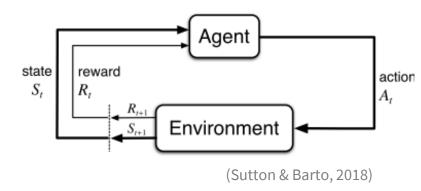
NPFL123 Dialogue Systems 7. Neural Policies & Natural Language Generation

https://ufal.cz/npfl123

Ondřej Dušek, Mateusz Lango, Ondřej Plátek & Jan Cuřín 3. 4. 2024

Deep Reinforcement Learning

- Exactly the same as "plain" RL
- "deep" = part of the agent is handled by a NN
 - value function (typically Q)
 - policy



- NN = parametric function approximation approach
 - NN → complex non-linear functions
 - REINFORCE / policy gradients: $\pi(a|s,\theta)$ works out of the box
 - value functions: using $V(s; \theta)$ or $Q(s, a; \theta)$, regression
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states
 - no more summary space ©

- Q-learning, where Q function is represented by a neural net
- "Usual" Q-learning doesn't converge well with NNs:
 - a) SGD is unstable
 - b) correlated samples (data is sequential)
 - c) TD updates aim at a moving target (using Q in computing updates to Q)
 - d) scale of rewards & Q values unknown \rightarrow numeric instability
- Fixes in DQN:
 - a) minibatches (updates by averaged n samples, not just one)
 - b) experience replay
 c) freezing target Q function
 d) clipping rewards

common NN tricks

DQN tricks ~ making it more like supervised learning

- Experience replay break correlated samples
 - run through some episodes (dialogues, games...)
 - store all tuples (s, a, r', s') in a buffer —
 - for training, don't update based on most recent moves use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

loss :=
$$\mathbb{E}_{(s,a,r',s')\in \text{buf}}\left[\left(r'+\gamma\max_{a'}Q\left(s',a';\overline{\boldsymbol{\theta}}\right)-Q(s,a;\boldsymbol{\theta})\right)^{2}\right]$$

Target Q function freezing

- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over

"have a fixed target, like in supervised learning"

"generate your own

'supervised' training data"

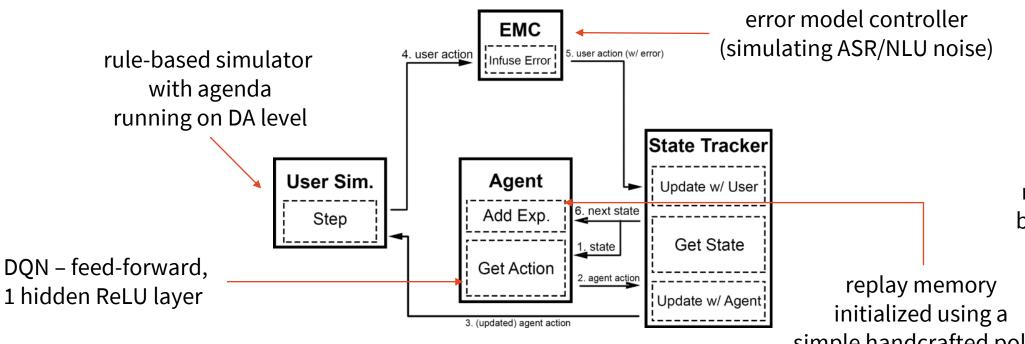
DQN algorithm

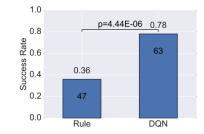
- initialize $\boldsymbol{\theta}$ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\boldsymbol{\theta})$)
- repeat over all episodes:
 - set initial state s
 - for all timesteps $t = 1 \dots T$ in the episode:
 - select action a_t from ϵ -greedy policy based on $Q(\theta)$
 - take a_t , observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D
 - sample a batch B of random (s, a, r', s')'s from D
 - sample a batch B of random (S, a, r', s') s from D• update θ using loss $\mathbb{E}_{(s,a,r',s')\in B}\left[\left(r'+\gamma\max_{a'}Q\left(s',a';\overline{\theta}\right)-Q(s,a;\theta\right)\right)^2\right]$ a. k. a. training (1 update)
 - once every λ steps (rarely):

