actions, rewards – just 𝑄 or 𝜋 is a NN

• function approximation for 𝑄 – mean squared value error

• Deep Q Networks – Q learning where 𝑄 is a NN + tricks
• experience replay, target function freezing

• Policy networks – policy gradients where 𝜋 is a NN

Natural Language Generation
• steps: content planning, sentence planning, surface realization

• not all systems implement everything (content planning is DM’s job in DS)

• pipeline vs. end-to-end

• approaches: templates, grammars, statistical

• templates work great

• neural: RNN / Transformer, pretrained models, LLMs

26NPFL123 L7 2025

Thanks

Contact us:
 https://ufaldsg.slack.com/
 {odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
 Skype/Meet/Zoom (by agreement)

Get these slides here:

 http://ufal.cz/npfl123

References/Inspiration/Further:
• Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
• Karpathy (2016): Deep Reinforcement Learning – Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
• Deep RL for NLP tutorial: https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf
• Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602
• Mnih et al. (2015): Human-level control through deep reinforcement learning:

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf 27

Labs at 3:40pm in S1

https://ufaldsg.slack.com/
http://ufal.cz/npfl123
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book.html
http://ufal.mff.cuni.cz/courses/npfl122/
https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf
https://arxiv.org/abs/1312.5602
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

	Slide 1: NPFL123 Dialogue Systems 7. Neural Policies & Natural Language Generation
	Slide 2: Deep Reinforcement Learning
	Slide 3: Deep Q-Networks
	Slide 4: DQN tricks
	Slide 5: DQN algorithm
	Slide 6: DQN for Dialogue Systems
	Slide 7: Natural Language Generation
	Slide 8: NLG Use Cases
	Slide 9: NLG Subtasks (textbook pipeline)
	Slide 10: NLG Implementations
	Slide 11: NLG Basic Approaches
	Slide 12: Template-based NLG
	Slide 13: Grammar/Rules for Sentence Planning
	Slide 14: Grammar-based realizers
	Slide 15: Procedural realizers
	Slide 16: Trainable Realizers
	Slide 17: Non-Neural End-to-End NLG
	Slide 18: Neural Generation: Seq2seq RNNs
	Slide 19: Neural End-to-End NLG: RNNs
	Slide 20: Seq2seq NLG with reranking (TGen)
	Slide 21: Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)
	Slide 22: Transformer Decoders
	Slide 23: Transformers & Pretrained Language Models
	Slide 24: Large Language Models
	Slide 25: Problems with neural NLG
	Slide 26: Summary
	Slide 27: Thanks

