NPFL123 Dialogue Systems 10. Speech Recognition

https://ufal.cz/npfl123

Ondřej Dušek, Simone Balloccu, Mateusz Lango, Kristýna Klesnilová & Jan Cuřín

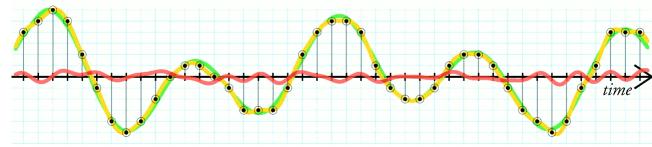
loosely based on earlier slides by Petr Fousek, Pavel Květoň, Michal Jůza

25, 4, 2024

Speech recognition

- Task: convert audio (sound wave) → text
 - generally just words, no punctuation or capitalization used
- Audio: waveform
 - wave position in time (samples)
 - 8 kHz 44 kHz frequency (telephone → CD quality)
 - 8-16 kHz mostly used for speech
 - quantized (=8-bit/16-bit number)
 - lot more than just words:
 - speaker identity (age, gender, dialect, speech defects), emotional state (pitch, loudness, health)
 - environment, noise (reverb, distance, channel effects)
- ASR is basically very harsh lossy compression
 - from ~ 64 kbps (8 kHz, 8-bit) to ~ 50 bps (text)
 - for context, low-bitrate audio codecs are ~ 500 bps at least

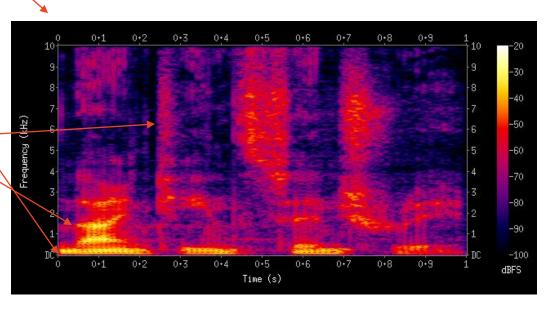
original signal quantized signal quantization noise



https://en.wikipedia.org/wiki/Quantization %28signal processing%29

Speech

- composed of phones (distinct sounds) / phonemes (meaning-distinguishing)
 - phones are realizations of phonemes
 - different phonemes: cat vs. bat, phones: the same [k] in cat said twice
- compound sound wave, composed of many frequencies
 - **spectrogram** frequency-time-loudness graph
 - F0 vocal cord frequency (voice pitch)
 - formants loud multiples of F0 (distinct for different phonemes)
 - **noise** broad sound spectrum

