NPFL123 Dialogue Systems

7. Neural Policies & Natural Language Generation

https://ufal.cz/npfl123

Ondřej Dušek, Simone Balloccu, Mateusz Lango, Kristýna Klesnilová & Jan Cuřín

3. 4. 2024
Deep Reinforcement Learning

• Exactly the same as “plain” RL
• “deep” = part of the agent is handled by a NN
 • value function (typically Q)
 • policy
• NN = parametric function approximation approach
 • NN \rightarrow complex non-linear functions
• REINFORCE / policy gradients: $\pi(a|s, \theta)$ – works out of the box
 • value functions: using $V(s; \theta)$ or $Q(s, a; \theta)$, regression
• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states
 • no more summary space 😊
• Q-learning, where Q function is represented by a neural net

• “Usual” Q-learning doesn’t converge well with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown \rightarrow numeric instability

• Fixes in DQN:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
DQN tricks ~ making it more like supervised learning

- **Experience replay** – break correlated samples
 - run through some episodes (dialogues, games…)
 - store all tuples \((s, a, r', s')\) in a buffer
 - for training, don’t update based on most recent moves – use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

\[
\text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]
\]

- **Target Q function freezing**
 - fix the version of Q function used in update targets
 - have a copy of your Q network that doesn’t get updated every time
 - once in a while, copy your current estimate over

“generate your own ‘supervised’ training data”

“have a fixed target, like in supervised learning”
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - set initial state s
 - for all timesteps $t = 1 \ldots T$ in the episode:
 - select action a_t from ϵ-greedy policy based on $Q(\theta)$
 - take a_t, observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D
 - sample a batch B of random (s, a, r', s')’s from D
 - update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]$ (1 update)
 - once every λ steps (rarely):
 - $\overline{\theta} \leftarrow \theta$
 - update the frozen target function

storing experience (1 step of Q-learning exploration)

“replay” a. k. a. training (1 update)
DQN for Dialogue Systems

- A simple DQN can drive a dialogue system's action selection
- DQN is function approximation – works fine for POMDPs
- No summary space tricks needed here

Diagonal

- **User Sim.**
 - Step

- **Agent**
 - Add Exp.
 - Get Action

- **State Tracker**
 - Get State
 - Update w/ User
 - Update w/ Agent

EMC

- Infuse Error

Error Model Controller

- (Simulating ASR/NLU noise)

Diagram Notes

- Rule-based simulator with agenda running on DA level
- DQN – feed-forward, 1 hidden ReLU layer
- Replay memory initialized using a simple handcrafted policy
- Movie ticket booking: better than rule-based

Technical Details

- (Li et al., 2017)
- https://github.com/MiuLab/TC-Bot

Text References

Natural Language Generation

• conversion of system action semantics → text (in our case)

• NLG output is well-defined, but input is not:
 • DAs
 • any other semantic formalism
 • database tables
 • raw data streams
 • user model
 • dialogue history
 • can be any kind of knowledge representation
 • e.g. “user wants short answers”
 • e.g. for referring expressions, avoiding repetition

• general NLG objective:
 • given input & communication goal
 • create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
 • variation
 • simplicity
 • adaptability
• **dialogue systems**
 • very different for task/non-task-oriented/QA systems

• **standalone**
 • data-to-text
 • short text generation for web & apps
 • weather, sports reports
 • personalized letters
 • creative generation (stories)

• **machine translation**
 • now mostly integrated end-to-end
 • formerly not the case

• **summarization**
Inputs
• **Content/text/document planning**
 • content selection according to communication goal
 • basic structuring & ordering

Content plan
• **Sentence planning/microplanning**
 • aggregation (facts → sentences)
 • lexical choice
 • referring expressions

Sentence plan
• **Surface realization**
 • linearization according to grammar
 • word order, morphology

Typically handled by dialogue manager in dialogue systems.

Organizing content into sentences & merging simple sentences.

This is needed for NLG in dialogue systems.

E.g. *restaurant* vs. *it*
NLG Implementations

- **Few systems implement the whole pipeline**
 - All stages: mostly domain-specific data-to-text, standalone
 - e.g. weather reports
 - Dialogue systems: just sentence planning + realization
 - Systems focused on content + sentence planning with trivial realization
 - frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
 - Surface realization only
 - requires very detailed input
 - some systems: just ordering words

- **Pipeline vs. end-to-end approaches**
 - planning + realization in one go – popular for neural approaches
 - pipeline: simpler components, might be reusable (especially realizers)
 - end-to-end: no error accumulation, no intermediate data structures
NLG Basic Approaches

- **canned text**
 - most trivial – completely hand-written prompts, no variation
 - doesn’t scale (good for DTMF phone systems)

