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Virtual Assistants (voice/smart/conversational assistants)

• “Definition”: voice-operated software (dialogue system) capable of 
answering questions, performing tasks & basic dialogue in multiple 
domains

• Apple Siri (2011) – question answering & iOS functions

• Every major IT company has/had them
• Microsoft Cortana (2014-2023, now Copilot)

• Amazon Alexa (2014)

• Google Assistant (2016)

• Samsung Bixby (2017)

• Mycroft (now OpenVoiceOS), Rhasspy (open-source, 2018/2020)

• Clova (Naver, 2017) – Korean & Japanese

• Alice (Yandex, 2017) – Russian

• DuerOS (Baidu, 2017), AliGenie (Alibaba, 2017) – Chinese
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https://www.marketingdirecto.com/digital-general/digital/siri-cortana-alexa-origen-nombres-fruto-la-casualidad

https://www.marketingdirecto.com/digital-general/digital/siri-cortana-alexa-origen-nombres-fruto-la-casualidad


Smart Speakers

• Internet-connected mic & speaker with a virtual assistant running
• optionally video (display/camera)

• ~ same functionality as virtual assistants in phones/computers

• Amazon Echo (Alexa), Google Home (Assistant), Apple HomePod (Siri) […]

• Main point: multiple microphones – far-field ASR
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Amazon Echo Dot 2nd Generation

Speaker

ARM CPU, RAM&Flash, Wifi, Bluetooth

7 mics

A/D convertershttps://www.ifixit.com/Device/Amazon_Echo_Dot_2nd_Generation

https://www.ifixit.com/Device/Amazon_Echo_Dot_2nd_Generation


Capabilities

• Out of the box:
• Question answering

• Web search

• News & Weather

• Scheduling

• Navigation

• Local information

• Shopping

• Media playback

• Home automation

• a lot of it through 3rd party APIs

• the domains are well connected
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Google Nest

Amazon Echo

Apple HomePod



Demos
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https://www.youtube.com/watch?v=iqMjTNjFIMk

Raven H (powered by DuerOS, Baidu)

Google Assistant

https://www.youtube.com/watch?v=JONGt32mfRY

https://www.youtube.com/watch?v=iqMjTNjFIMk
https://www.youtube.com/watch?v=JONGt32mfRY


• >35% US/UK adults have a smart speaker
• growth slowed, less adoption elsewhere (CZE – very low)

• Amazon had an early lead, now it’s more Google

• People really use them
• early adopters – more intensively, correlated with phone assistant usage

Smart Speaker Adoption

6NPFL123 L9 2024



How they work

• Device listens for wake word
• after the wake word, everything is processed in vendor’s cloud service

• raw audio is sent to vendor

• follow-up mode – no wake word needed for follow-up questions 
(device listens for 5-10sec after replying)

• privacy concerns

• Intents – designed for each domain
• NLU trained on examples

• DM + NLG handcrafted

• extensible by 3rd parties (Skills/Apps)

• No incremental processing
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https://developer.amazon.com/blogs/post/Tx38PSX7O9YKIK1/announcing-scenes-for-smart-home-skills


How they work

• NLU includes domain detection
• “web” domain as fallback

• Multiple NLU analyses (ambiguous domain) 
• resolved in context (hypothesis ranking)

• State tracker & coreference
• Rules on top

of machine learning

• All per-domain
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(on-screen)

Cortana structure

(Sarikaya et al., 2016) https://ieeexplore.ieee.org/abstract/document/7846294

hypothesis
ranking & selection

https://ieeexplore.ieee.org/abstract/document/7846294


Why they are cool

• ASR actually impressive
• NLU often compensates for problems

• Range of tasks is wide & useful

• 1st really large-scale 
dialogue system deployment ever
• not just a novelty

• actually boosted voice usage 
in other areas (phone, car etc.)
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Assistants & Accents
https://youtu.be/gNx0huL9qsQ?t=41

https://youtu.be/gNx0huL9qsQ?t=41


Why they are not so cool

• Still handcrafted to a large part
• conversational architects are a thing now

• Not very dialogue-y 
• mostly just one turn, rarely more than a few

• Language limitations
• only available in a few major languages

(En, Zh, Jp, De, Es, Fr, Kr […])

