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Neural networks

• Can be used for both classification & sequence models

• Non-linear functions, composed of basic building blocks
• stacked into layers

• whole network ~ “pipeline”/“flow”

• Layers are built of activation functions:
• linear functions

• nonlinearities – sigmoid, tanh, ReLU

• softmax – probability estimates:

softmax 𝐱 𝑖 =
exp(𝑥𝑖)

σ
𝑗=1
𝐱 exp(𝑥𝑗)

• Fully differentiable – training by gradient descent
• gradients backpropagated from outputs to all parameters

• (composite function differentiation)
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https://medium.com/@shrutija
don10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092

https://playground.tensorflow.org/ – look at the internals (very simple network)

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://playground.tensorflow.org/


Neural networks – features

• You can use the same ones as for LR/SVM…
• but it’s a lot of work to code them in

• Word embeddings
• let the network learn features by itself

• input is just words (vocabulary is numbered)
• top ~50k words + <unk>, or subwords

• distributed word representation 
• each word = vector of floats (~50-2000 dims.)

• part of network parameters – trained
a) random initialization

b) pretraining

• network learns words with similar usage
• they end up having close embedding values

• different embeddings for different tasks

http://ruder.io/word-embeddings-2017/

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/
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http://ruder.io/word-embeddings-2017/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/


Recurrent Neural Networks

• Many identical layers with shared parameters (cells)
• ~ the same layer is applied multiple times, taking its own outputs as input

• ~ same number of layers as there are tokens

• output = hidden state – fed to the next step

• additional input – next token features

• Cell types
• basic RNN: linear + tanh

• problem: vanishing gradients

• can’t hold long recurrences

• GRU, LSTM: more complex, 
to make backpropagation 
work better
• “gates” to keep old values
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https://medium.com/@saurabh.rathor092/
simple-rnn-vs-gru-vs-lstm-difference-lies-
in-more-flexible-control-5f33e07b1e57

LSTM cell
GRU cell

basic RNN cell

hidden state
out (ℎ𝑡)

= output

hidden state
in (ℎ𝑡−1)

concat

linear
& tanh

input embedding

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57


Encoder-Decoder Networks

• Default RNN paradigm for sequences/structure prediction
• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡

• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token
• initialized by last encoder hidden state

• output: hidden state & softmax over output vocabulary + argmax

• next step: last hidden state + last generated token as input

• LSTM/GRU cells over vectors of ~ embedding size

• MT, dialogue, parsing… 
• more complex structures linearized to sequences

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

RNN RNN RNN RNN RNN RNN RNN

ℎ1 ℎ2 ℎ3 ℎ4 = 𝑠0

𝑦1

𝑠1

𝑦2

𝑠2

𝑦3

𝒔0 = 𝒉𝑇

𝑝(𝑦𝑡 𝑦1, … 𝑦𝑡−1, 𝐱 = softmax 𝒔𝑡
𝒔𝑡 = cell(𝒚𝑡−1, 𝒔𝑡−1)

𝒉0 = 𝟎
𝒉𝑡 = cell(𝒙𝑡, 𝒉𝑡−1)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129


Attention Models

• Encoder-decoder too crude for complex sequences
• the whole input crammed into a fixed-size vector (last hidden state)

• Attention = “memory” of all encoder hidden states
• weighted combination

• softmax: focuses mainly on 1 thing

• re-weighted every decoder step 
→ can focus on currently important part of input

• Self-attention – over previous decoder steps

• In RNNs: added to dec. inputs & dec. softmax layer

6NPFL123 L5 2024 https://skymind.ai/wiki/attention-mechanism-memory-network

https://skymind.ai/wiki/attention-mechanism-memory-network


Transformer

• getting rid of (encoder) recurrences
• making it faster to train, allowing bigger nets

