NPFL123 Dialogue Systems

6. Dialogue Policy
(non-neural)

https://ufal.cz/npfl123

Ondřej Dušek, Simone Balloccu, Mateusz Lango, Kristýna Klesnilová & Jan Cuřín

27. 3. 2024
Dialogue Management

- Two main components:
 - **State tracking** (last lecture)
 - **Action selection** with a **policy** (today)

- Action selection – deciding what to do next
 - Based on the current belief state – under uncertainty
 - Following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - Controlling the coherence & flow of the dialogue
 - Actions: linguistic & non-linguistic

- DM/policy should:
 - Manage uncertainty from belief state
 - Recognize & follow dialogue structure
 - Plan actions ahead towards the goal

from Milica Gašić’s slides

- Did you say Indian or Italian?
- Follow convention, don’t be repetitive
- E.g. ask for all information you require
DM/Action Selection Approaches

- **Finite-state machines**
 - simplest possible
 - dialogue state is machine state

- **Frame-based** (VoiceXML)
 - slot-filling + providing information – basic agenda

- **Rule-based**
 - any kind of rules (e.g. Python code)

- **Statistical**
 - typically using reinforcement learning

- Note that state tracking differs with different action selection
FSM Dialogue Management

• Dialogues = graphs going through possible conversations
 • nodes = system actions
 • edges = possible user response semantics

• advantages:
 • easy to design
 • predictable

• disadvantages:
 • very rigid – not real conversations
 (ignores anything that’s not a reply to last question)
 • doesn’t scale to complex domains

• Good for basic DTMF (tone-selection) phone systems

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…
Frame-based Approach

• Making the interaction more flexible
• State = frame with slots
 • required slots need to be filled
 • this can be done in any order
 • more information in one utterance possible
• If all slots are filled, query the database
• Multiple frames (e.g. flights, hotels…)
 • needs frame tracking
• Standard implementation: VoiceXML
• Still not completely natural, won’t scale to more complex problems

Slot Question
ORIGIN What city are you leaving from?
DEST Where are you going?
DEPT DATE What day would you like to leave?
DEPT TIME What time would you like to leave?
AIRLINE What is your preferred airline?

(from Hao Fang’s slides)

<form>
 <field name="transporttype">
 <prompt>Please choose airline, hotel, or rental car. </prompt>
 <grammar type="application/x-nlu-seg">
 [airline hotel "rental car"]
 </grammar>
 </field>
</form>

(from Pierre Lison’s slides)
Rule-based

- We can use a probabilistic belief state
 - DA types, slots, values
- With **if-then-else** rules in programming code
 - using thresholds over belief state for reasoning
- Output: system DA
- Very flexible, easy to code
 - allows relatively natural dialogues
- Gets messy
- Dialogue policy is still pre-set
 - which might not be the best thing to do

```python
elif fact['we_did_not_understand']:
    # NLG("Sorry, I did not understand.
res_da = DialogueAct("notunderstood")
res_da.extend(self.get_limitation_ontarget())
dialogue_state["ludisit"].reset()
```

- Directly choose reply DA + update state

(Jurčiček et al., 2014)
https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
DM with supervised learning

• **Action selection ~ classification** → use supervised learning?
 • set of possible actions is known
 • belief state should provide all necessary features

• Yes, but…
 • You **need** sufficiently large **human-human data** – hard to get
 • human-machine would just mimic the original system
 • Dialogue is ambiguous & complex
 • there’s **no single correct next action** – multiple options may be equally good
 • but datasets will only have one next action
 • **some paths will be unexplored** in data, but you may encounter them
 • DSs won’t behave the same as people
 • ASR errors, limited NLU, limited environment model/actions
 • DSs **should** behave differently – make the best of what they have
DM as a Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - **agent** in an **environment**:
 - has internal **state** $s_t \in S$
 - takes **actions** $a_t \in A$
 - actions chosen according to **policy** $\pi: S \rightarrow A$
 - gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
 - Markov property – state defines everything
 - no other temporal dependency
- let’s assume we know the state for now
 - let’s go with MDPs, see how they map to POMDPs later
Deterministic vs. stochastic policy

- **Deterministic** = simple mapping $\pi: S \rightarrow A$
 - always takes the same action $\pi(s)$ in state s
 - enumerable in a table
 - equivalent to a rule-based system
 - but can be learned instead of hand-coded!