- **templates**
 - “fill in blanks” approach
 - simple, but much more expressive – covers most common domains nicely
 - can scale if done right, still laborious
 - most production dialogue systems

- **grammars & rules**
 - grammars: mostly older research systems, realization
 - rules: mostly content & sentence planning

- **machine learning**
 - modern research systems
 - pre-neural attempts often combined with rules/grammar
 - neural nets made it work *much* better
Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation

(Facebook, 2015)

inflection rules

(Alex public transport information rules)

https://github.com/UFAL-DSG/alex
Grammar/Rules for Sentence Planning

- Handcrafted grammar/rules
 - input: base semantics (e.g. dialogue acts)
 - output: detailed sentence representation (=realizer inputs, see →)

- Statistical enhancements:
 generate more options & choose the best
 - generate multiple outputs
 - underspecified grammar
 - rules with multiple options…
 - choose the best one
 - train just the selection – learning to rank
 - any supervised approach possible
 e.g. “best” = 1, “not best” = 0

NB: this is slow!

SpoT trainable planner (RankBoost ranking)

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003
Grammar-based realizers

- Various grammar formalisms
 - production / unification rules in the grammar
 - lexicons to go with it
 - expect very detailed input (sentence plans)

- typically general-domain, reusable
 - **KPML** – multilingual
 - systemic functional grammar
 - **FUF/SURGE** – English
 - functional unification grammar
 - **OpenCCG** – English
 - combinatory categorial grammar

KPML input for *A dog is in the park.*

```
(10 / spatial-locating
  :speechact (a0 / assertion :polarity positive
  :speaking-time t0)
  :reference-time-id t0
  :event-time (t0 / time)
  :theme d0
  :domain (d0 / object :lex dog
  :identifiability-q notidentifiable)
  :range (p0 / three-d-location :lex park
  :identifiability-q identifiable))
```

FUF/SURGE input for *She hands the draft to the editor*

```
[cat process
  [type composite
    lex [ particle
      [type composite
        lex
        [agent [cat
          [gender feminine
            [num sing
              [person
                [tense pres info=th id=n1]
                [num sg dot-the info=th id=f2]
                [has-prop cheapest [ko] id=n2]
                [has-rel [id=n3]
                  [num sg info=th id=f2]
                  [airline] Ryanair [kon=+ id=n4]
```
Procedural realizers

- **SimpleNLG** – no grammar, code to build sentence
 - “do-it-yourself” style – only cares about the grammar
 - system then linearizes
 - built for English, ports to other languages available

- **RealPro** (Meaning-Text-Theory)
 - deep syntax/semantics → surface syntax → morphology

- **Treex** (Functional Generative Description)
 - deep syntax → surface syntax → morphology, linearization
 - Perl code operating over syntax trees

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596

(Popel & Žabokrtský 2010; Dušek et al., 2015)
https://www.aclweb.org/anthology/W15-3009
Trainable Realizers

- **Overgenerate & Rerank**
 - same approach as for sentence planning
 - assuming a flexible handcrafted realizer (e.g., OpenCCG)
 - underspecified input → more outputs possible
 - generate more & use statistical reranker, based on:
 - n-gram language models
 - Tree language models
 - expected text-to-speech output quality
 - personality traits & alignment/entainment
 - more variance, but at computational cost

- **Grammar/Procedural-based**
 - same as RealPro or TectoMT, but predict each step using a classifier

NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
(Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140
CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405

StuMaBa (Bohnet et al., 2010)
https://www.aclweb.org/anthology/C10-1012
Non-Neural End-to-End NLG

- **NLG as language models**
 - hierarchy of language models
 (HMM/MEMM/CRF style)
 - DA → slot → word level

- **NLG using context-free grammars**
 a) “language models” by probabilistic CFGs
 - approximate search for best CFG derivation
 b) synchronous PCFGs – MRs & text
 - “translation” with hierarchical phrase-based system
 - parsing MR & generating text