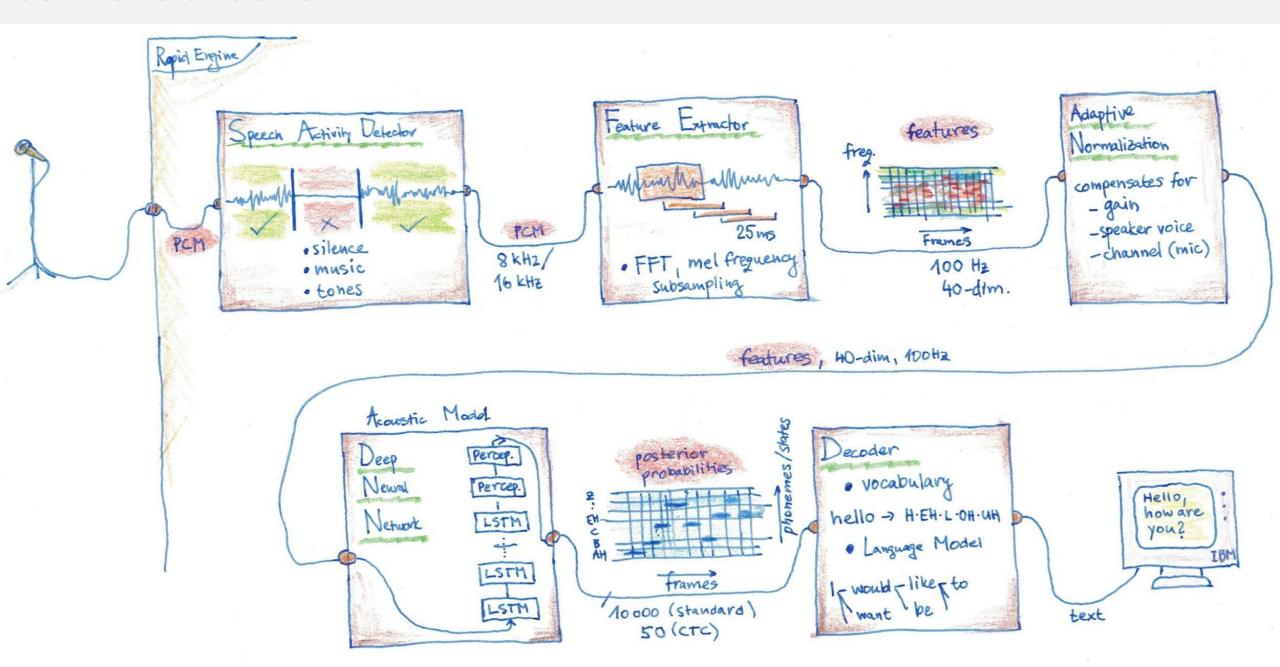


NPFL123 L10 2024 3

ASR History

- First commercial success in "ASR": Radio Rex (1920)
 - spring triggered by 500 Hz audio (~F1 formant of [ε] in "Rex")
- 1950'-60's rule-based formant detection
 - digit recognition, isolated words
- 1970's first statistical modelling, HMMs
- 1980's larger models, adding language models
- 1990's ~ first practically usable, large-vocab, continuous speech
- 2000's early neural approaches
- late 2010's fully neural, end-to-end ASR

Conventional ASR

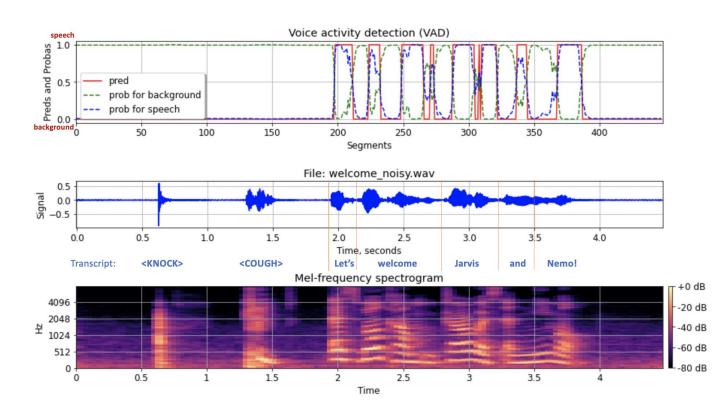


Speech Activity Detector

Preprocessing step in ASR

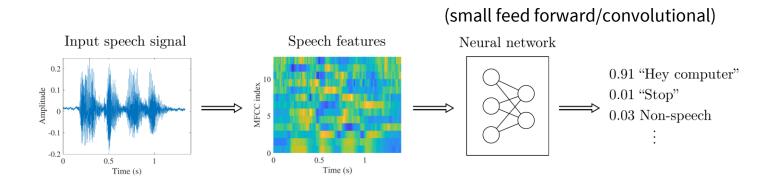
- Save CPU: run ASR only when there is speech
- Avoid confusing ASR with non-speech sounds
- Handcrafted (now obsolete)
 - Track signal amplitude contours
 - Simple, for low-resource tasks, assumes low noise

- Trained on large corpora to tell speech from other sounds binary classifier
- Input features same as ASR $(\rightarrow \rightarrow)$
- Accurate but more CPU-demanding
- basic smoothing needs to be applied



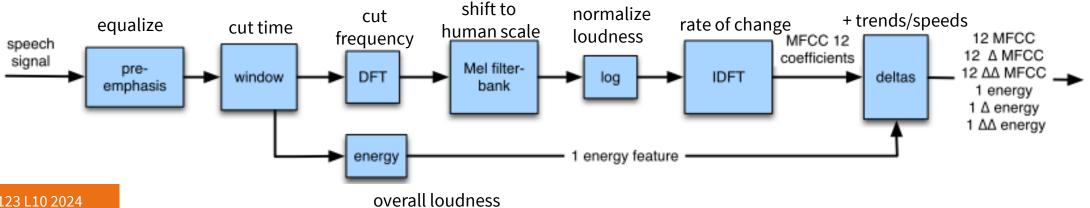
Wake words

- trigger to "start listening" (i.e. run full-scale ASR)
- simpler & more precise than VAD detecting specific wake word
 - OK Google, Alexa, Hey Siri
 - simpler than to recognize that user is speaking to the system
 - simpler to distinguish from background noise
- basically a small-vocabulary ASR problem
 - ASR system running continuously
 - low-power, low-accuracy, but good enough for wake word