• replace everything with blocks of
attention & feed-forward

• ⇒ needs more layers

• ⇒ needs to encode positions

• positional encoding
• adding position-dependent 

patterns to the input

• attention: more heads
• ~more attentions in parallel

• focus on multiple inputs
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(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

embeddings positional 
encoding

typically 
6+

layers

all attention
no recurrences

(depends on lower layer only)

we can put classification on top (see →→)

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Neural NLU

• Various architectures possible

• Classification
• feed-forward NN

• RNN + attention weight → softmax

• convolutional networks

• Transformer

• Sequence tagging
• RNN (LSTM/GRU) → softmax over hidden states

• default version: label bias (like MEMM)

• CRF over the RNN possible

• Transformer works the same

• Intent can be tagged at start of sentence

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
https://medium.com/swlh/nlu-for-everyone-with-bert-7bedaa609a61
(Chen et al., 2019) http://arxiv.org/abs/1902.10909
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encoder hidden states

attention
model

(Raffel & Ellis, 2016)
https://colinraffel.com/publications/iclr2016feed.pdf

softmax

inform O                O B-dept     I-dept O            B-arr

<CLS> flying        from        Tokyo       Narita          to         London

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
https://medium.com/swlh/nlu-for-everyone-with-bert-7bedaa609a61
http://arxiv.org/abs/1902.10909
https://colinraffel.com/publications/iclr2016feed.pdf


RNN-based NLU

• Same RNN-based network for both tasks

• Bidirectional encoder
• 2 encoders: LTR, RTL & concatenate hidden states

• “see the whole sentence before you start tagging”

• Decoder – tags word-by-word, inputs:
a) attention

b) input encoder hidden states  (“aligned inputs”)

c) both

• Intent classification
• softmax over last encoder state 

• + specific intent context vector (attention)

• use attention over slot hidden states
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(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

http://arxiv.org/abs/1609.01454


Transformer-based NLU

• slot tagging on top of pretrained BERT Transformer model
• BERT = Transformer trained to guess masked words (on very large data)

• further trained for NLU

• standard IOB approach

• just feed final hidden layers to softmax over tags
• classify only at 1st subword in case of split words

(don’t want tag changes mid-word)

• special start token tagged with intent

• optional CRF on top of the tagger
• for global sequence optimization
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subwords

slot tagsintent tag

start token

only 1 tag for 
whole word

(Chen et al., 2019)
http://arxiv.org/abs/1902.10909

http://arxiv.org/abs/1902.10909


Handling ASR noise

• ASR produces multiple hypotheses

• Combine & get resulting 
NLU hypotheses
• NLU: 𝑝(DA|text)

• ASR: 𝑝 text audio

• we want  𝑝(DA|audio)

• Easiest: sum it up

11NPFL123 L4 2024

𝑝 DA audio = ෍

texts

𝑃 DA text 𝑃(text|audio)

(from Filip Jurčíček’s slides)



• Alternative: use confusion networks
• per-word ASR confidence

• Word features weighed by word confidence

Handling ASR noise
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~equivalent confusion network

features:
I 0.9
hi 0.02
am 0.9
looking 1
for 1
…
I am 0.81
my am 0.063
am looking 0.9
a bar 0.3
a car 0.24
…

should be normalized
by n-gram length

(from Filip Jurčíček’s slides)

n-best list



Context

• user response can depend on last system action
• fragments/short replies 

are ambiguous without context

• → add last system DA/text into input features
• helps disambiguate

• careful – user may not play nice!
• system needs to be trained with both

alternatives in mind

13NPFL123 L4 2024

U: I’m looking for flights from JFK.
S: Where would you like to go?
U: Atlanta.

U: Actually I’d rather fly from Newark.x

inform(??=Atlanta)
inform(to_city=Atlanta)



• Dialogue management consist of:
• State update ← here we need DST

• Action selection (later)

• Dialogue State needed to remember what was said in the past
• tracking the dialogue progress

• summary of the whole dialogue history

• basis for action selection decisions

Dialogue State Tracking

14NPFL123 L5 2024

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.



Dialogue State Contents

• “All that is used when the system decides what to say next”

• User goal/preferences ~ NLU output
• slots & values provided (search constraints)

• information requested

• Past system actions
• information provided

• slots and values 

• list of venues offered

• slots confirmed

• slots requested

• Other semantic context
• user/system utterance: bye, thank you, repeat, restart etc.
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U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]

S: What time would you like to leave?

(Henderson, 2015)
https://ai.google/research/pubs/pub44018

https://ai.google/research/pubs/pub44018


• To describe possible states

• Defines all concepts in the system
• List of slots

• Possible range of values per slot 

• Possible actions per slot
• requestable, informable etc.

• Dependencies
• some concepts only applicable 

for some values of parent concepts

Ontology
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food_type – only for type=restaurant
has_parking – only for type=hotel

entity = {venue, landmark}
venue.type = {restaurant, bar,…}

(Young, 2009) 
http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf

“if entity=venue, then…”

some slot names may need disambiguation
(venue type vs. landmark type)

http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf


Problems with Dialogue State

• NLU is unreliable
• takes unreliable ASR output

• makes mistakes by itself – some utterances are ambiguous

• output might conflict with ontology

• Possible solutions:
• detect contradictions, ask for confirmation

• ignore low-confidence NLU input
• what’s “low”?

• what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state
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NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels



Belief State

• Assume we don’t know the true dialogue state
• but we can estimate a probability distribution over all possible states

• In practice: per-slot distributions

• More robust
• accumulates probability mass over multiple turns

• low confidence – if the user repeats it, we get it the 2nd time

• accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies
• but not only them – rule-based, too
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Belief State
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NLU 
(no state over turns)

dialogue state
(1-best)

belief state
(probability distributions)

this is what we want
(based on Milica Gašić’s slides)

inform(area=center) 0.6
inform(food=Danish) 0.4

turn

1.

2.

observations state response state response state response

I want a Danish 
place in the 

center

Danish
inform(food=Spanish) 0.5
inform(food=Danish) 0.4

area=center
What food 
would you 

like?

food=Spanish
Which area do 

you prefer?

What food 
would you 

like?

What food 
would you 

like?

area=center

area=center
food=Spanish

Found 3 
Spanish places 
in the center…

Did you say 
Spanish or 

Danish?

area:
center 0.6

food:
Danish 0.4

area:
center 0.6

food:
Spanish 0.5
Danish 0.44



• MDP = probabilistic control process
• model – Dynamic Bayesian Network 

• random variables & dependencies in a graph/network

• “dynamic” = structure repeats over each time step 𝑡

• 𝑠𝑡 – dialogue states = what the user wants

• 𝑎𝑡 – actions = what the system says

• 𝑟𝑡 – rewards = measure of quality
• typically slightly negative for each turn, high positive for successful finish

• 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 – transition probabilities

• Markov property – state defines everything

• Problem: we’re not sure about the dialogue state

Dialogue as a Markov Decision Process
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(from Milica Gašić’s slides)

action

state

reward



• Dialogue states are not observable
• modelled probabilistically – belief state 𝑏 𝑠 is a prob. distribution over states

• states (what the user wants) influence observations 𝑜𝑡 (what the system hears)

• Still Markovian

• 𝑏′ 𝑠′ =
1

𝑍
𝑝 𝑜 𝑠′ σ𝑠∈S𝑝 𝑠′ 𝑠, 𝑎 𝑏(𝑠)

• 𝑏(𝑠) can be modelled by an HMM

Partially Observable (PO)MDP

NPFL123 L5 2024

(from Milica Gašić’s slides)
grey = observed
white = unobserved

(from Filip Jurčíček’s slides)

state

action

observation

reward
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Naïve Generative Belief Tracking

• Using the HMM model
• estimate the transition & observation probabilities from data

• Problem: too many states
• e.g. 10 slots, 10 values each → 1010 distinct states – intractable

• Solutions:
• only track stuff that appeared in NLU

• only track 𝑛 most probable (beam)

• merge similar states

• partition the state – assume slots are independent, use per-slot beliefs
• state 𝐬 = [𝑠1, … 𝑠𝑁],  belief 𝑏 𝐬𝑡 = ς𝑖 𝑏(𝑠𝑡

𝑖)

22

𝑏 𝑠 =
1

𝑍
𝑝 𝑜𝑡 𝑠𝑡 ෍

𝑠𝑡−1∈S

𝑝 𝑠𝑡 𝑎𝑡−1, 𝑠𝑡−1 𝑏(𝑠𝑡−1)

transition probabilityobservation probability previous belief



Generative BT: Parameter Tying

• Per-slot: 𝑏 𝑠𝑡
𝑖 = σ

𝑠𝑡−1,𝑜𝑡
𝑖 𝑝(𝑜𝑡

𝑖|𝑠𝑡
𝑖)𝑝 𝑠𝑡

𝑖 𝑎𝑡−1
𝑖 , 𝑠𝑡−1

𝑖 𝑏 𝑠𝑡−1
𝑖

• Further simplification: tie most parameters
• estimates from data are unreliable anyway → basically uses 2 parameters only ☺
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𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 =

𝜃𝑇 if 𝑠𝑡
𝑖 = 𝑠𝑡−1

𝑖

1−𝜃𝑇

#values𝑖−1
otherwise

𝑝 𝑜𝑡
𝑖 𝑠𝑡

𝑖 =

𝜃𝑂𝑝(𝑜𝑡
𝑖) if 𝑜𝑡

𝑖 = 𝑠𝑡
𝑖

1−𝜃𝑂

#values𝑖−1
𝑝 𝑜𝑡

𝑖 otherwise

𝜃𝑇 = “rigidity” (bias for keeping previous values),
otherwise all value changes have the same probability

𝜃𝑂 ~ confidence in NLU

𝑝 𝑜𝑡
𝑖 = NLU output

i.e. believe in value given by NLU with 𝜃𝑂, 
distribute rest of probability equally(Žilka et al., 2013)

https://www.aclweb.org/anthology/W13-4070/

transition probabilities: observation probabilities:

transition probabilityobservation probability previous belief

𝑖-th slot

https://www.aclweb.org/anthology/W13-4070/


Basic Discriminative Belief Tracker

• Based on the previous model
• same slot independence assumption

• Even simpler – “always trust the NLU”
• this makes it parameter-free

• …and kinda rule-based

• but very fast, with reasonable performance
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𝑏 𝑠𝑡
𝑖 = ෍

𝑠𝑡−1
𝑖 ,𝑜𝑡

𝑖

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏(𝑠𝑡−1
𝑖 )

update
rule:

discriminative
model

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 =

𝑝(𝑜𝑡
𝑖) if 𝑠𝑡

𝑖 = 𝑜𝑡
𝑖 ∧ 𝑜𝑡

𝑖 ≠🤫

𝑝 𝑜𝑡
𝑖 if 𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ∧ 𝑜𝑡

𝑖 =🤫

0 otherwise

𝑏 𝑠𝑡
𝑖 =

𝑠𝑡
𝑖 =🤫: 𝑝 𝑠𝑡−1

𝑖 =🤫 𝑝(𝑜𝑡
𝑖 =🤫)

else: 𝑝 𝑜𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑝 𝑜𝑡
𝑖 =🤫 𝑝(𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 )

user silent about slot 𝑖

substitution

the rule is now deterministic

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/

“no change”

“user mentioned this value”

NLU output

“not mentioned earlier” “not mentioned now”“null value”

“mentioned now” “carry-over”“non-null”

https://www.aclweb.org/anthology/W13-4070/


Tracker types

• Generative trackers – need many assumptions to be tractable
• cannot exploit arbitrary features 

• … or they can, but not if we want to keep them tractable

• often use handcrafted parameters

• … may produce unreliable estimates

• Discriminative trackers – can use any features from dialogue history
• parameters estimated from data more easily

• generally used nowadays

• Another general distinction
• static models – encode whole history into features

• dynamic/sequence models – explicitly model dialogue as sequential
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(Williams, 2012) https://ieeexplore.ieee.org/document/6424197

x

https://ieeexplore.ieee.org/document/6424197


Static Discriminative Trackers

• Generally predict  𝑝 𝑠𝑡 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡
• any kind of classifier (SVM, LR, NN, …)

• need fixed feature vector from 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡 (where 𝑡 is arbitrary)
• current turn, cumulative (sum), sliding window (𝑘 previous turns)

• Global feature examples:
• NLU n-best size, entropy, lengths (current turn, cumulative)

• ASR scores

• Per-value 𝑣 examples:
• rank & score of hypo with 𝑣 on current NLU n-best + diff vs. top-scoring hypo

• # times 𝑣 appeared so far, sum/average confidence of that

• # negations/confirmations of 𝑣 so far

• reliability of NLU predicting 𝑣 on held-out data
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(Metallinou et al., 2013) https://www.aclweb.org/anthology/P13-1046

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073

https://www.aclweb.org/anthology/P13-1046
https://aclweb.org/anthology/W13-4073


Dynamic Discriminative Trackers

• Dialogue as a sequence 𝑝(𝑠1, … 𝑠𝑡|𝑜1, … 𝑜𝑡)

• CRF models
• similar features as static

• feature value: NLU score for the given thing (e.g. DA type + slot + value)

• target: per-slot BIO coding

27NPFL123 L5 2024 (Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345

food

phone

method
constraints,
alternatives,
finished

Persian, Portuguese

https://www.aclweb.org/anthology/W14-4345


Dynamic Neural State Trackers

• Based on RNNs (turn-level or word-level)

• Typically not using a NLU – directly ASR/words → belief

• Simple example: RNN over words + classification on hidden states
• runs over the whole dialogue history (user utterances + system actions)
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LSTM

ReLU → softmax
(per slot)

(Žilka & Jurčíček, 2015)
http://arxiv.org/abs/1507.03471

http://arxiv.org/abs/1507.03471


Summary

• Neural networks primer
• embeddings

• layers (sigmoid, tanh, ReLU)

• recurrent networks (LSTM, GRU), attention

• NN NLU examples: classifier/sequence

• Dialogue state vs. belief state

• Dialogue as (Partially observable) Markov Decision Process

• Tracker examples:
• Generative (partitioning, parameter tying)

• Discriminative (basic “rule-based”, classifier, neural)

• static vs. dynamic

• Next time (in 2 weeks!): dialogue policies
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Thanks

Contact us:
https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Henderson (2015): Machine Learning for Dialog State Tracking: A Review https://ai.google/research/pubs/pub44018
• Žilka et al. (2013): Comparison of Bayesian Discriminative and Generative Models for Dialogue State Tracking 

https://aclweb.org/anthology/W13-4070 (+David Marek’s MSc. thesis https://is.cuni.cz/webapps/zzp/detail/122733/ )
• Liu & Lane (2016): Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling 

http://arxiv.org/abs/1609.01454
• Kim & Banchs (2014): Sequential Labeling for Tracking Dynamic Dialog States 

https://www.aclweb.org/anthology/W14-4345
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No lecture next week!

https://ufaldsg.slack.com/
http://ufal.cz/npfl123
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://ai.google/research/pubs/pub44018
https://aclweb.org/anthology/W13-4070
https://is.cuni.cz/webapps/zzp/detail/122733/
http://arxiv.org/abs/1609.01454
https://www.aclweb.org/anthology/W14-4345