<table>
<thead>
<tr>
<th>Rule</th>
<th>prob./parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $S \rightarrow R(\text{start})$</td>
<td>$Pr = 1$</td>
</tr>
<tr>
<td>2. $R(r,r) \rightarrow FS(r,r,\text{start}) R(r,r)$</td>
<td>$Pr(r,r,r,r) \cdot A$</td>
</tr>
<tr>
<td>3. $R(r,r) \rightarrow FS(r,r,\text{start})$</td>
<td>$Pr(r,r,r) \cdot A$</td>
</tr>
<tr>
<td>4. $FS(r,r,f) \rightarrow F(r,r,f) FS(r,r,f)$</td>
<td>$Pr(f,f)$</td>
</tr>
<tr>
<td>5. $FS(r,r,f) \rightarrow F(r,r,f)$</td>
<td>$Pr(f)$</td>
</tr>
<tr>
<td>6. $F(r,r,f) \rightarrow W(r,r,f) F(r,r,f)$</td>
<td>$Pr(w_{w-1},r,r,f)$</td>
</tr>
<tr>
<td>7. $F(r,r,f) \rightarrow W(r,r,f)$</td>
<td>$Pr(w_{w-1},r,r,f)$</td>
</tr>
<tr>
<td>8. $W(r,r,f) \rightarrow \alpha$</td>
<td>$Pr(\alpha,r,r,f,z,f,z)$</td>
</tr>
<tr>
<td>9. $W(r,r,f) \rightarrow g(f,z)$</td>
<td>$Pr(g(f,z),z,r,r,f,z,f,z)$</td>
</tr>
</tbody>
</table>

(a) English

(b) CLANG

(Wong & Mooney, 2007)
https://www.aclweb.org/anthology/N07-1022

(Konstas & Lapata, 2012)
https://www.aclweb.org/anthology/P12-1039
Neural Generation: Seq2seq RNNs (see NLU for RNN intro)

- **Token representation:** embeddings = vectors of ~100-1000 numbers
- **Source “word” embeddings:** “hidden states” (=again, vectors of numbers)
- **Encoder outputs:**
- **Attention:** weighted combination (weights different for each step)
- **Probability distribution over the whole vocabulary**
- **Target word embeddings**
- **Vocabulary is numbered**
- **Cells:** identical (compound) neural layers
- **Input:** prev. output + token embedding

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473
Neural End-to-End NLG: RNNs

• Unlike previous, doesn’t need alignments
 • no need to know which word/phrase corresponds to which slot

• 1st system: RNN language model conditioned on DA (~decoder only)
 • input: binary-encoded DA
 • 1 if intent-slot-value present, 0 if not
 • delexicalized: much fewer values, shorter vector
 • modified LSTM cells
 • input DA passed in every time step
 • generating delexicalized texts word-by-word
 • i.e. decoder only

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]
Seq2seq NLG with reranking (TGen)

- Encode DAs as sequences, apply standard RNN seq2seq
 - encoder: triples <DA type, slot, value>
 - decoder: words (possibly delexicalized)
- Beam search & reranking
 - DA classification of outputs
 - checking against input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008
Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

feed-forward (fully connected) network
- ReLU activations
- tricks for better training

Attention over all of input

Positional encoding (indicate position in sentence)

No recurrent connections

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
Transformers & Pretrained Language Models

 - encoder-decoder, but using feed-forward & attention instead of RNNs
 - positional encoding used to indicate sentence position
 - predefined “pattern” functions (based on sin & cos)
 - simply added to word embeddings
 - no RNN → parallel training → faster, allows larger models (more layers)

• **Pretrained language models** – on large data w/o annotation (self-supervised)
 - guess masked word (encoder only: BERT) (Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423
 - generate next word (decoder only: GPTx) (Radford et al., 2019) https://openai.com/blog/better-language-models/

• Can be **finetuned** for your domain & task
 - less data than w/o pretraining, extremely fluent (Chen et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.18/
 - [Kasner & Dušek, 2020](https://www.aclweb.org/anthology/2020.webnlg-1.20/)

Problems with neural NLG

(Dušek et al., 2020)
http://arxiv.org/abs/1901.07931

- Checking the **semantics**
 - neural models tend to forget input / make up irrelevant stuff
 - reranking / decoding changes work, but not perfectly
 - generally **hard to control** (especially LLMs)

- Needs quite a lot of data (except LLMs, with prompting)

- Delexicalization needed (at least some slots)
 - typically OK for pretrained LMs

- Diversity & complexity of outputs
 - still can’t match humans
 - needs specific tricks to improve this

- Still more hassle than writing up templates 😞

open sets, verbatim on the output (e.g., restaurant/area names)
Summary

Deep Reinforcement Learning

• same as plain RL – agent + states, actions, rewards – just Q or π is a NN
• function approximation for Q – mean squared value error
• **Deep Q Networks** – Q learning where Q is a NN + tricks
 • experience replay, target function freezing
• **Policy networks** – policy gradients where π is a NN

Natural Language Generation

• steps: content planning, **sentence planning**, **surface realization**
 • not all systems implement everything (content planning is DM’s job in DS)
 • pipeline vs. end-to-end
• approaches: templates, grammars, statistical
• **templates** work great
• neural: RNN / **Transformer**, pretrained models
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
• Deep RL for NLP tutorial: https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf