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Neural networks https://playground.tensorflow.org/ - look at the internals (very simple network)

» Can be used for both classification & sequence models

* Non-linear functions, composed of basic building blocks
 stacked into layers
* whole network ~ “pipeline”/“flow”

* Layers are built of activation functions:
* linear functions
* nonlinearities - sigmoid, tanh, ReLU

 softmax - probability estimates:
exp(x;)

Z|]x=|1 exp(xj)
* Fully differentiable - training by gradient descent

* gradients backpropagated from outputs to all parameters
* (composite function differentiation)
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Neural networks - features

* You can use the same ones as for LR/SVM...

* butit’s alot of work to code them in

* Word embeddings

* |let the network learn features by itself

* inputis just words (vocabulary is numbered)

» top ~50k words + <unk=, or subwords
* distributed word representation

» each word = vector of floats (~50-2000 dims.)

 part of network parameters - trained
a) random initialization
b) pretraining

* network learns words with similar usage
» they end up having close embedding values

* different embeddings for different tasks
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Recurrent Neural Networks

* Many identical layers with shared parameters (cells)

* ~the same layer is applied multiple times, taking its own outputs as input
« ~same number of layers as there are tokens
» output = hidden state - fed to the next step

 additional input - next token features

* Cell types

 basic RNN: linear + tanh
* problem: vanishing gradients
» can’t hold long recurrences

* GRU, LSTM: more complex,
to make backpropagation

work better

« “gates” to keep old values
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Encoder-Decoder Networks

» Default RNN paradigm for sequences/structure prediction

« encoder RNN: encodes the input token-by-token into hidden states h;
* next step: last hidden state + next token as input -_— h,=0

» decoder RNN: constructs the output token-by-token he = cell(x¢, he_y)
* initialized by last encoder hidden state
 output: hidden state & softmax over output vocabulary + argmax \

Sso=h
* next step: last hidden state + last generated tc?ken a.s input P(\)/Atlyp ---yt—(i,x) : softmax(s,)
* LSTM/GRU cells over vectors of ~embedding size s¢ = cell(ye—1,5¢-1)
* MT, dialogue, parsing...
* more complex structures linearized to sequences

ENCODER DECODER
V1 Y2 V3

Encoder She —= is = eating—> a = green — apple

| am good Context vector (length: 5)
hy h, hs hsy = s s | I —([0.1,-0.2, 0.8, 1.5, -0.3]>=
[RNI\U—(RNI\D—[RNN]—[RNHRNN RNN RNN] |
[ 1 Decoder h >~ T O~ Iz = F - FER
<GO>
[ Embedding ]
T I T T https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

how are you ?

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13¢c578ba9129
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* Encoder-decoder too crude for complex sequences
* the whole input crammed into a fixed-size vector (last hidden state)

 Attention = “memory” of all encoder hidden states

* weighted combination
 softmax: focuses mainly on 1 thing

* re-weighted every decoder step
> can focus on currently important part of input

* Self-attention - over previous decoder steps

* In RNNs: added to dec. inputs & dec. softmax layer

Attention Mechanism

nasnimer O O O O O O O
Attention Model
Memory layer(s) O_' o o < o
(contfext for each - - o] [e] a - o]
incoming time step)
Inputs
Time 1 2 3 4 5 6 7

https://skymind.ai/wiki/attention-mechanism-memory-netwdrk
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Tra nSfO rmer (Waswani et al., 2017)

https://arxiv.org/abs/1706.03762 we can put classification on top (see >-)
* getting rid of (encoder) recurrences all attention
. . . . . no recurrences
* making it faster to train, allowing bigger nets v (depends on lower layer only)

* replace everything with blocks of
attention & feed-forward

* = needs more layers oicaly s
* = needs to encode positions & J, ? —
° positional encoding 0 <pad> y - * Lﬂ,tl
» adding position-dependent éf::: %
patterns to the input  want @
« attention: more heads BN s R o e B
« ~more attentions in parallel 5
 focus on multiple inputs - Chi%ese
embedei;l-g-s positional

encoding
NPFL123 L5 2024 http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html '



https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Neural NLU

e Various architectures possible

* Classification
» feed-forward NN

* RNN + attention weight - softmax

e convolutional networks
 Transformer

* Sequence tagging

* RNN (LSTM/GRU) > softmax over hidden states
» default version: label bias (like MEMM)

* CRF over the RNN possible
 Transformer works the same

* Intent can be tagged at start of sentence

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/

attention

model

softmax

encoder hidden states

(Raffel & Ellis, 2016)
https://colinraffel.com/publications/iclr2016feed.pdf

https://medium.com/swlh/nlu-for-everyone-with-bert-7bedaa609a61
(Chen et al., 2019) http://arxiv.org/abs/1902.10909
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R N N - based N L U (Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