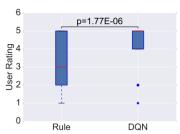
storing experience (1 step of Q-learning exploration)

update the frozen target function

- a simple DQN can drive a dialogue system's action selection
 - DQN is function approximation works fine for POMDPs
 - no summary space tricks needed here







movie ticket booking: better than rule-based

simple handcrafted policy

Natural Language Generation

- conversion of system action semantics → text (in our case)
- NLG output is well-defined, but input is not:
 - DAs
 - any other semantic formalism
 - database tables
 - raw data streams
 - user model
 e.g. "user wants short answers"
 - dialogue history ———— e.g. for referring expressions, avoiding repetition
- general NLG objective:
 - given input & communication goal
 - create accurate + natural, well-formed, human-like text
- additional NLG desired properties:
 - variation
 - simplicity
 - adaptability

can be any kind of knowledge representation

NLG Use Cases

dialogue systems

very different for task/non-task-oriented/QA systems

standalone

- data-to-text
- short text generation for web & apps
 - weather, sports reports
 - personalized letters
- creative generation (stories)

machine translation

- now mostly integrated end-to-end
- formerly not the case

summarization

NLG Subtasks (textbook pipeline)

Inputs

◆ Content/text/document planning

typically handled by dialogue manager in dialogue systems

deciding what to say

deciding

how to say it

- content selection according to communication goal
- basic structuring & ordering

Content plan

- **♦** Sentence planning/microplanning
 - aggregation (facts → sentences)
 - lexical choice
 - referring expressions

Sentence plan

e.g. restaurant vs. it

- ◆ Surface realization
 - linearization according to grammar
 - word order, morphology

Text

organizing content into sentences & merging simple sentences

this is needed for NLG in dialogue systems

NLG Implementations

Few systems implement the whole pipeline

- All stages: mostly domain-specific data-to-text, standalone
 - e.g. weather reports
- Dialogue systems: just sentence planning + realization
- Systems focused on content + sentence planning with trivial realization
 - frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
- Surface realization only
 - requires very detailed input
 - some systems: just ordering words

Pipeline vs. end-to-end approaches

- planning + realization in one go popular for neural approaches
- pipeline: simpler components, might be reusable (especially realizers)
- end-to-end: no error accumulation, no intermediate data structures

NLG Basic Approaches

canned text

- most trivial completely hand-written prompts, no variation
- doesn't scale (good for DTMF phone systems)

templates

- "fill in blanks" approach
- simple, but much more expressive covers most common domains nicely
- can scale if done right, still laborious
- most production dialogue systems

• grammars & rules

- grammars: mostly older research systems, realization
- rules: mostly content & sentence planning

machine learning

- modern research systems
- pre-neural attempts often combined with rules/grammar
- neural nets made it work much better

Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation


```
'iconfirm(to_stop={to_stop})&iconfirm(from_stop={from_stop})':
    "Alright, from {from_stop} to {to_stop},",

'iconfirm(to_stop={to_stop})&iconfirm(arrival_time_rel="{arrival_time_rel}")':
    "Alright, to {to_stop} in {arrival_time_rel},",

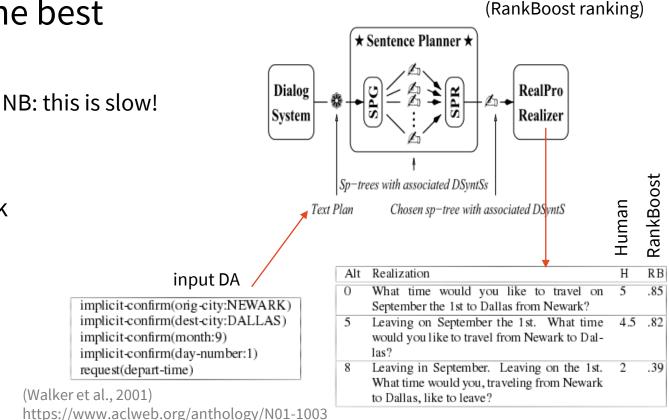
'iconfirm(arrival_time="{arrival_time}")':
    "You want to be there at {arrival_time},",

'iconfirm(arrival_time_rel="{arrival_time},",
```

