NPFL123 Dialogue Systems

9. Voice Assistants & Question Answering

https://ufal.cz/npfl123

Ondřej Dušek, Simone Balloccu, Mateusz Lango, Kristýna Klesnilová & Jan Cuřín

17.4.2024
Virtual Assistants (voice/smart/conversational assistants)

• “Definition”: voice-operated **software** (dialogue system) capable of **answering questions, performing tasks** & basic dialogue in **multiple domains**

• Apple Siri (2011) – question answering & iOS functions

• Every major IT company has/had them
 • Microsoft Cortana (2014-2023, now Copilot)
 • Amazon Alexa (2014)
 • Google Assistant (2016)
 • Samsung Bixby (2017)
 • Mycroft (now OpenVoiceOS), Rhasspy (open-source, 2018/2020)
 • Clova (Naver, 2017) – Korean & Japanese
 • Alice (Yandex, 2017) – Russian
 • DuerOS (Baidu, 2017), AliGenie (Alibaba, 2017) – Chinese
Smart Speakers

• Internet-connected mic & speaker with a virtual assistant running
 • optionally video (display/camera)
 • ~ same functionality as virtual assistants in phones/computers
 • Amazon Echo (Alexa), Google Home (Assistant), Apple HomePod (Siri) […]

• Main point: multiple microphones – far-field ASR

Amazon Echo Dot 2nd Generation

ARM CPU, RAM&Flash, Wifi, Bluetooth

https://www.ifixit.com/Device/Amazon_Echo_Dot_2nd_Generation
Capabilities

• Out of the box:
 • Question answering
 • Web search
 • News & Weather
 • Scheduling
 • Navigation
 • Local information
 • Shopping
 • Media playback
 • Home automation

• a lot of it through 3rd party APIs
• the domains are well connected
Raven H (powered by DuerOS, Baidu)
https://www.youtube.com/watch?v=iqMJTNjFIIMk

Google Assistant
https://www.youtube.com/watch?v=JONGt32mfRY
Smart Speaker Adoption

- >35% US/UK adults have a smart speaker
 - growth slowed, less adoption elsewhere (CZE – very low)
 - Amazon had an early lead, now it’s more Google
- People really use them
 - early adopters – more intensively, correlated with phone assistant usage

Smart Speaker Use Case Frequency January 2020

- Listen to streaming music service: 88.7% (Daily), 73.6% (Monthly)
- Ask a question: 82.1% (Daily), 66.2% (Monthly)
- Check the weather: 72.1% (Daily), 59.8% (Monthly)
- Set a timer: 64.5% (Daily), 62.4% (Monthly)
- Set an alarm: 59.8% (Daily), 45.6% (Monthly)
- Listen to the radio: 59.8% (Daily), 42.6% (Monthly)
- Listen to News/Sports: 50.6% (Daily), 37.7% (Monthly)
- Use a favorite Alexa skill or Google Action: 47.9% (Daily), 34.0% (Monthly)
- Play game or answer trivia: 46.1% (Daily), 27.7% (Monthly)

Global Smart Speaker Market Share

- 2018:
 - Amazon Alexa: 52%
 - Google Home: 32%
 - Others: 16%

- 2022:
 - Amazon Alexa: 37%
 - Google Home: 48%
 - Others: 15%
How they work

- **Device listens for wake word**
 - after the wake word, everything is processed in vendor’s cloud service
 - raw **audio is sent to vendor**
 - follow-up mode – no wake word needed for follow-up questions (device listens for 5-10sec after replying)
 - privacy concerns

- **Intents** – designed for each domain
 - NLU trained on examples
 - DM + NLG handcrafted
 - extensible by 3rd parties (Skills/Apps)

- No incremental processing

[Diagram showing the flow of how voice assistants work]
How they work

• NLU includes **domain detection**
 • “web” domain as fallback
• Multiple NLU analyses (ambiguous domain)
 • resolved in context (hypothesis ranking)
• State tracker & coreference
 • Rules on top of machine learning
 • All per-domain

Cortana structure

(Sarikaya et al., 2016) https://ieeexplore.ieee.org/abstract/document/7846294
Why they are cool

• ASR actually impressive
 • NLU often compensates for problems

• Range of tasks is wide & useful

• 1st really large-scale dialogue system deployment ever
 • not just a novelty
 • actually boosted voice usage in other areas (phone, car etc.)

Assistants & Accents
https://youtu.be/gNx0huL9qsQ?t=41
Why they are not so cool

- Still handcrafted to a large part
 - *conversational architects* are a thing now
- Not very dialogue-y
 - mostly just one turn, rarely more than a few
- Language limitations
 - only available in a few major languages (En, Zh, Jp, De, Es, Fr, Kr [...])
- ASR still struggling sometimes
 - noise + accents + kids
 - not that far-field
 - helped a lot by NLU / domain knowledge

https://youtu.be/CYvFxs32zvQ?t=65
Adding Skills/Apps

- Additional functionality by 3rd party developers
 - API/IDEs provided by vendors, enabled on demand (similar to installing phone apps)
- Not 1st-class citizens
 - need to be invoked specially
 - Alexa, tell Pizza Hut to place an order
 - Alexa, ask Uber to get me a car
 - much less used than the default ones
- There’s thousands of them
 - many companies have a skill
 - many specific inventions
 - finance, fitness, food, games & trivia …
- Seem to go deprecated
 - few new skills, vendors dropping support

https://9to5google.com/2022/06/13/google-assistant-voice-apps/
What people care about in smart speakers

- **Understanding, features, speed**
 - personality / dialogue not so much
 - 3rd party apps not so popular (should work out-of-the-box)
 - commerce not so popular, but growing

- **QA:** music, news, movies

- **Privacy concerns don’t stop people from buying/using smart speakers**
 - privacy-conscious 16% less likely to own one
Question answering

- integral & important part of assistants
 - broadest domain available, apart from web search

- QA is not the same as web search
 - QA needs a specific, unambiguous answer, typically a (named) entity
 - person, object, location [...]
 - ~ factoid questions
 - Needs to be within inference capabilities of the system

Who is the president of Germany?
How high is the Empire State Building?
Who is the best rapper?
Who will become the next U.S. president?
How much faster is a cheetah than an elephant?
Web search

• Given a query, find best-matching **documents**
 • Over unstructured/semi-structured data (e.g. HTML)
• Basic search
 • Candidates: find matching word occurrences in index
 • Reranking: many features
 • Location of words (body, title, links)
 • Frequency of words (TF-IDF →)
 • Word proximity
 • PageRank – weighing links to documents/webpages (how many, from where)
 • 2nd level: personalized reranking
• Query reformulation & suggestion
QA approaches

• **Information Retrieval**
 - Basically improved web search
 - IR + phrase extraction
 - getting not just relevant documents, but specific phrases within them

• **Knowledge Graphs**
 - KGs – storage of *structured* information
 1) Semantic parsing of the query
 2) Mapping to KG(s)

• **Hybrid** *(IBM Watson, probably most other commercial systems)*
 - candidates from IR
 - reranking using KGs/semantic information
IR-based QA Pipeline

from Jurafsky & Manning
QA slides, Coursera NLP course
• **Answer type detection**
 • what kind of entity are we looking for?
 • rules / machine learning (with rules as features)
 • rules: regexes
 • headword = word right after wh-word

• **Named entity recognition**

• **IR Query formulation** – keyword selection
 • ignore stop words (*the, a, in*)
 • prioritize important words (named entities)
 • stemming (remove inflection)

• **Question type classification** – definition, math…

• **Focus detection** – question words to replace with answer

• **Relation extraction** – relations between entities in question
 • more for KGs, but can be used for ranking here

Who is the [...] composer/football player [...]
Which city is the largest [...]
• **Candidates** – find matching words in index (same as web search)

• **Weighting**
 - **Frequency:** **TF-IDF (term frequency-inverse document frequency)**
 - TF – document more relevant if term is frequent in it
 - IDF – document more relevant if term only appears in few other documents

\[
\text{TFIDF} = (1 + \log f_{t,d}) \cdot \log \frac{N}{n_t}
\]

 - this is just one of many variants

• **Other metrics** – **BM25** – more advanced smoothing, heeds document length
 - **Proximity:** also using n-grams in place of words
IR Passage Retrieval

- **Passage segmentation** – split document into ~paragraphs
 - anything short enough will do

- **Passage ranking** – typically machine learning based on:
 - named entities & their type (matching answer type?)
 - # query words contained
 - query words proximity
 - rank of the document containing passage

- **Neural ranking**: 2x Transformer LM (BERT/SBERT) + dot product
 - or cosine similarity (~+normalization)
 - no need for specific features
 - alt: 1 transformer, feed both & classify
Dense Retrieval

- Working with a **neural-ranking-like approach on the whole data**
 - less focus on words, more on semantics/embeddings
- **Precompute** & store all document embeddings
 - compare via cosine similarity to query embeddings
- Less accurate than full (S)BERT finetuning
 - but that wouldn’t be viable over large data
- **ColBERT**: compromise
 – token embeddings & compute + aggregate similarities
- Larger-scale: clustering (**Faiss**)
 - cluster embeddings into Voronoi cells (centroids & L2 dist.)
 - only search in the closest cell
 - & some other efficiency tricks (e.g. quantization)

(Khattab & Zakharia, 2020)

https://github.com/facebookresearch/faiss
https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
IR Answer Extraction

• **NER on passages** – looking for the right answer type
• 1 entity found → done
• More entities present → needs another ranking, based on:
 • answer type match
 • distance from query keywords in passage
 • novelty factor – not contained in query
 • position in sentence
 • semantic parse / relation
 • passage source rank/reliability
Neural answer extraction

- Feed in question + extracted passage(s) to a Transformer model
 - typically a pretrained LM (e.g. BERT)
- 2 classifiers: start + end of answer span
 - softmax over passage(s) tokens
- NB: LLMs (ChatGPT) do no retrieval!
 - just generate reply from scratch
 - doesn’t work well, not designed for QA
- alternative: generative QA
 - feed in passage
 - generate reply word-by-word (see NLG)

(Jurafsky & Martin, 2023)
Retrieval-augmented Generation QA

- Not just extraction, but full-sentence answer formulation
- Transformer generative (L)LMs
 - decoder models
 - input: retrieved passage
 - output: full-sentence response
- Train/prompt to provide reply
 - avoid hallucination
 - avoid copying everything verbatim
- Retriever & generator can be trained jointly
- Option: ask LM if the retrieved is relevant, then generate
- Option: ask LM to link to sources

https://lilianweng.github.io/posts/2020-10-29-odqa/

(Wang et al., 2023) https://arxiv.org/abs/2309.02233

(Chen et al., 2023) https://arxiv.org/abs/2310.12150
Knowledge Graphs

• Large repositories of **structured, linked** information
 • **entities** (nodes) + **relations** (edges)
 • typed (for both)
 • entity/relation types form an **ontology** (itself a similar graph)

• Open KGs (millions of entities, billions of relations)
 • Freebase (freely editable, many sources, bought by Google & shut down)
 • DBPedia (based on Wikipedia)
 • Wikidata (part of Wikipedia project, freely editable)
 • Yago (Wikipedia + WordNet + GeoNames)
 • NELL (learning from raw texts)

• Commercial KGs: Google KG, Microsoft Satori, Facebook Entity Graph
 • domain specific: Amazon products, Domino’s pizza […]

(from Jens Lehman’s QA keynote)
RDF Representation

• RDF = Resource Description Framework
 • Most popular KG representation
 • Wikidata – different format but accessible as RDF
• Triples: <subject, predicate, object>
 • predicate = relation
 • subject, object = entities
 • can also include relation confidence (if extracted automatically)
• Entities & relations typically represented by URI (not always)
 • objects can also be constants (string, number)
SPARQL

- Query language over RDF databases
 - relatively efficient
 - can query multiple connected triples (via ?variables)
- can be used directly
 - if you know the domain/application
- QA – need to map user question to this
 - or use IR-based methods instead

```sparql
WHERE {
  BIND(wd:Q6581072 AS ?sex)
  BIND(wd:Q515 AS ?c)

  ?city wdt:P31/wdt:P279* ?c . # find instances of subclasses of city
  ?city p:P6 ?statement .    # with a P6 (head of government) statement
  ?statement ps:P6 ?mayor .  # ... that has the value ?mayor
  ?mayor wdt:P21 ?sex .      # ... where the ?mayor has P21 (sex or gender) female
  FILTER NOT EXISTS { ?statement pq:P582 ?x } # ... but the statement has no P582 (end date) qualifier

  # Now select the population value of the ?city
  # (wdt: properties use only statements of "prefered" rank if any, usually meaning "current population")
  # Optionally, find English labels for city and mayor:
  SERVICE wikibase:label {
    bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en" .
  }
}
ORDER BY DESC(?population)
LIMIT 10
```

Wikidata: largest cities with female mayors
https://query.wikidata.org/
• Problem: **synonymy** – many ways to ask the same question
 • RDF relations have a specific surface form (not just \textit{wd:1234})
 • needs normalization/lexical mapping/usage of synonyms
 • WordNet expansion
 • stemming/lemmatization
 • multiple labels for entities/relations
 • string similarity/word embeddings

• Problem: **ambiguity**
 • needs entity/relation disambiguation/grounding/linking (to KG-compatible URIs)
 • context used to disambiguate
 (neighbour words, syntax, parts-of-speech)
 • KG itself used – closest/semantically related entities

How fast do jaguars run?
What is a top speed of a jaguar?

How fast is a Jaguar [I-Pace]?
• **Semantic parsing** can be used for query normalization
• Dependencies help decompose complex questions
 • Doesn’t have to be syntactic dependencies
 • Template mapping: map simple question patterns that have SPARQL equivalents

from Jens Lehmann’s QA keynote
KG Maintenance

- Information needs to be up-to-date
- Deduplication
- Ontology changes
 - need to version ontologies (and data)
 (for new/split/merged entity & relation types)
- Integrating multiple KGs
 - larger world knowledge coverage
 - company suppliers, mergers
 - → ontology bridging/mapping needed

"Basically, we're all trying to say the same thing."

from Alex Marin's KG QA slides
Ontology mapping

• Mismatch types
 • different labels (easiest)
 • same term, different thing & vice-versa
 • different modelling approaches (e.g. subclass or property?)
 • different granularity (more/less subclasses)

• Mappings
 • handcrafted (best results, but expensive)
 • rule-based – map into a common ontology
 • string distances, WordNet
 • graph-based – compare ontology structure
 • machine learning
Summary

• Virtual assistants/smart speakers are booming
 • large variety of tasks, interconnected
 • most part of the processing happens online
 • impressive ASR, typically handcrafted dialogue policy, NLG

• Question answering – factoids
 • IR approaches: word-based document retrieval, passage extraction, ranking
 • TF-IDF & co. for retrieval, answer type selection
 • dense retrieval using vector representation & similarity
 • ranking with word features or NNs
 • generative QA – retrieve passages & compose reply with LM
 • KG approach: semantic parsing & mapping to SPARQL queries
 • RDF triple representations
Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get the slides here:
http://ufal.cz/npfl123

References/Further:
• Dan Jurafsky & Chris Manning’s slides at Stanford/Coursera:
 https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html
• Alex Marin’s slides at Uni Washington: https://hao-fang.github.io/ee596_spr2018/
• Anton Leuski’s slides at UCSC: http://projects.ict.usc.edu/nld/cs599s13/
• Wikipedia pages of the individual KGs, assistants + SmartSpeaker, Okapi_BM25, TF-IDF