« Same RNN-based network for both tasks

 Bidirectional encoder
e 2 encoders: LTR, RTL & concatenate hidden states
 “see the whole sentence before you start tagging”

* Decoder - tags word-by-word, inputs:
a) attention

b) input encoder hidden states (“aligned inputs”)
c) both

* Intent classification
» softmax over last encoder state
* +specific intent context vector (attention)
* use attention over slot hidden states
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Transformer-based NLU

* slot tagging on top of pretrained BERT Transformer model

* BERT = Transformer trained to guess masked words (on very large data)
e further trained for NLU
 standard IOB approach

« just feed final hidden layers to softmax over tags ™" ¢ slot tags
* classify only at 1st su bworql in case of split words l /V/ / e
| (don’t want tag changes m|d—w.ord). GO R @
* special start token tagged with intent @D D R D DD D
* optional CRF on top of the tagger @ & - DD
» for global sequence optimization =] [&] - [&][=][=][=]

CONCHEE \( o0 ) (srore) (rrast) IOSEPD

|
T subwords
start token

(Chen et al., 2019)
NPFL123 L5 2024 http://arxiv.org/abs/1902.10909
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Handling ASR noise

* ASR produces multiple hypotheses

* Combine & get resulting
NLU hypotheses

* NLU

: p(DA|text)

* ASR: p(text|audio)
* we want p(DA|audio)

* Easiest: sum it up
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p(DAl|audio) = z P(DA|text) P (text|audio)

texts

(0.33 — I am looking for a bar
0.26 — I am looking for the bar
lO.ll — I am looking for a car
| 0.09 — I am looking for the car

|

0.59 — inform(task=find, venue=bar)

0.20 — null()

SR

(from Filip Jurcicek’s slides)
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Handling ASR noise

* Alternative: use confusion networks
» per-word ASR confidence

» Word features weighed by word confidence Ifeat““’s’ 0
hi 0.02
am 0.9
0.33 — I am looking for a bar n-best list IOOkIng 1
0.26 — I am looking for the bar for 1
0.11 — I am looking for a car .
0.09 — I am looking for the car | am 0.81
. . my am 0.063
l ~equivalent confusion network am looking 0.9
a—06 bar — 0.5 a bar 0.3
b looking — 1__'!—% for— 1.0 ! Y car—04 N a car 0.24
the — 0.4 e—-01

should be normalized
by n-gram length

NPFL123 L4 2024 12
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Context

* user response can depend on last system action

 fragments/short replies
are ambiguous without context

* > add last system DA/text into input features U: I'm looking for flights from JFK.
» helps disambiguate  ynere wouldyoutike to go?
e careful - user may not play nice! I
 system needs to be trained with both inform(22=Atlanta)
alternatives in mind inform(to_city=Atlanta)

X U:Actually I’d rather fly from Newark.

NPFL123 L4 2024 13



Dialogue State Tracking

* Dialogue management consist of:
« State update < here we need DST
» Action selection (later)

* Dialogue State needed to remember what was said in the past

* tracking the dialogue progress
« summary of the whole dialogue history
* basis for action selection decisions

U: I’'m looking for a restaurant in the city centre.

S: OK, what kind of food do you like?

U: Chinese.
X S: What part of town do you have in mind?
X S:Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
v S:Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.

NPFL123 L5 2024
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Dialogue State Contents

* “All that is used when the system decides what to say next”
(Henderson, 2015)

() User goal/p references ~ N LU Output https://ai.google/research/pubs/pub44018
* slots & values provided (search constraints)
* information requested

» Past system actions

* information prOVided U: Give me the address of the first one you talked about.

 slotsand values / U: Is there any other place in this area?

* list of venues offered
* slots confirmed - S: OK, Chinese food. |[...]

slots requested T S Whattime would you like to leave?

* Other semantic context
* user/system utterance: bye, thank you, repeat, restart etc.

NPFL123 L5 2024
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Ontology

* To describe possible states

* Defines all concepts in the system
* List of slots
 Possible range of values per slot

* Possible actions per slot
* requestable, informable etc.

* Dependencies

* some concepts only applicable
for some values of parent concepts

food_type - only for type=restaurant
has_parking - only for type=hotel

NPFL123 L5 2024

type name o s
j >~ j ‘ S —

“if entity=venue, then...”

/Em

food musnc ecor
I I | S B

"Italian" 1)azz" "Toni"s"J "central" J "Main Street"

entity = {venue, landmark}
venue.type = {restaurant, bar,...}

\

some slot names may need disambiguation
(venue type vs. landmark type)

(Young, 2009)
http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf
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Problems with Dialogue State

. . > ASR: 0.5 ’'m looking for an expensive hotel
* NLU is unreliable 0.5 I’'m looking for inexpensive hotels

 takes unreliable ASR output
* makes mistakes by itself - some utterances are ambiguous
 output might conflict with ontology .

e Possible solutions: NLU: 0.3 inform(type=restaurant, stars=>5)

» detect contradictions, ask for confirmation \

. _ _ only hotels have stars!
* ignore low-confidence NLU input
* what’s “low”?
* what if we ignore 10x the same thing?

 Better solution: make the state probabilistic - belief state

NPFL123 L5 2024
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* Assume we don’t know the true dialogue state
* but we can estimate a probability distribution over all possible states
* In practice: per-slot distributions

 More robust

« accumulates probability mass over multiple turns
* low confidence - if the user repeats it, we get it the 2" time

« accumulates probability over NLU n-best lists

* Plays well with probabilistic dialogue policies
* but not only them - rule-based, too



Belief State

NLU dialogue state belief state
(no state over turns) (1-best) (probability distributions)
turn observations state response state response state response
What food What food area: What food
inform(area=center) 0.6 area=center would you area=center would you center 0.6 would you
1. inform(food=Danish) 0.4 like? like? food: like?
Danish 0.4
) _ q area: Did
5 !nform(food:Spaljlsh) 0.5 . Which area do area=center Fc?uhn 13 center 0.6 SI yguhsay
: inform(food=Danish) 0.4 food=Spanish e food=Spanish  [IEHIEUIEELES food: panish or
in the center... . Danish?
Spanish 0.5
Danish  0.44

1

this is what we want
(based on Milica Gasic¢’s slides)

NPFL123 L5 2024 19



Dialogue as a Markov Decision Process

* MDP = probabilistic control process

* model - Dynamic Bayesian Network
* random variables & dependenciesin a graph/network
* “dynamic” = structure repeats over each time step t

* a; - actions = what the systemsays - R

* 1. — rewards = measure of quality
* typically slightly negative for each turn, high positive for successful finish

* p(st+1lSs, ay) - transition probabilities
* Markov property - state defines everything
* Problem: we’re not sure about the dialogue state

NPFL123 L5 2024

s¢ — dialogue states = what the user wants state /'

action

reward

(from Milica Gasic’s slides)
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Partially Observable (PO)MDP

* Dialogue states are not observable
* modelled probabilistically - belief state b(s) is a prob. distribution over states
« states (what the user wants) influence observations o, (what the system hears)

 Still Markovian 2ction

+ b'(s") = -p(ols') Lses p(s'ls, )b (s)
* b(s) can be modelled by an HMM

observation o
o reward

grey =observed
white =unobserved

(from Milica Gasic¢’s slides)

(from Filip Jurcicek’s slides)

NPFL123 L5 2024
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* Using the HMM model
 estimate the transition & observation probabilities from data

1
b(s) = Z%?(Oﬂst)} 2 P(Stlat—list—l?b(st—

| St_1€S
observation probability transition probability  previous belief

* Problem: too many states
* e.g. 10 slots, 10 values each > 10° distinct states - intractable

* Solutions:
* only track stuff that appeared in NLU
 only track n most probable (beam)
* merge similar states

 partition the state - assume slots are independent, use per-slot beliefs
» states = [s1,...s"], belief b(s,) = [1; b(s})



Generative BT: Parameter Tying
i-th slot

* Per-slot: b(s)) = Zst_lloé-\p(o,ﬂs,fl)}\p(sé|a£_1,s{l_l})b(s{l_
Y |

observation probability  transition probability previous belief

* Further simplification: tie most parameters
 estimates from data are unreliable anyway - basically uses 2 parameters only ©

transition probabilities: observation probabilities:
(0 ifsi=si, op(o}) ifof = s}
p(stlai_ssic) =11 g ploclst) =1 | 1,
4 4

. l .
: . o;) otherwise
ETvalu T otherwise —vaalue l_lp( t)

0, ~ confidence in NLU
6 = “rigidity” (bias for keeping previous values), p(of) =NLU output

otherwise all value changes have the same probability i.e. believe in value given by NLU with 6,

(Zilka et al., 2013) distribute rest of probability equally

https://www.aclweb.org/anthology/W13-4070/
NPFL123 L52024 23
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Basic Discriminative Belief Tracker

NLU output
° Based on the previous model l “usermenktioned this value”
. : . _ [ A \
same slot independence assumption p(0l)ifsi = ol Aol #
* Even simpler - “always trust the NLU”—— p(s{|af_y,s{-1,0) = 1 p(o}) ifsi=siynof=@
* this makes it parameter-free | Ootherwise . CLange,,
e ...and kinda rule-based
* but very fast, with reasonable performance user silentaboutslot i
update i i| i i i i
Si Oi\ Y J \
t—1"t
! discriminative “null value” “not mentioned earlier” “not mentioned now”
model (o) st =@: p(sics = @)pof = @)
b(sf) = . . . . .
else: p(of = st) +p(of = @)p(st = si_y)
(ilka et al., 2013) non-null”  “mentioned now” “carry-over”

https://www.aclweb.org/anthology/W13-4070/

the rule is now deterministic 24
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* Generative trackers - need many assumptions to be tractable
 cannot exploit arbitrary features
e ...ortheycan, but not if we want to keep them tractable
 often use handcrafted parameters
e ...may produce unreliable estimates (wiiams 2012) https://iecexplore.jece.org/document/6424197

X
* Discriminative trackers - can use any features from dialogue history

» parameters estimated from data more easily
» generally used nowadays

* Another general distinction
« static models - encode whole history into features
» dynamic/sequence models - explicitly model dialogue as sequential


https://ieeexplore.ieee.org/document/6424197

Static Discriminative Trackers
. (Henderson et al., 2013)
) Genera“y predlct p(St | 01’ a’l’ e a’t—l’ Ot) https://aclweb.org/anthology/W13-4073
* any kind of classifier (SVM, LR, NN, ...)
* need fixed feature vector from o4, a4, ..., a;_1, 0; (Wwhere t is arbitrary)

* current turn, cumulative (sum), sliding window (k previous turns)
o G lo ba l featu re exa m p leS: (Metallinou et al., 2013) https://www.aclweb.org/anthology/P13-1046

* NLU n-best size, entropy, lengths (current turn, cumulative)
 ASR scores

* Per-value v examples:
* rank & score of hypo with v on current NLU n-best + diff vs. top-scoring hypo
* #times v appeared so far, sum/average confidence of that
* # negations/confirmations of v so far
* reliability of NLU predicting v on held-out data

NPFL123 L5 2024 26
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Dynamic Discriminative Trackers

* Dialogue as a sequence p(sq, ... S¢|oq, ... 0
1 t101 t

* CRF models

* similar features as static
feature value: NLU score for the given thing (e.g. DA type + slot + value)

target: per-slot BIO coding

Goals
Utterance Food Area
Sy Hello, How may I help you?
U, I need a Persian restaurant in the south part of Persian South
town.

SRR O Tood Wl et ke e
U, Persian. Persian South
T i sorry Bt here i mG TeStaRARL Serving persian T T

food
Us How about Portuguese food? Portuguese South
S Beking Testaurant 1< 3 mice place T e e of T
town.
Uy Is that Portuguese? Portuguese South
"85 "Nandos is a nice place in the south of town serving
tasty Portuguese food.

Us Alright. Whats the phone number? Portuguese South
S o e OF WAROR 1 G GG
Ug And the address? Portuguese South
"'87 7 Sure, nandos is on Cambridge Leisure Park Clifton ™~ 7T

Way.
Thank you good bye.

NPFL123 L5 2024

Persian, Portuguese

constraints,
alternatives,
finished

(Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345 27
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Dynamic Neural State Trackers

* Based on RNNSs (turn-level or word-level)

* Typically not using a NLU - directly ASR/words > belief

* Simple example: RNN over words + classification on hidden states
* runs over the whole dialogue history (user utterances + system actions)

offeod) e ReLU - softmax
p 4 . (perslot)

LST [em [ o= |

Enc [ Emnc |3 Enc [ Enc hy

i vector representation

T T T ﬂfthedialng
[ W, W W, w,  word embeddings J

} ¥ } ¥
[ locking for chinese  food words ]

& d; a3 dy

(Zilka & Jur¢icek, 2015)
NPFL123 L5 2024 http://arxiv.org/abs/1507.03471
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Neural networks primer
* embeddings
* layers (sigmoid, tanh, ReLU)
* recurrent networks (LSTM, GRU), attention

* NN NLU examples: classifier/sequence
* Dialogue state vs. belief state

* Dialogue as (Partially observable) Markov Decision Process

* Tracker examples:
* Generative (partitioning, parameter tying)
* Discriminative (basic “rule-based”, classifier, neural)
* static vs. dynamic

* Next time (in 2 weeks!): dialogue policies



Thanks

Contact us: No lecture next week!

https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123
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