"You want to get there in {arrival_time_rel},",

Grammar/Rules for Sentence Planning

- Handcrafted grammar/rules
 - input: base semantics (e.g. dialogue acts)
 - output: detailed sentence representation (=realizer inputs, see →)
- Statistical enhancements: generate more options & choose the best
 - generate multiple outputs
 - underspecified grammar
 - rules with multiple options...
 - choose the best one
 - train just the selection learning to rank
 - any supervised approach possible
 e.g. "best" = 1, "not best" = 0



SpoT trainable planner

Grammar-based realizers

- Various grammar formalisms
 - production / unification rules in the grammar
 - lexicons to go with it
 - expect very detailed input (sentence plans)
- typically general-domain, reusable
 - **KPML** multilingual
 - systemic functional grammar
 - FUF/SURGE English
 - functional unification grammar
 - OpenCCG English
 - combinatory categorial grammar

KPML input for *A dog is in the park*.

FUF/SURGE input for She hands the draft to the editor

```
\begin{bmatrix} cat & clause \\ process & \begin{bmatrix} type & composite \\ relation & possessive \\ lex & "hand" \end{bmatrix} \\ & \begin{bmatrix} agent & \begin{bmatrix} cat & pers\_pro \\ gender & feminine \end{bmatrix} \\ affected & \boxed{1} \begin{bmatrix} cat & np \\ lex & "editor" \end{bmatrix} \\ possessor & \boxed{1} \\ possessed & \begin{bmatrix} cat & np \\ lex & "draft" \end{bmatrix} \end{bmatrix} \end{bmatrix}
```

OpenCCG input for *The cheapest flight is on Ryanair*

```
be [tense=pres info=rh id=n1]

<Arg> flight [num=sg det=the info=th id=f2]

<HasProp> cheapest [kon=+ id=n2]

<Prop> has-rel [id=n3]

<Of> f2

<Airline> Ryanair [kon=+ id=n4]
```

- **SimpleNLG** no grammar, code to build sentence
 - "do-it-yourself" style only cares about the grammar
 - system then linearizes
 - built for English, ports to other languages available
- RealPro (Meaning-Text-Theory)
 - deep syntax/semantics → surface syntax → morphology

• **Treex** (Functional Generative Description)

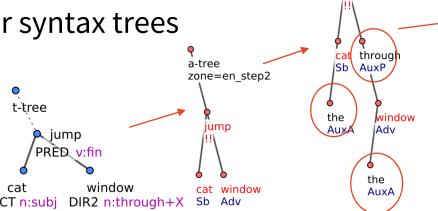
deep syntax → surface syntax
 → morphology, linearization

Perl code operating over syntax trees

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596

(Popel & Žabokrtský 2010; Dušek et al., 2015)
https://ufal.mff.cuni.cz/~popel/papers/2010 icetal.pdf
https://www.aclweb.org/anthology/W15-3009



a-tree

zone=en step4

```
Lexicon lexicon = new XMLLexicon("my-lexicon.xml");
NLGFactory nlgFactory = new NLGFactory(lexicon);
Realiser realiser = new Realiser(lexicon);

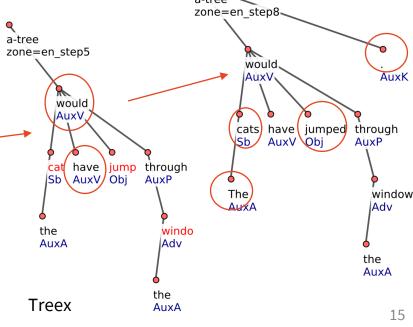
SPhraseSpec p = nlgFactory.createClause();

p.setSubject("Mary");
p.setVerb("chase");
p.setObject("the monkey");

p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.
```



Trainable Realizers

Overgenerate & Rerank

- same approach as for sentence planning
- assuming a flexible handcrafted realizer (e.g., OpenCCG)
- underspecified input → more outputs possible ← the grammar may be smaller

this means

- generate more & use statistical reranker, based on:
 - n-gram language models

 NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
 HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
 - Tree language models FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
 - expected text-to-speech output quality (Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140
 - personality traits & alignment/entrainment CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405
- more variance, but at computational cost

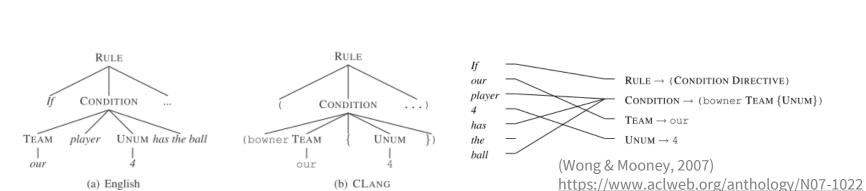
Grammar/Procedural-based

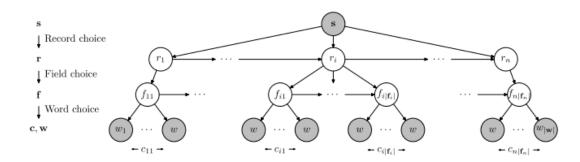
• same as RealPro or TectoMT, but predict each step using a classifier

StuMaBa (Bohnet et al., 2010) https://www.aclweb.org/anthology/C10-1012

Non-Neural End-to-End NLG

- NLG as language models
 - hierarchy of language models (HMM/MEMM/CRF style)
 - DA → slot → word level
- NLG using context-free grammars
 - a) "language models" by probabilistic CFGs
 - approximate search for best CFG derivation
 - b) synchronous PCFGs MRs & text
 - "translation" with hierarchical phrase-based system
 - parsing MR & generating text





(Oh & Rudnicky, 2002) (Angeli et al., 2010) (Liang et al., 2009) (Mairesse et al., 2010)

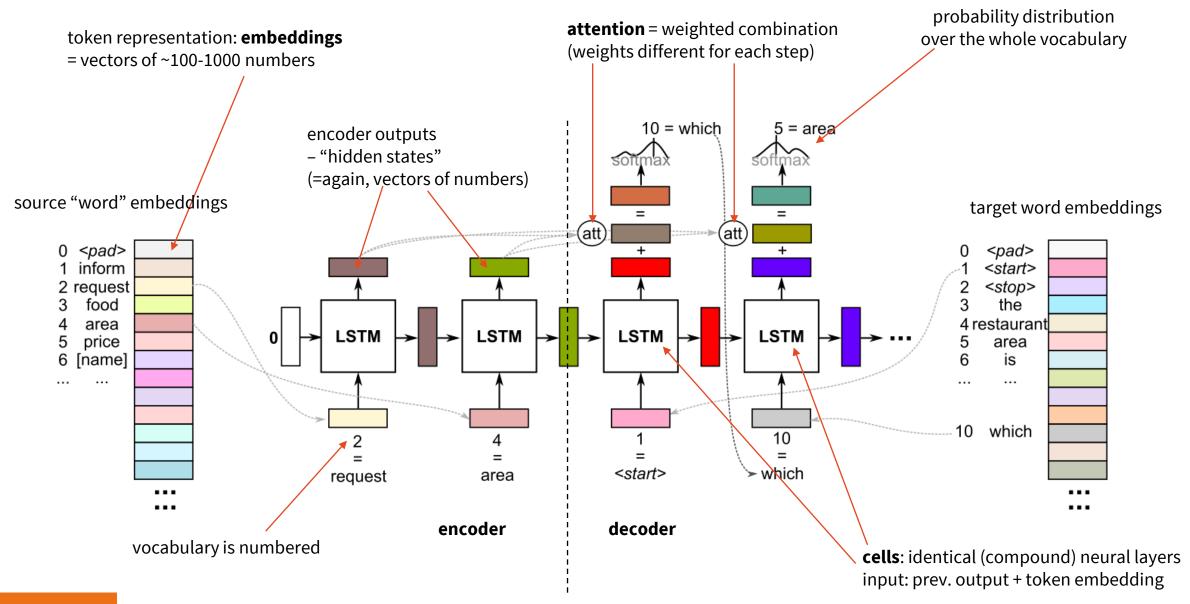
https://doi.org/10.1016/S0885-2308(02)00012-8 https://www.aclweb.org/anthology/D10-1049 https://www.aclweb.org/anthology/P09-1011 https://www.aclweb.org/anthology/P10-1157 (Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003

> prob./parameter rule

rule	prob./parame
1. $S \rightarrow R(start)$	[Pr=1]
2. $R(r_i.t) \rightarrow FS(r_j, start) R(r_j.t)$	$[P(r_j.t r_i.t) \cdot \lambda]$
3. $R(r_i.t) \rightarrow FS(r_j, start)$	$[P(r_j.t r_i.t) \cdot \lambda]$
4. $FS(r, r, f_i) \rightarrow F(r, r, f_j) FS(r, r, f_j)$	$[P(f_j f_i)]$
5. $FS(r, r, f_i) \rightarrow F(r, r, f_j)$	$[P(f_j f_i)]$
6. $F(r,r,f) \rightarrow W(r,r,f) F(r,r,f)$	$[P(w w_{-1}, r, r, f)]$
7. $F(r,r,f) \rightarrow W(r,r,f)$	$[P(w w_{-1}, r, r, f)]$
8. $W(r,r,f) \rightarrow \alpha$	$P(\alpha r, r, f, f, t, f, v)]$
9. $W(r,r,f) \rightarrow g(f,v)$ [P(g(f,v).mode]	[r, r, f, f, t = int]

(Konstas & Lapata, 2012) https://www.aclweb.org/anthology/P12-1039

Neural Generation: Seq2seq RNNs (see NLU for RNN intro)



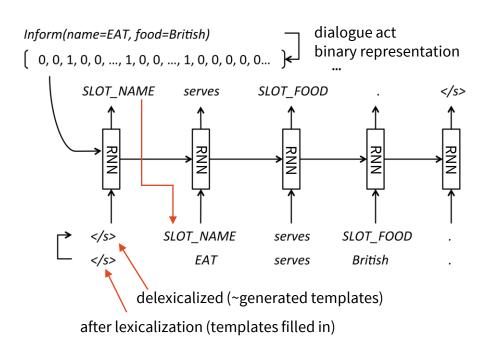
Neural End-to-End NLG: RNNs

- Unlike previous, doesn't need alignments
 - no need to know which word/phrase corresponds to which slot

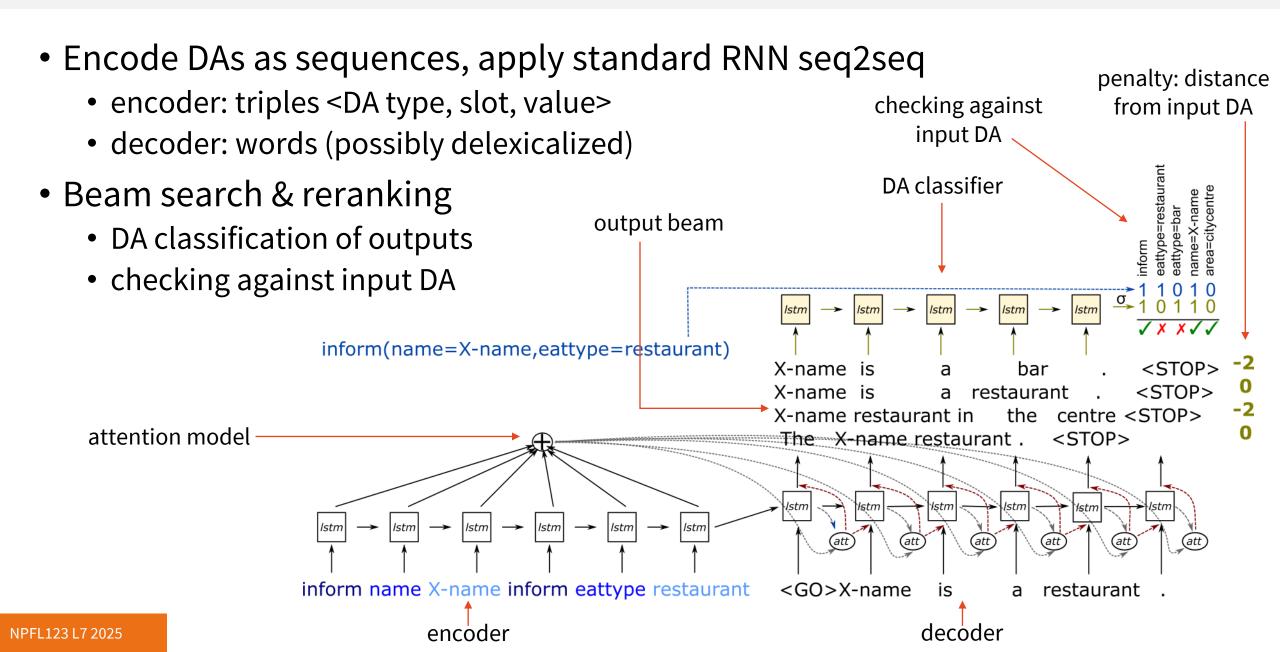
name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

- 1st system: RNN language model conditioned on DA (~decoder only)
 - input: binary-encoded DA
 - 1 if intent/slot-value present, 0 if not
 - delexicalized: much fewer values, shorter vector
 - modified LSTM cells
 - input DA passed in every time step
 - generating delexicalized texts word-by-word
 - i.e. decoder only

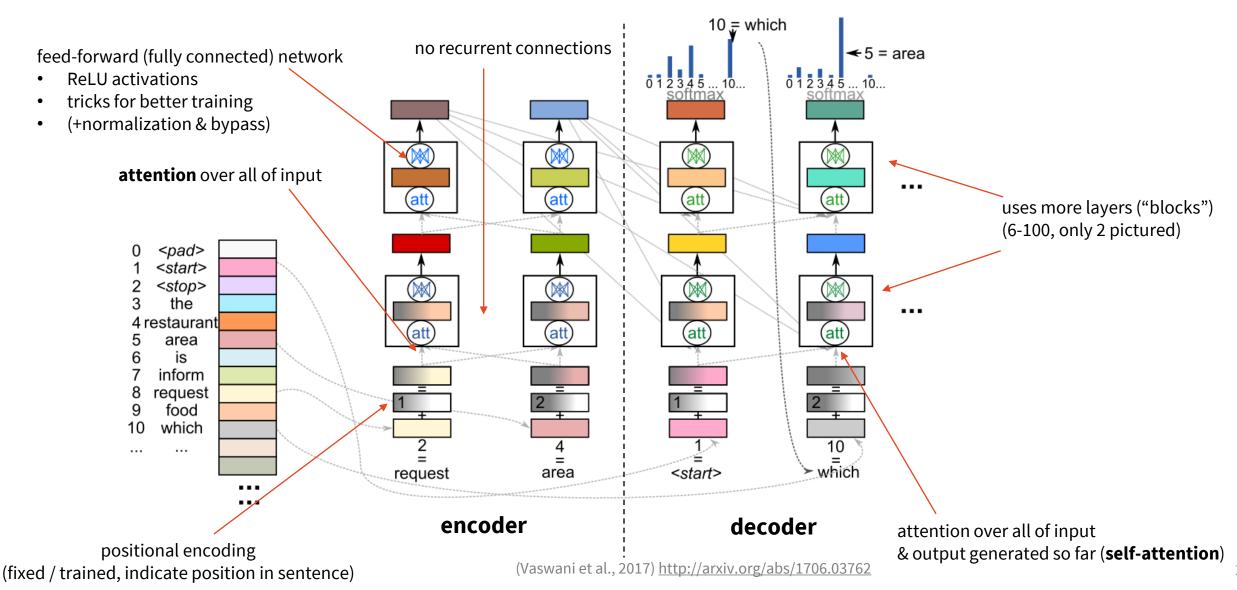


Seq2seq NLG with reranking (TGen)



Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

no RNN → parallel training → faster, allows larger models (more layers)



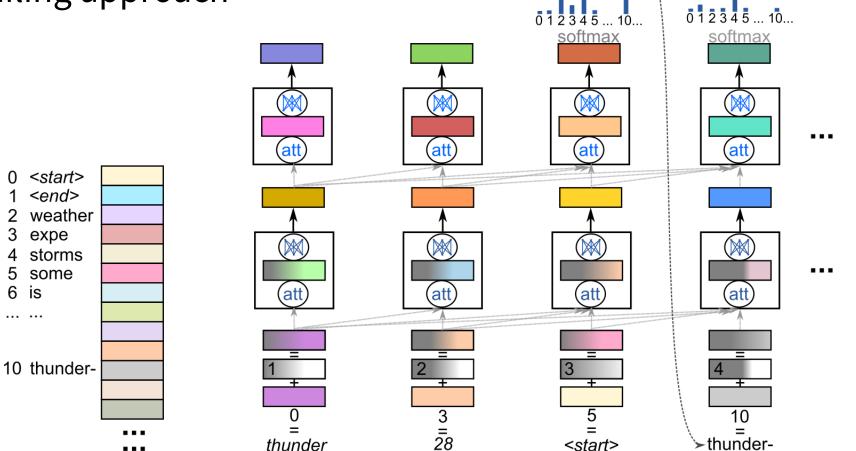
Transformer Decoders = seq2seq with a decoder model only

is

Prompting = force-decoding

• feed something into the decoder, don't use its output

Currently the prevailing approach

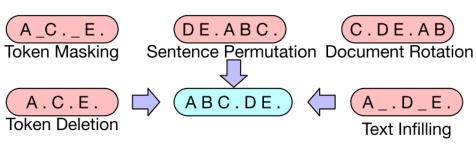


10 = thunder-

-12 = storms

Transformers & Pretrained Language Models

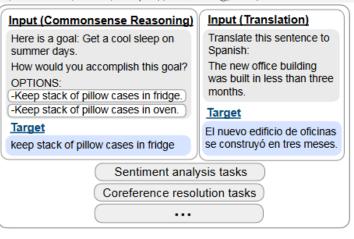
- Pretrained language models on large data w/o annotation (self-supervised)
 - guess masked word (encoder only: BERT)
 - generate next word (decoder only: **GPT-2**)
 - fix distorted sentences (both: **BART**, **T5**)



(Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/

- Can be finetuned for your domain & task (just continue training)
 - less data than w/o pretraining, extremely fluent
 - i.e. finetune for MR → text, can learn implicit copying
- Lot of them released online, plug-and-play
 - incl. multilingual versions (mBART, mT5)

- Transformer decoder models (slightly updated)
- Large (10-100B params, pretrained on trillions of words)
- Instruction tuning finetune on problems & solutions
- Reinforcement learning from human feedback (**RLHF**)
 - 1) generate lots of solutions for instructions
 - 2) pay humans to rate them
 - 3) learn a rating model (another LM: instruction + solution → score)
 - 4) use rating model score as reward in RL
 - main point: reward is global (not token-by-token) RL-free alternatives exist
 - somewhat safer (low reward for bad behavior)
- Can just use prompting, no need for finetuning (though you can still can)
 - just feed in instructions/questions/example → LLM generates solution



- Checking the semantics
 - neural models tend to forget input / make up irrelevant stuff
 - reranking / decoding changes work, but not perfectly
- Generally hard to control (especially LLMs)
 - sensitive to prompts prompt engineering may be required
 - parsing replies "Sure, here's the sentence you wanted..."
- Need quite a lot of data (except for LLMs with prompting)
- Diversity & complexity of outputs
 - still can't match humans
 - needs specific tricks to improve this
- Still might be more hassle than writing up templates

(Kasner & Dušek, 2024) https://aclanthology.org/2024.acl-long.651

Summary

Deep Reinforcement Learning

- same as plain RL agent + states, actions, rewards just Q or π is a NN
- function approximation for Q mean squared value error
- **Deep Q Networks** Q learning where Q is a NN + tricks
 - experience replay, target function freezing
- **Policy networks** policy gradients where π is a NN

Natural Language Generation

- steps: content planning, sentence planning, surface realization
 - not all systems implement everything (content planning is DM's job in DS)
 - pipeline vs. end-to-end
- approaches: templates, grammars, statistical
- templates work great
- neural: RNN / Transformer, pretrained models, LLMs

NPFL123 L7 2025 26

Thanks

Contact us:

Labs at 3:40pm in S1

https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
- Karpathy (2016): Deep Reinforcement Learning Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
- David Silver's course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
- Milan Straka's course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
- Deep RL for NLP tutorial: https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf
- Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602
- Mnih et al. (2015): Human-level control through deep reinforcement learning: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
- Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation http://arxiv.org/abs/1703.09902
- My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf