NPFL123 Dialogue Systems

11. Text-to-Speech Synthesis

https://ufal.cz/npfl123

Ondřej Dušek, Simone Balloccu, Mateusz Lango, Kristýna Klesnilová & Jan Cuřín

15. 5. 2024
Text-to-speech synthesis

• Last step in voice-based DS pipeline
 • from NLG (system utterance text)
 • to the user (audio waveform)
• Needed for all but the simplest DSs
• Sequence-to-sequence conversion
 • from discrete symbols (letters)
 • to continuous time series (audio waves)
 • regression problem
 • mimicking human articulation in some way
• Typically a 2-step pipeline:
 • text analysis (frontend) – converting written to phonetic representation
 • waveform synthesis (backend) – phonemes to audio

(from Pierre Lison's slides)
Human articulatory process

- text (concept) → movement of muscles → air movement (sound)
- source excitation signal = air flow from lungs
 - vocal cords resonance
 - base frequency (F0)
 - upper harmonic frequencies
 - turbulent noise
- frequency characteristics moderated by **vocal tract**
 - shape of vocal tract changes (tongue, soft palate, lip, jaw positions)
 - some frequencies resonate
 - some suppressed
• **phone/sound** – any distinct speech sound

• **phoneme** – sound that distinguishes meaning
 • changing it for another would change meaning (e.g. *dog* → *fog*)

• **vowel** – sound produced with open vocal tract
 • typically **voiced** (=vocal chords vibrate)
 • quality of vowels depends mainly on vocal tract shape

• **consonant** – sound produced with (partially) closed vocal tract
 • voiced/voiceless (often come in pairs, e.g. *[p] – [b]*)
 • quality also depends on type + position of closing
 • stops/plosives = total closing + “explosive” release (*[p], [d], [k]*)
 • nasals = stops with open nasal cavity (*[n], [m]*)
 • fricatives = partial closing (induces friction – hiss: *[f], [s], [z]*)
 • approximants = movement towards partial closing & back, half-vowels (*[w], [j]*)
Sounds of Speech

- Word examples according to Received Pronunciation (“Queen’s English”), these vary across dialects
- More vowels: diphthongs (changing jaw/tongue position, e.g. [ei] wait, [əʊ] show)

http://www.ipachart.com/
(clickable with sounds!)
Spectrum

• speech = compound wave
 • different frequencies (spectrum)
 • shows in a spectrogram
 • frequency – time – loudness
• base vocal cord frequency F_0
 • present in voiced/vocals
 • absent in voiceless
• formants = loud upper harmonics
 • of base vocal cord frequency
 • F_1, F_2 – 1st, 2nd formant
 • distinctive for vowels
• noise – broad spectrum
 • consonants (typical for fricatives)
https://www.englishspeechservices.com/blog/the-vowel-space/
https://youtu.be/FdldD0-kEcc (more insight on vowels & formants!)
https://en.wikipedia.org/wiki/Spectrogram
From sounds to utterances

• phones group into:
 • **syllables** – minimal pronounceable units
 • **stress units** (~ words) – group of syllables with 1 stressed
 • **prosodic/intonation units** (~ phrases)
 • independent prosody (single prosodoc/pitch contour)
 • tend to be separated by pauses
 • utterances (~ sentences, but can be longer)

• neighbouring phones influence each other a lot!
• **stress** – changes in timing/F0 pitch/intensity (loudness)
• **prosody/melody** – F0 pitch
 • sentence meaning: question/statement
 • tonal languages: syllable melody distinguishes meaning

https://en.wikipedia.org/wiki/Prosodic_unit
TTS Prehistory

• 1\(^{\text{st}}\) mechanical speech production system
 • Wolfgang von Kempelen’s speaking machine (1790’s)
 • model of vocal tract, manually operated
 • (partially) capable of monotonous speech

• 1\(^{\text{st}}\) electric system – Voder
 • Bell labs 1930, operated by keyboard (very hard!)
 • pitch control

• 1\(^{\text{st}}\) computer TTS systems – since 1960’s
• Production systems – since 1980’s (→)

(Lemmetty, 1999)
https://en.wikipedia.org/wiki/Voder
https://youtu.be/TsdOej_nC1M?t=36

Fig. 8—Schematic circuit of the voder.
TTS pipeline

- frontend & backend, frontend composed of more sub-steps
 - frontend typically language dependent, but independent of backend

(from Heiga Zen’s slides)
Segmentation & normalization

• remove anything not to be synthesized
 • e.g. HTML markup, escape sequences, irregular characters

• segment sentences

• segment words (Chinese, Japanese, Korean scripts)

• spell out:
 • abbreviations (context sensitive!)
 • dates, times
 • numbers (ordinal vs. cardinal, postal codes, phone numbers…)
 • symbols (currency, math…)

• all typically rule-based

 Tue Apr 5 → Tuesday April fifth
 € 520 → five hundred and twenty euros

 432 Dr King Dr → four three two doctor king drive
 1 oz → one ounce
 16 oz → sixteen ounces
Grapheme-to-Phoneme Conversion

• main approaches: pronouncing dictionaries + rules
 • rules good for languages with regular orthography (Czech, German, Dutch)
 • dictionaries good for irregular/historical orthography (English, French)
 • typically it’s a combination anyway
 • rules = fallback for out-of-vocabulary items
 • dictionary overrides for rules (e.g. foreign words)
 • can be a pain in a domain with a lot of foreign names
 • you might need to build your own dictionary (even with a 3rd-party TTS)

• phonemes typically coded using ASCII (SAMPA, ARPABET…)

• pronunciation is sometimes context dependent
 • part-of-speech tagging
 • contextual rules
 - record (NN) = ['ɹɛkoːd] read (VB) = ['ɹiːd]
 - record (VB) = ['ɹɪ'kə:d] read (VBD) = ['ɹɛd]

the oak = [ðiː'əʊk]
the one = [ðə'wʌn]
Intonation/stress generation

- rules/statistical
 - predicting intensity, F0 pitch, speed, pauses
 - stress units, prosody units
 - language dependent
 - traditionally: classification – bins/F0 change rules
- based on:
 - punctuation (e.g. “?”)
 - chunking (splitting into intonation units)
 - words (stressed syllables)
 - part-of-speech tags (some parts-of-speech more likely to be stressed)
 - syntactic parsing
SSML (Speech Synthesis Markup Language)

- manually controlling pronunciation/prosody for a TTS
 - must be supported by a particular TTS
 - e.g. Alexa supports this (a lot of other vendors, too)

- XML-based markup:
 - `<break>`
 - `<emphasis level="strong">`
 - `<lang>`
 - `<phoneme alphabet="ipa" ph="ˈbɑ.təl">`
 - `<prosody rate="slow">`, `<prosody pitch="+15.4\%">`, `<prosody volume="x-loud">`
 - `<say-as interpret-as="digits">` (date, fraction, address, interjection…)
 - `_{subsit}` (abbreviations)
 - `<voice>`
 - `<w role="amazon:VBD">read</w>` (force part-of-speech)

Waveform Synthesis

- many different methods possible
- **formant-based** (~1960-1980’s)
 - rule-based production of formants & other components of the wave
- **concatenative** (~1960’s-now)
 - copy & paste on human recordings
- **parametric** – model-based (2000’s-now)
 - similar to formant-based, but learned from recordings
 - HMMs – dominant approach in the 2000’s
 - NNs – can replace HMMs, more flexible
- NN-based **end-to-end methods**
 - now state-of-the-art
Formant-based Synthesis

- early systems
- based on careful handcrafted analysis of recordings
 - “manual” system training
 - very long evolution – DECTalk took ~20 years to production
 - barely intelligible at first
- rules for composing the output sound waves
 - based on formants resonators + additional components
 - rules for sound combinations (e.g. “b before back rounded vowels”)
 - rules for suprasegmentals – pitch, loudness etc.
- results not very natural, but very intelligible in the end
- very low hardware footprint

[Graph showing frequency vs. time for different sounds]

(Klatt, 1987)

Holmes et al., 1964

http://www.festvox.org/history/klatt.html (examples 17 & 35)

DECTalk, 1986
Concatenative Synthesis

- Cut & paste on recordings
 - can’t use words or syllables – there are too many (100k’s / 10k)
 - can’t use phonemes (only ~50!) – too much variation
 - coarticulation – each sound is heavily influenced by its neighbourhood
- using **diphones** = 2\(^{nd}\) half of one phoneme & 1\(^{st}\) half of another
 - about 1,500 diphones in English – manageable
 - this eliminates the heaviest coarticulation problems (but not all)
 - still artefacts at diphone boundaries
- smoothing/overlay & F0 adjustments
 - over-smoothing makes the sound robotic
 - pitch adjustments limited – don’t sound natural
- needs lots of recordings of a single person
- diphone representations: formants, LPC, waveform

http://www.festvox.org/history/klatt.html (examples 18 & 22)
https://www.ims.uni-stuttart.de/institut/mitarbeiter/moehler/synthspeech/ (Festival English diphone example, MBROLA British English example)

Olive (1977)
LPC diphones

Dixon & Maxey (1968)
formant diphones

MBROLA (1996)
http://tcts.fpms.ac.be/synthesis/
Unit-selection Concatenative Synthesis

• using more instances of each diphone
 • minimize the smoothing & adjustments needed

• selecting units that best match the target position
 • match target pitch, loudness etc. (specification s_t) – **target cost** $T(u_t, s_t)$
 • match neighbouring units – **join cost** $J(u_t, u_{t+1})$
 • looking for best sequence $\widehat{U} = \{u_1, ..., u_n\}$, so that:

$$\widehat{U} = \arg \min_U \sum_{t=1}^{n} T(u_t, s_t) + \sum_{t=1}^{n-1} J(u_t, u_{t+1})$$

• solution: **Viterbi search**
 • leads to joins of stuff that was recorded together

• a lot of production systems use this
 • still state-of-the-art for some languages
 • but it’s not very flexible, requires a lot of single-person data to sound good
Model-based Parametric Synthesis

- trying to be more flexible, less resource-hungry than unit selection
- similar approach to formant-based – modelling
 - but this time learned statistically from a corpus
- inverse of model-based ASR (next lecture)
- ideal: model $p(x|w, X, W)$
 - auxiliary representations – features
 - approximate by step-by-step maximization:
 - extract features from corpus (acoustic, linguistic)
 - learn model based on features
 - predict features given text (linguistic, then acoustic)
 - synthesize given features
Features for model-based synthesis

• Acoustics: piecewise stationary source-filter model
 • spectrum (filter/resonance frequencies): typically MFCCs, Δ, ΔΔ
 • excitation (sound source): voiced/unvoiced, log F0, Δ, ΔΔ

• Linguistics:
 • phonemes
 • stress
 • pitch

(from Heiga Zen's slides)

(Tokuda et al., 2013)

(from Pierre Lison's slides)
HMM-based Synthesis

- Using HMMs as the speech model
- Context-dependent phoneme-level HMMs
 - concatenated into a big utterance-level HMM
 - transition & emission probabilities
 - multivariate Gaussian distributions
 - loops – handling different phoneme lengths
- Too many possible contexts → use decision-tree-based clustering
 - ~10M possible context combinations
 - regression trees (outputs = real-valued Gaussian parameters)
- Generating from this would result in step-wise sequence
 - sample from each Gaussian, wait a few ms, sample…
 - → this is where $\Delta, \Delta\Delta$ are used

(from Heiga Zen's slides)
HMM-based Synthesis

• Pros vs. concatenative:
 • small data footprint
 • robust to data sparsity
 • flexible – can change voice characteristics easily

• Con:
 • lowered segmental naturalness

FLite/HTS
(Various settings)

http://flite-hts-engine.sp.nitech.ac.jp/index.php

MARY TTS
HSMM-based

http://mary.dfki.de/

(Tokuda et al., 2013)
NN-based synthesis

- Replacing clunky HMMs and decision trees with NNs
- Basic – feed forward networks
 - predict conditional expectation of acoustic features given linguistic features at current frame
 - trained based on mean squared error
- Improvement – RNNs
 - same, but conditioned on current & previous frames
 - predicts smoother outputs (given temporal dependencies)
- NNs allow better features (e.g. raw spectrum)
 - more data-efficient than HMMs
- This is current production quality TTS

(from Heiga Zen’s slides)

Google LSTM parametric

IBM Watson DNN

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://text-to-speech-demo.ng.bluemix.net/
WaveNet

- Removing acoustic features – direct waveform generation
 - no need for spectrum
- Based on convolutional NNs
 - 16k steps/sec → need very long dependencies
 - dilated convolution – skipping steps
 - exponential receptive field w.r.t. # of layers
 - conditioned on linguistic features
 - predicting quantized waves using softmax
- Not tied to ±stationary frames
 - can generate highly non-linear waves
- Very natural, Google’s top offering now

(by van den Oord et al., 2016)
https://arxiv.org/abs/1609.03499
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

(npfl123 L11 2024)
Tacotron

• Different approach: removing linguistic features
 • trained directly from pairs of waveforms & transcriptions
 • generates spectrograms (at frame level)
 • T1 – linear: Griffin-Lim conversion (estimate missing wave phase)
 • T2 – mel scale: needs something better, such as WaveNet, better quality

• Based on seq2seq models with attention
 • adapted – just LSTMs don’t work well
 • T2 – encoder: convolutional + LSTM
 • T2 – decoder:
 • linear pre-net (scaling down previous spectrum)
 • LSTM + attention
 • stop classification
 • post-net – convolutions: produce spectrum
 • T1: similar, more complex (custom layers)

(Wang et al., 2017)
https://arxiv.org/abs/1703.10135
https://google.github.io/tacotron/

(Shen et al., 2018)
http://arxiv.org/abs/1712.05884
 Extensions: Faster, Multilingual

• Faster: All convolutional (no RNNs)
 • predicting mel spectrograms
 • encode phonemes
 • predict duration (\(k\) frames)
 • copy encodings \(k\) times & decode

• Multilingual: Meta-learning
 • predict network parameters for each language with a smaller network
 • added speaker ID – multi-speaker
 • consistent voice with multiple languages

https://github.com/janvainer/speedyspeech

https://github.com/Tomiinek/Multilingual_Text_to_Speech
Current works

- Unseen languages (Saeki et al., 2023) http://arxiv.org/abs/2301.12596
- Personality match (Gao et al., 2023) https://aclanthology.org/2023.sigdial-1.36
- Singing https://en.wikipedia.org/wiki/Suno_AI ...
- Speech-to-speech, multimodal models https://ai.meta.com/blog/seamless-m4t/ https://openai.com/index/hello-gpt-4o/ ...
• Speech production
 • “source-filter”: air + vocal cords vibration + resonation in vocal tract
 • sounds/phones, phonemes
 • consonants & vocals
 • spectrum, formants
 • pitch, stress

• Text-to-speech system architectures
 • rule/formant-based
 • concatenative – diphone, unit selection
 • model-based parametric: HMM, NNs
 • end-to-end neural: WaveNet, Tacotron (&similar)
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
• Pierre Lison’s slides (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
• Heiga Zen’s lecture (ASRU 2015): https://ai.google/research/pubs/pub44630