- **Stochastic** = specifies a probability distribution $\pi(s, a)$
 - $\pi(s, a) \sim$ probability of choosing action a in state s – $p(a|s)$
 - decision = sampling from $\pi(s, a)$
Reinforcement learning

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don’t know if an action is good
 - immediate reward might be low while long-term reward high

Return: accumulated long-term reward (from timestep t onwards)

\[
R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1}
\]

- $\mathbb{E}[R_t | \pi, s_0]$ = expected R_t if we start from state s_0 and follow policy π
- $\gamma \in [0,1]$ = discount factor (immediate vs. future reward trade-off)
 - $\gamma < 1$: R_t is finite (if r_t is finite)
 - $\gamma = 0$: greedy approach (ignore future rewards)
- state transition is stochastic \Rightarrow **maximize expected return**

alternative – **episodes**: only count to T when we encounter a terminal state (e.g. 1 episode = 1 dialogue)
State-value Function

- Using return, we define the **value of a state** \(s \) under policy \(\pi \): \(V^\pi(s) \)
 - Expected return for starting in state \(s \) and following policy \(\pi \)
- Return is recursive: \(R_t = r_{t+1} + \gamma \cdot R_{t+1} \)
- This gives us a recursive equation (**Bellman Equation**):

\[
V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \mid \pi, s_0 = s \right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s' \mid s, a) (r(s, a, s') + \gamma V^\pi(s'))
\]

- \(V^\pi(s) \) defines a **greedy policy**:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\text{# of } a's} & \text{for } a = \arg \max_a \sum_{s' \in \mathcal{S}} p(s' \mid s, a)(r(s, a, s') + \gamma V^\pi(s')) \\
0 & \text{otherwise}
\end{cases}
\]
Action-value (Q-)Function

• $Q^\pi(s, a)$ – exp. return of taking action a in state s, under policy π
 • Same principle as value $V^\pi(s)$, just **considers the current action, too**
 • Has its own version of the Bellman equation

\[
Q^\pi(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s'|s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)
\]

• $Q^\pi(s, a)$ also defines a greedy policy:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\# \text{ of } a' \text{s}} & \text{for } a = \arg \max_a Q^\pi(s, a) \\
0 & \text{otherwise}
\end{cases}
\]

again, “actions that look best for the next step”

simpler: no need to enumerate s', no need to know $p(s'|s, a)$ and $r(s, a, s')$

but Q tables are bigger than V tables
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*

- π^* is a policy such that $V^{\pi^*}(s) \geq V^{\pi'}(s)$ $\forall \pi'$, $\forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_{\pi} V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_{\pi} Q^\pi(s, a)$

- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^*, $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
RL Agent Taxonomy

• Quantity to optimize:
 • value function – critic
 • policy – actor
 • (both – actor-critic – omitted)

• Environment model:
 • model-based (assume known \(p(s'|s, a), r(s, a, s') \))
 • makes for mathematically nice solutions
 • but you can only know the full model in limited settings
 • model-free (don’t assume anything, sample)
 • this is the one for “real-world” use
 • using \(Q \) instead of \(V \) comes handy here (“hiding” \(p(s'|s, a) \))
RL Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment (=must be model-based)
 • **Monte Carlo** learning – learn from experience
 • sample, then update based on experience
 • **Temporal difference** learning – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • **off-policy** – decide according to a different policy
1) Choose a threshold τ, Initialize $V_0(s)$ arbitrarily

2) While $V_i(s) - V_{i-1}(s) \geq \tau$ for any s:

 for all s: $V_{i+1}(s) \leftarrow \max_a \sum_{s' \in S} p(s'|s,a)(r(s,a,s') + \gamma V_i(s'))$

 $i \leftarrow i + 1$

 apply greedy policy according to current $V_i(s)$, update estimate

 as long as we’re still improving

At convergence, we’re less than τ away from optimal state values

- resulting greedy policy is typically already optimal in practice

Can be done with $Q_i(s,a)$ instead of $V_i(s)$

Assumes known $p(s'|s,a)$ and $r(s,a,s')$

- can be estimated from data if not known – but it’s expensive
Value iteration example (Gridworld)

- Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
 - reward +1 for staying at “G”
 - reward -1 for hitting a wall
 - discount factor $\gamma = 0.9$

(Heidrich-Meisner et al., 2007)
https://christian-igel.github.io/paper/RLiaN.pdf

https://youtu.be/9YN1R6Lh9Jo
(note that rewards here come from states, not movements)
Monte Carlo Methods

- $V(s)$ or $Q(s, a)$ estimated iteratively, on-policy
 - explores states with more value more often
- Loop over episodes (dialogues)
 - record (s_t, a_t, r_t) for $t = 0, \ldots, T$ in the episode
 - for all s, a in the episode:
 - $R(s, a) \leftarrow$ list of all returns for taking action a in state s (sum of rewards till end of episode)
 - $Q(s, a) \leftarrow \text{mean}(R(s, a))$

- To converge, we need to explore – using ϵ-greedy policy:

 $a = \begin{cases}
 \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
 \text{random action} & \text{with probability } \epsilon
 \end{cases}$

 ϵ can be large initially, then gradually lowered

- $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

- off-policy extensions exist (omitted)

NPFL123 L6 2024

MC | model-based/free | value

here: model-free for Q’s, but also works model-based for V’s
SARSA (state-action-reward-state-action)

• estimate $Q(s, a)$ iteratively, on-policy, with immediate updates
 • TD: don’t wait till the end of episode
• choose learning rate α, initialize Q arbitrarily
• for each episode:
 • choose initial s, initial a according to ϵ-greedy policy based on Q
 • for each step:
 • take action a, observe reward r and state s'
 • choose action a' from s' acc. to ϵ-greedy policy based on Q
 • $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
 • $s \leftarrow s', a \leftarrow a'$
 • typically converges faster than MC (but not always)
Q-Learning (off-policy TD)

• off-policy – directly estimate $Q^*(s, a)$
 • regardless of policy used for sampling
• choose learning rate α, initialize Q arbitrarily
• for each episode:
 • choose initial s
 • for each step:
 • choose a from s according to ϵ-greedy policy based on Q
 • take action a, observe reward r and state s'
 • $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right)$
 • $s \leftarrow s'$

update uses best a', regardless of current policy:

\textit{a' is not necessarily taken in the actual episode}

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
REINFORCE: Policy gradients

- we assume a differentiable parametric policy $\pi(a|s, \theta)$
- MC search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\theta) = V^{\pi_{\theta}}(s_0)$
- choose learning rate α, initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 - for each $t = 0, 1, ..., T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t|s_t, \theta)$

variant: discounting a **baseline** $b(s)$ (predicted by any model)
$R_t - b(s_t)$ instead of R_t gives better performance

a good $b(s)$ is actually $V(s)$

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t}r_{i+1}$
this is stochastic $\nabla J(\theta)$
• from **policy gradient** theorem

NPFL123 L6 2024
POMDP Case

- POMDPs – belief states instead of dialogue states
 - probability distribution over states
 - can be viewed as **MDPs with continuous-space states**
- All MDP algorithms work...
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex
- REINFORCE/policy gradients work out of the box
 - function approximation approach, allows continuous states

(from Milica Gašić's slides)

for a typical DS, the belief state is too large to make RL tractable

solution: map state into a reduced space, optimize there, map back

reduced space = summary space
 - handcrafted state features
 - e.g. top slots, # found, slots confirmed…

reduced action set = summary actions
 - e.g. just DA types (inform, confirm, reject)
 - remove actions that are not applicable
 - with handcrafted mapping to real actions

state is still tracked in original space
 - we still need the complete information for accurate updates
Simulated Users

• We can’t really learn just from static datasets
 • on-policy algorithms don’t work
 • data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
 • 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
 • basically another DS/DM
 • (typically) working on DA level
 • errors injected to simulate ASR/NLU

• approaches:
 • rule-based (frames/agenda)
 • n-grams
 • MLE policy from data

(from Milica Gašić’s slides)
Summary

• Action selection – deciding what to do next

• Approaches
 • Finite-state machines (system-initiative)
 • Frames (VoiceXML)
 • Rule-based
 • Machine learning (RL better than supervised)

• RL – in a POMDP scenario (can be approximated by MDP)
 • optimizing value function or policy
 • learning on-policy or off-policy
 • learning with or without a model
 • using summary space
 • training with a user simulator
Thanks

Contact us:
https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html