• ASR still struggling sometimes
• noise + accents + kids

• not that far-field

• helped a lot by NLU / domain knowledge
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https://youtu.be/CYvFxs32zvQ?t=65

https://youtu.be/CYvFxs32zvQ?t=65


Adding Skills/Apps

• Additional functionality by 3rd party developers
• API/IDEs provided by vendors, enabled on demand (similar to installing phone apps)

• Not 1st-class citizens
• need to be invoked specially

• Alexa, tell Pizza Hut to place an order

• Alexa, ask Uber to get me a car

• much less used than the default ones

• There’s thousands of them
• many companies have a skill

• many specific inventions

• finance, fitness, food, games & trivia …

• Seem to go deprecated
• few new skills, vendors dropping support

https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://arstechnica.com/gadgets/2024/04/amazon-virtually-kills-efforts-to-develop-alexa-skills-disappointing-dozens/ , https://9to5google.com/2022/06/13/google-assistant-voice-apps/

https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://arstechnica.com/gadgets/2024/04/amazon-virtually-kills-efforts-to-develop-alexa-skills-disappointing-dozens/
https://9to5google.com/2022/06/13/google-assistant-voice-apps/


What people care about in smart speakers
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• Understanding, features, speed
• personality / dialogue not so much

• 3rd party apps not so popular 
(should work out-of-the-box)

• commerce not so popular, but growing

• QA: music, news, movies

• Privacy concerns don’t stop people 
from buying/using smart speakers
• privacy-conscious 16% less likely 

to own one
Privacy concerns in US adults



Question answering

• integral & important part of assistants
• broadest domain available, apart from web search

• QA is not the same as web search
• QA needs a specific, unambiguous answer, typically a (named) entity

• person, object, location […]

• ~ factoid questions

• Needs to be within inference capabilities of the system
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Who is the president of Germany?
How high is the Empire State Building?

Who is the best rapper?
Who will become the next U.S. president?
How much faster is a cheetah than an elephant?

x



Web search

• Given a query, find best-matching documents
• Over unstructured/semi-structured data (e.g. HTML)

• Basic search
• Candidates: find matching word occurrences in index

• Reranking: many features
• Location of words (body, title, links)

• Frequency of words (TF-IDF →)

• Word proximity

• PageRank – weighing links to documents/webpages (how many, from where)

• 2nd level: personalized reranking

• Query reformulation & suggestion
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QA approaches
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• Information Retrieval
• Basically improved web search

• IR + phrase extraction
• getting not just relevant documents, but specific phrases within them

• Knowledge Graphs
• KGs – storage of structured information

1) Semantic parsing of the query

2) Mapping to KG(s)

• Hybrid (IBM Watson, probably most other commercial systems)
• candidates from IR

• reranking using KGs/semantic information



IR-based QA Pipeline

16NPFL123 L9 2024

from Jurafsky & Manning
QA slides, Coursera NLP course

like web search additional



Question Processing

• Answer type detection
• what kind of entity are we looking for?
• rules / machine learning (with rules as features)
• rules: regexes

• headword = word right after wh-word

• Named entity recognition

• IR Query formulation – keyword selection
• ignore stop words (the, a, in)
• prioritize important words (named entities)
• stemming (remove inflection)

• Question type classification – definition, math…

• Focus detection – question words to replace with answer

• Relation extraction – relations between entities in question
• more for KGs, but can be used for ranking here
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Who is the […] composer/football player […]
Which city is the largest […]

Jurafsky & Manning
QA slides, Coursera NLP course



• Candidates – find matching words in index (same as web search)

• Weighting
• Frequency: TF-IDF (term frequency-inverse document frequency)

• TF – document more relevant if term is frequent in it

• IDF – document more relevant if term only appears in few other documents

TFIDF = (1 + log 𝑓𝑡,𝑑) ∙ log
𝑁

𝑛𝑡

• this is just one of many variants

• Other metrics – BM25 – more advanced smoothing, heeds document length

• Proximity: also using n-grams in place of words

IR Document Retrieval
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TF (log-scaled) IDF# times
t appears in d

total # of documents

# of documents containing t



IR Passage Retrieval

• Passage segmentation – split document into ~paragraphs
• anything short enough will do

• Passage ranking – typically machine learning based on:
• named entities & their type (matching answer type?)

• # query words contained

• query words proximity

• rank of the document containing passage

• Neural ranking: 2x Transformer LM (BERT/SBERT) + dot product
• or cosine similarity (~+normalization)

• no need for specific features

• alt: 1 transformer, feed both & classify
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(Jurafsky & Martin, 2023)
https://web.stanford.edu/~jurafsky/slp3/14.pdf

(Reimers & Gurevych, 2019)
https://aclanthology.org/D19-1410/

https://web.stanford.edu/~jurafsky/slp3/14.pdf
https://aclanthology.org/D19-1410/


Dense Retrieval

• Working with a neural-ranking-like approach on the whole data
• less focus on words, more on semantics/embeddings

• Precompute & store all document embeddings
• compare via cosine similarity to query embeddings

• Less accurate than full (S)BERT finetuning
• but that wouldn’t be viable over large data

• ColBERT: compromise
– token embeddings & compute + aggregate similarities

• Larger-scale: clustering (Faiss)
• cluster embeddings into Voronoi cells (centroids & L2 dist.)

• only search in the closest cell

• & some other efficiency tricks (e.g. quantization)
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(Khattab & Zakharia, 2020)
https://arxiv.org/abs/2004.12832

https://github.com/facebookresearch/faiss
https://www.pinecone.io/learn/series/faiss/faiss-tutorial/

https://arxiv.org/abs/2004.12832
https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
https://www.pinecone.io/learn/series/faiss/faiss-tutorial/


IR Answer Extraction

• NER on passages – looking for the right answer type

• 1 entity found → done

• More entities present → needs another ranking, based on:
• answer type match

• distance from query keywords in passage

• novelty factor – not contained in query

• position in sentence

• semantic parse / relation

• passage source rank/reliability
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Neural answer extraction

• Feed in question + extracted passage(s) to a Transformer model
• typically a pretrained LM (e.g. BERT)

• 2 classifiers: start + end of answer span
• softmax over passage(s) tokens

• NB: LLMs (ChatGPT) do no retrieval!
• just generate reply from scratch

• doesn’t work well, not designed for QA

• alternative: generative QA
• feed in passage

• generate reply word-by-word (see NLG)
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span start & end embeddings
(learned from scratch)

last Transformer layer output

dot product

softmax

(Jurafsky & Martin, 2023)
https://web.stanford.edu/~jurafsky/slp3/14.pdf

https://web.stanford.edu/~jurafsky/slp3/14.pdf


Retrieval-augmented Generation QA

• Not just extraction, but full-sentence answer formulation

• Transformer generative (L)LMs
• decoder models

• input: retrieved passage

• output: full-sentence response

• Train/prompt to provide reply
• avoid hallucination

• avoid copying everything verbatim

• Retriever & generator can be trained jointly

• Option: ask LM if the retrieved is relevant, then generate

• Option: ask LM to link to sources
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https://lilianweng.github.io/posts/2020-10-29-odqa/

GPT, T5, BART…

(Lewis et al., 2020)
https://arxiv.org/abs/2005.11401

(Chen et al., 2023)
https://arxiv.org/abs/2310.12150

(Wang et al., 2023)
https://arxiv.org/abs/2309.02233

https://lilianweng.github.io/posts/2020-10-29-odqa/
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2310.12150
https://arxiv.org/abs/2309.02233


• Large repositories 
of structured, linked information
• entities (nodes) + relations (edges)

• typed (for both)

• entity/relation types form an ontology (itself a similar graph)

• Open KGs (millions of entities, billions of relations)
• Freebase (freely editable, many sources, bought by Google & shut down)

• DBPedia (based on Wikipedia)

• Wikidata (part of Wikipedia project, freely editable)

• Yago (Wikipedia + WordNet + GeoNames)

• NELL (learning from raw texts)

• Commercial KGs: Google KG, Microsoft Satori, Facebook Entity Graph
• domain specific: Amazon products, Domino’s pizza […]

Knowledge Graphs
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from Jens Lehman’s QA keynote



RDF Representation

• RDF = Resource Description Framework 
• Most popular KG representation

• Wikidata – different format but accessible as RDF

• Triples: <subject, predicate, object>
• predicate = relation

• subject, object = entities

• can also include relation confidence (if extracted automatically)

• Entities & relations typically represented by URI (not always)
• objects can also be constants (string, number)
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subject: Leonard Nimoy
predicate: played
object: Spock
[confidence: 0.993]



SPARQL

• Query language 
over RDF databases
• relatively efficient 

• can query multiple
connected triples
(via ?variables)

• can be used directly
• if you know the

domain/application

• QA – need to map
user question to this
• or use IR-based methods instead
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Wikidata: largest cities with female mayors
https://query.wikidata.org/

https://query.wikidata.org/


• Problem: synonymy – many ways to ask the same question
• RDF relations have a specific surface form (not just wd:1234)

• needs normalization/lexical mapping/usage of synonyms
• WordNet expansion

• stemming/lemmatization

• multiple labels for entities/relations

• string similarity/word embeddings

• Problem: ambiguity
• needs entity/relation disambiguation/grounding/linking (to KG-compatible URIs)

• context used to disambiguate
(neighbour words, syntax, parts-of-speech)

• KG itself used – closest/semantically related entities

KG Retrieval
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How fast is a Jaguar [I-Pace]?

How fast do jaguars run?
What is a top speed of a jaguar?



• Semantic parsing can be used for query normalization

• Dependencies help decompose complex questions
• Doesn’t have to be syntactic dependencies

• Template mapping:
map simple question patterns
that have SPARQL equivalents

KG Retrieval
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(Zheng et al., 2018)
http://www.vldb.org/pvldb/
vol11/p1373-zheng.pdf

from Jens Lehmann’s QA keynote



KG Maintenance

• Information needs to be up-to-date

• Deduplication

• Ontology changes
• need to version ontologies  (and data)

(for new/split/merged entity & relation types)

• Integrating multiple KGs
• larger world knowledge coverage

• company suppliers, mergers

• → ontology bridging/mapping needed

29NPFL123 L9 2024

from Alex Marin’s KG QA slides



Ontology mapping

• Mismatch types
• different labels (easiest)

• same term, different thing & vice-versa

• different modelling approaches (e.g. subclass or property?)

• different granularity (more/less subclasses)

• Mappings
• handcrafted (best results, but expensive)

• rule-based – map into a common ontology
• string distances, WordNet

• graph-based – compare ontology structure

• machine learning
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Summary

• Virtual assistants/smart speakers are booming
• large variety of tasks, interconnected

• most part of the processing happens online

• impressive ASR, typically handcrafted dialogue policy, NLG

• Question answering – factoids
• IR approaches: word-based document retrieval, passage extraction, ranking

• TF-IDF & co. for retrieval, answer type selection

• dense retrieval using vector representation & similarity

• ranking with word features or NNs

• generative QA – retrieve passages & compose reply with LM

• KG approach: semantic parsing & mapping to SPARQL queries
• RDF triple representations
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Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get the slides here:

http://ufal.cz/npfl123

References/Further:
• Dan Jurafsky & Chris Manning’s slides at Stanford/Coursera: 

https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html
• Alex Marin’s slides at Uni Washington: https://hao-fang.github.io/ee596_spr2018/
• Anton Leuski’s slides at UCSC: http://projects.ict.usc.edu/nld/cs599s13/
• VoiceBot smart speaker report: https://voicebot.ai/smart-speaker-consumer-adoption-report-2019/
• Jens Lehmann’s keynote: http://jens-lehmann.org/files/2017/fqas_keynote.pdf
• Wikipedia pages of the individual KGs, assistants + Smart_speaker, Okapi_BM25, TF-IDF

Thanks
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Labs in 10 mins
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