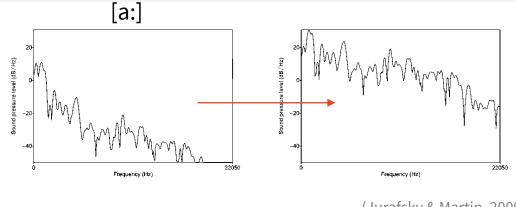


Features for ASR - Preprocessing

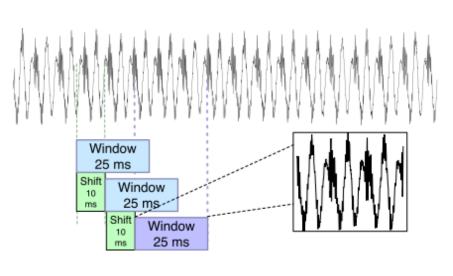
- In: Raw waveform ~ 1 number per 0.125 ms (8 kHz)
 - current pos. of the sound wave (~continuous) sample, 8-bit/16-bit quantized
- Out: Mel Frequency Cepstral Coefficients ~ 40 features per 10 ms
 - step-wise (~discrete), dissected to frequency loudness & trends
- Inspired by humans:
 - information for 1 phone spans 250-400ms (coarticulation)
 - need to follow at least 4-7 freq. channels for intelligibility (10+ for better fidelity)
 - speech ~ 2-10 phones/sec (peak 4), auditory cortex reaction ~ 2-20 Hz

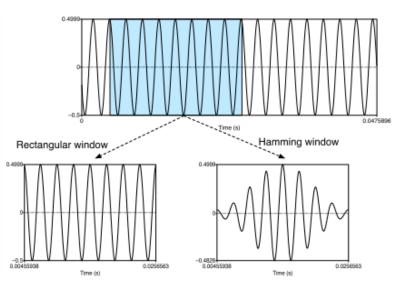


- Preemphasis
 - boost higher frequencies (equalization)
- Windowing ~ frames
 - sliding: 25 ms / each 10 ms overlapping
 - Hamming window middle is emphasized
- Energy = overall loudness $(+\Delta, \Delta\Delta)$

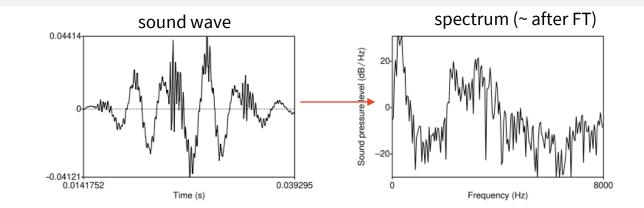


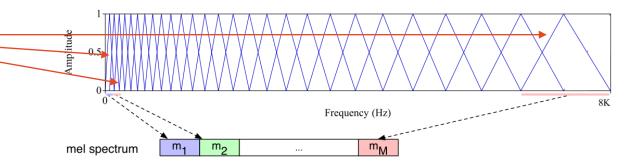
(Jurafsky & Martin, 2009)

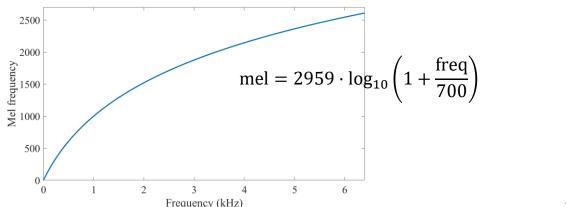




- Spectrum Fourier transform
 - loudness at different frequencies
- Mel bank filter
 - loudness at ~12-16 mel banks (i.e. frequency ranges)
 - using triangular frequency filters (sum everything within the filter)
 - ranges equal on mel scale (get wider in terms of normal frequency)
 - mel scale logarithmic
 - corresponds to human perception of pitch







wave

spectrum

log spectrum

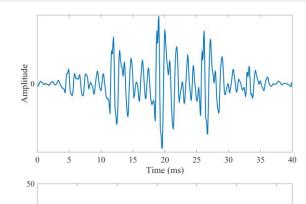
- Logarithmic volume
 - ~human-like, robust to loudness variation
- Cepstrum another (inverse) Fourier transform
 - ~ "spectrum of log spectrum"
 - "rate of change in various spectral bands"
 - decorrelated (unlike filterbanks, which are overlapping)
 - slow changes relevant to phones
 - ~ formants, other properties
 - usual speech: 2-10 phones per sec.
 - ~ only keep coeffs 2-13 (or thereabouts)
 - high range harmonics (F0)
- Δ , $\Delta\Delta$: (× 3 features) trends, speed of trends

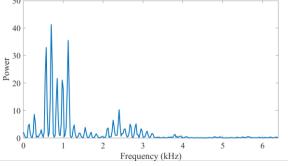
info about slowly changing

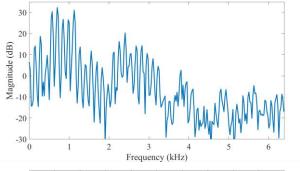
features of log spectrum

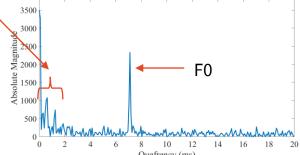
~ formants

cepstrum





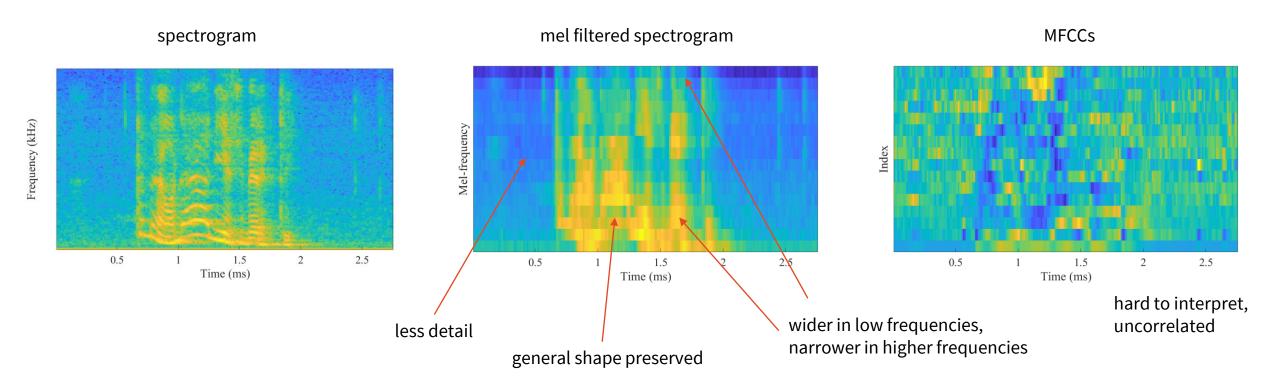




https://medium.com/@derutycsl/intuitive-understanding-of-mfccs-836d36a1f779

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC



- MFCCs used mainly in older/low-resource systems
- newer: mel spectrograms (filterbank) / raw spectrograms / raw audio

Conventional ASR

- We want to model *P*(text|audio)
- Can't model directly, so using Bayes:

$$P(\text{text}|\text{audio}) = \frac{P(\text{audio}|\text{text})P(\text{text})}{P(\text{audio})}$$

- *P*(audio) is a constant, we're ignoring that
- $P(\text{audio}|\text{text}) \sim \text{acoustic model } P_A$
- $P(\text{text}) \sim \text{language model } P_T$
- decoder then combines information from both

NPFL123 L10 2024 13

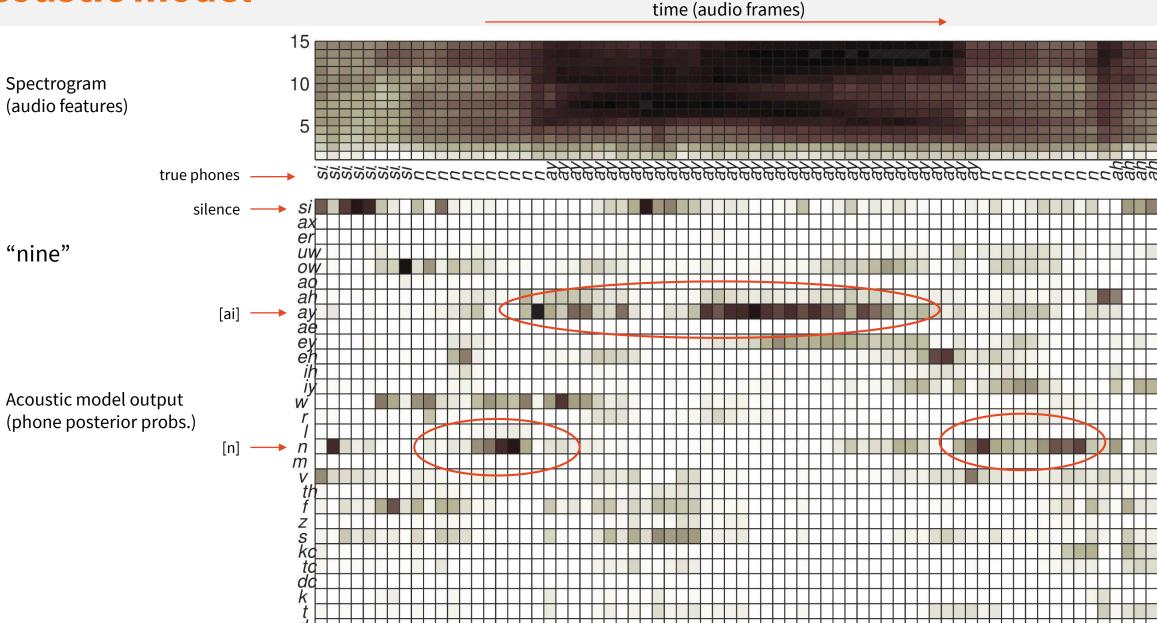
Acoustic model

- $P_A = P(\text{audio}|\text{text})$, where
 - audio = ASR features, i.e. spectrograms
 - text = sequence of phone[me]s
- assuming independence between audio frames:

$$P(\text{audio}|\text{text}) = \prod_{i} P(a_i|t_i)$$

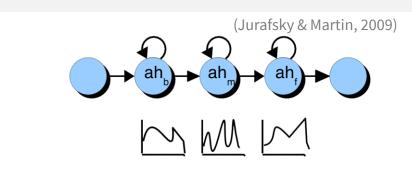
- *i* time (frame no.)
- a_i audio feature vector (~ spectrum)
- t_i acoustic class (~ phone[me], context-dependent phone)

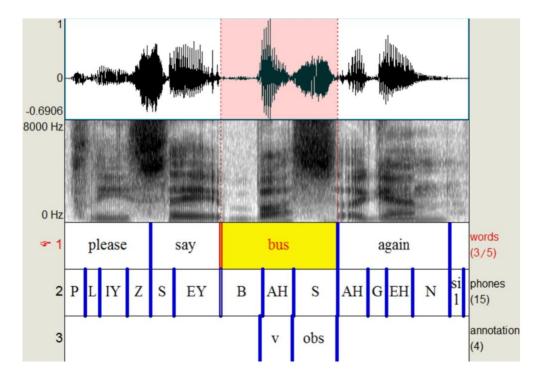
Acoustic model



Acoustic model

- Representing each phone by an HMM
 - start mid end, with loops (~ different lengths)
- Original: GMM Gaussian mixtures
 - each HMM transition/emission is a multivariate Gaussian
 - clustering, as there are too many options
- Improvement: DNN (=feed forward neural net) instead of GMM
- Training Baum Welch force-alignment
 - start from equal lengths of all phonemes, iteratively shift & increase likelihood
 - GMMs used to produce alignment to train DNN





Language model

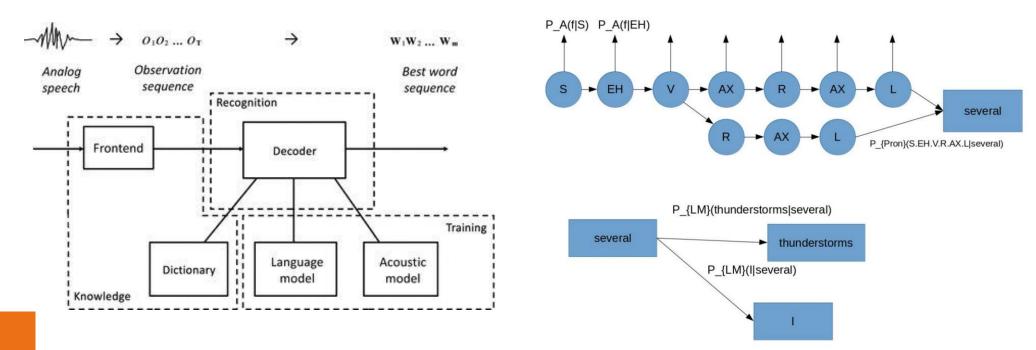
- P(text), where text ~ sentence, consisting of words w_1 , ... w_n
- sequence probability modeled with a LM:

$$P_T(\text{text}) = \prod_i P(w_i|w_{i-1}, w_{i-2}, ...)$$

- words given preceding context
- traditionally n-gram LMs
- more recently neural LMs
- Words w_i mapped to acoustic classes t_i using a pronouncing **dictionary**
 - or rules essentially reverse of TTS's grapheme-to-phoneme conversion
 - multiple pronunciation variants considered e.g. S EH V AX R AX L ['sɛvəɹəl] vs. S EH V R AX L ['sɛvɹəl]

Decoder

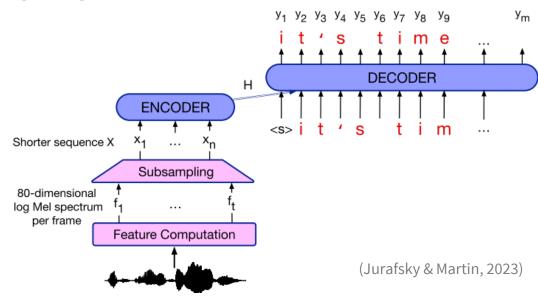
- Text encoded into acoustic signal / audio features → decoding back
- Hidden Markov Models
 - decoding word sequence from observed sequence of features
 - Dynamic programming (Viterbi)
 - Finding the best path through a finite state transducer composed of acoustic model & language model & pronouncing dictionary



18

End-to-End ASR: Encoder-decoder

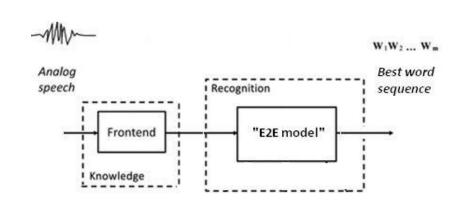
- Models P(text|audio) directly
- Attention encoder-decoder (AED) as in language tasks
 - a.k.a. listen-attend-spell (LAS)
 - 1. encode audio features
 - 2. decode text character-by-character
- RNN (LSTM) + attention / Transformer
- Audio is too fast/long → slowing it down ("low frame rate")
 - e.g. concatenate every 3 frames of audio
 ~ 40-dim → 120-dim at ⅓ speed
- Optional external language model: beam search & rerank



NPFL123 L10 2024 19

Encoder-decoder ASR Pros & Cons

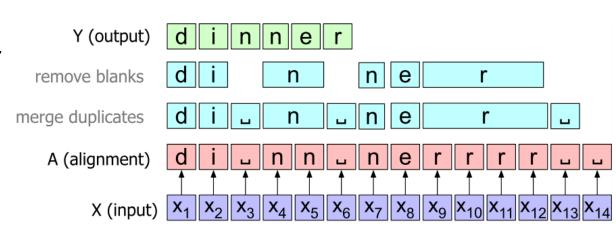
- Easier to train
 - pronunciation not modeled explicitly direct audio to letter
 - no need to align phones & audio frames
 - audio & transcript is enough to train
- Easier to run simpler decoder
- Inaccurate word/character timestamps
- Not low-latency
 - assuming whole sentence input → output
- Harder to customize: retrain everything
 - dictionary unknown words may be guessed well as-is
 - language model can use beam search & rescoring by an external LM



NPFL123 L10 2024 20

CTC (Connectionist Temporal Classification)

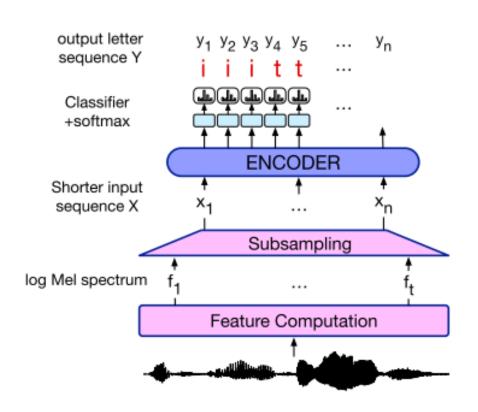
- Alt. idea: predict something for every input frame
 - _/ε ("blank") for silence & double letters
 - collapse duplicates & remove blanks later
- Problem: many-to-one alignments
 - Many predicted sequences align to the same collapsed output
 - solution: clever summing
- training: minimizing CTC loss
 - sum over all possible alignments
 - computed by dynamic programming (forward-backward algorithm)
- inference: modified beam search
 - beam of output prefixes after collapsing



(Jurafsky & Martin, 2023)

CTC Model

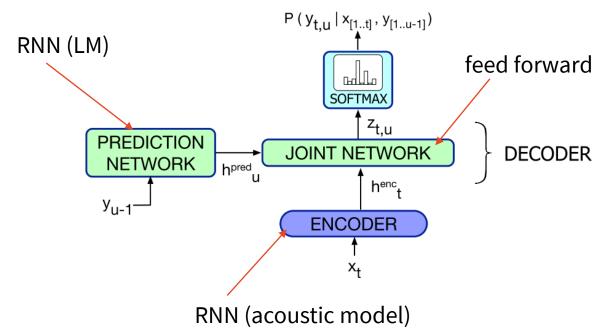
- Encoder + softmax classifier only
 - output something for every step
- Great for low latency
 - can work in parallel too
- Worse performance overall
 - strong assumption: outputs independent of each other (non-autoregressive)
- Can be combined with encoder-decoder
 - CTC as additional encoder loss
 - inference: combine probs. from both



(Jurafsky & Martin, 2023)

Transducers (RNN-T): Low-latency & accuracy

- Remove output independence
- Add RNN prediction network conditioned on prev. output
 - i.e. a language model component
- (RNN) acoustic model & RNN LM → joint (feed-forward) decoder
- Still predicts 1 output per frame
- All trained with CTC loss
 - You can retrain LM & keep acoustics
- Transformer variant (s/RNN/Transformer/g)



Conformer – better representation

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

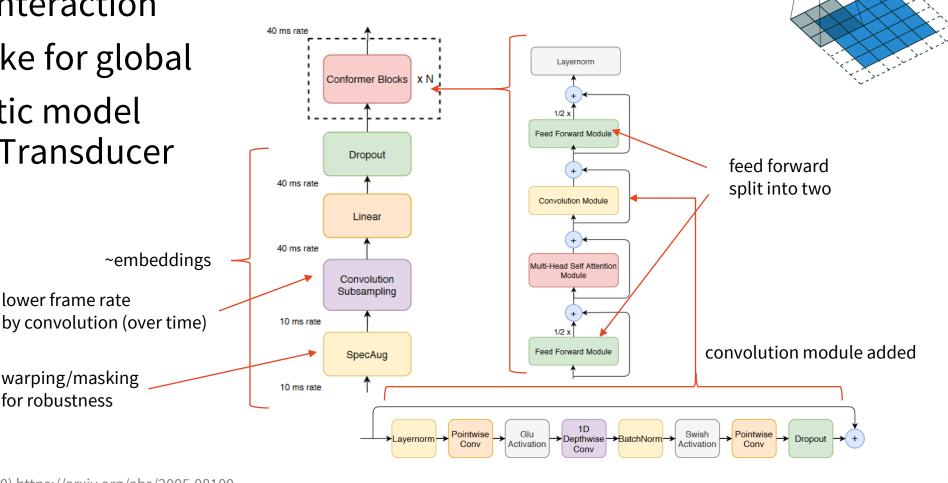
Transformer-like architecture, but with convolutions

CNN: applying same parameters (kernel) repeatedly over shifted inputs

CNN for local interaction

Transformer-like for global

 Used as acoustic model (encoder) in a Transducer



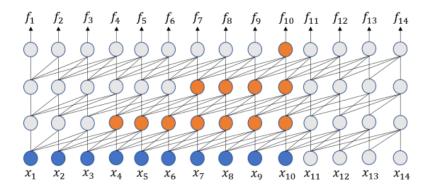
lower frame rate

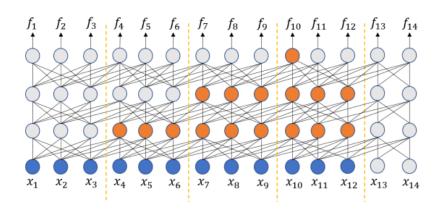
warping/masking

for robustness

Transformers & Streaming

- Problem: attention is costly & assumes whole sequence
- Solution: attention masking
- a) Mask out all future & distant past
 - visible history gets longer over layers
- b) Tiny lookahead: split into chunks
 - only attend to the future within a chunk
 - history longer into past, not into future
 - reasonable latency & better performance

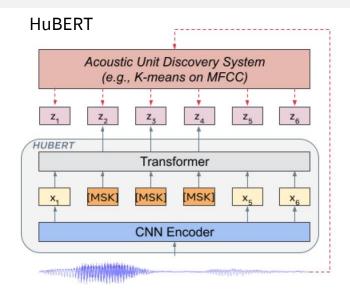


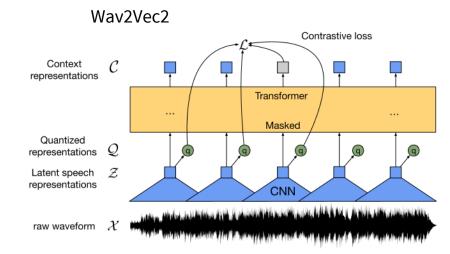


(image: Li, 2023)

Self-supervised models

- Learning from large data without transcriptions
 - ~ 1000s of hours of audio
 - input: raw audio & convolutions
 - creating some inventory of pseudo-phonemes
 - HuBERT clustering based on MFCC
 - Wav2Vec2 jointly trained quantization
 - masking out some pseudo-phonemes
 & learning to predict them
- Finetuning on transcriptions (CTC loss)
 - works with ~ minutes of labeled data
- usable with Transducers / attention too





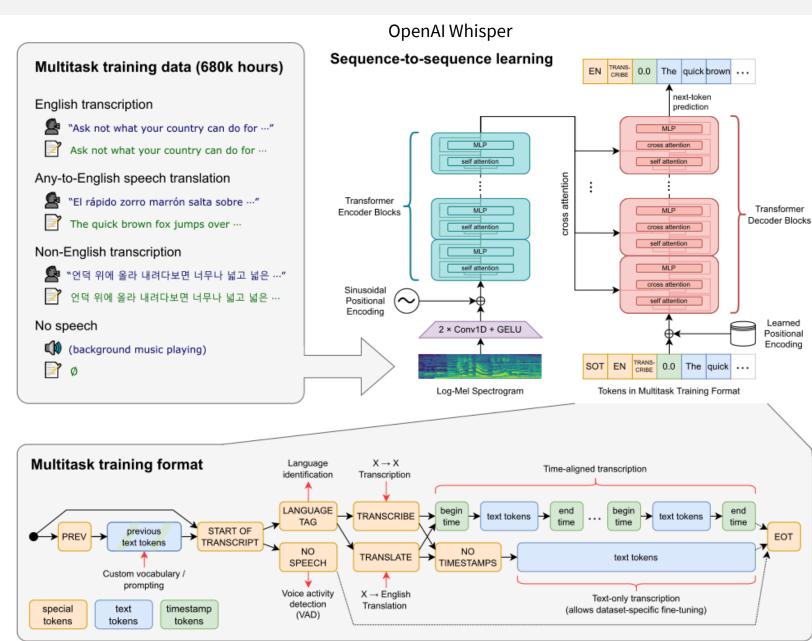
26

Weak supervision & multi-tasking

- Any transcriptions available
 - scraping the web (even low-quality)
- + speech translation
- + many languages
- aim: no finetuning
- Option: pretrain on non-transcribed

(Radford et al., 2022) https://arxiv.org/abs/2212.04356

(Zhang et al., 2023) http://arxiv.org/abs/2303.01037



Challenges

- Human-human spontaneous speech harder than human-system
 - unscripted speech, disfluencies, repairs
 - stark topic shifts
 - multiple speakers
- Specific domains
- Demographics
 - gender imbalances
 - non-native speech
- Language coverage
- Noise
- Latency/on-device

Summary

- VAD → features → ASR → text
- Features: MFCCs/filter banks/raw
- Traditional: separate acoustic & language models
- Neural:
 - Attention-based
 - CTC-based
 - Transducers
- Pretrained models
- Weak supervision

Thanks

Contact us:

Labs in 10 mins

https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Zoom/Troja (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Jurafsky & Martin's Speech & Language Processing (3rd ed., 2023): https://web.stanford.edu/~jurafsky/slp3/16.pdf
- Jurafsky & Martin's Speech & Language Processing (2nd ed., 2009)
- https://en.wikipedia.org/wiki/Speech_recognition
- https://speechprocessingbook.aalto.fi/Recognition_tasks_in_speech_processing.html
- https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing

NPFL123 L10 2024 30