
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL123 Dialogue Systems

5. NLU vol. 2 & State Tracking
https://ufal.cz/npfl123

Ondřej Dušek, Simone Balloccu, Mateusz Lango, Kristýna Klesnilová & Jan Cuřín

13. 3. 2024

https://ufal.cz/npfl123

Neural networks

• Can be used for both classification & sequence models

• Non-linear functions, composed of basic building blocks
• stacked into layers

• whole network ~ “pipeline”/“flow”

• Layers are built of activation functions:
• linear functions

• nonlinearities – sigmoid, tanh, ReLU

• softmax – probability estimates:

softmax 𝐱 𝑖 =
exp(𝑥𝑖)

σ
𝑗=1
𝐱 exp(𝑥𝑗)

• Fully differentiable – training by gradient descent
• gradients backpropagated from outputs to all parameters

• (composite function differentiation)

2NPFL123 L5 2024

https://medium.com/@shrutija
don10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092

https://playground.tensorflow.org/ – look at the internals (very simple network)

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://playground.tensorflow.org/

Neural networks – features

• You can use the same ones as for LR/SVM…
• but it’s a lot of work to code them in

• Word embeddings
• let the network learn features by itself

• input is just words (vocabulary is numbered)
• top ~50k words + <unk>, or subwords

• distributed word representation
• each word = vector of floats (~50-2000 dims.)

• part of network parameters – trained
a) random initialization

b) pretraining

• network learns words with similar usage
• they end up having close embedding values

• different embeddings for different tasks

http://ruder.io/word-embeddings-2017/

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/

NPFL123 L5 2024

http://ruder.io/word-embeddings-2017/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

Recurrent Neural Networks

• Many identical layers with shared parameters (cells)
• ~ the same layer is applied multiple times, taking its own outputs as input

• ~ same number of layers as there are tokens

• output = hidden state – fed to the next step

• additional input – next token features

• Cell types
• basic RNN: linear + tanh

• problem: vanishing gradients

• can’t hold long recurrences

• GRU, LSTM: more complex,
to make backpropagation
work better
• “gates” to keep old values

4NPFL123 L5 2024

https://medium.com/@saurabh.rathor092/
simple-rnn-vs-gru-vs-lstm-difference-lies-
in-more-flexible-control-5f33e07b1e57

LSTM cell
GRU cell

basic RNN cell

hidden state
out (ℎ𝑡)

= output

hidden state
in (ℎ𝑡−1)

concat

linear
& tanh

input embedding

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57

Encoder-Decoder Networks

• Default RNN paradigm for sequences/structure prediction
• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡

• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token
• initialized by last encoder hidden state

• output: hidden state & softmax over output vocabulary + argmax

• next step: last hidden state + last generated token as input

• LSTM/GRU cells over vectors of ~ embedding size

• MT, dialogue, parsing…
• more complex structures linearized to sequences

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

RNN RNN RNN RNN RNN RNN RNN

ℎ1 ℎ2 ℎ3 ℎ4 = 𝑠0

𝑦1

𝑠1

𝑦2

𝑠2

𝑦3

𝒔0 = 𝒉𝑇

𝑝(𝑦𝑡 𝑦1, … 𝑦𝑡−1, 𝐱 = softmax 𝒔𝑡
𝒔𝑡 = cell(𝒚𝑡−1, 𝒔𝑡−1)

𝒉0 = 𝟎
𝒉𝑡 = cell(𝒙𝑡, 𝒉𝑡−1)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Attention Models

• Encoder-decoder too crude for complex sequences
• the whole input crammed into a fixed-size vector (last hidden state)

• Attention = “memory” of all encoder hidden states
• weighted combination

• softmax: focuses mainly on 1 thing

• re-weighted every decoder step
→ can focus on currently important part of input

• Self-attention – over previous decoder steps

• In RNNs: added to dec. inputs & dec. softmax layer

6NPFL123 L5 2024 https://skymind.ai/wiki/attention-mechanism-memory-network

https://skymind.ai/wiki/attention-mechanism-memory-network

Transformer

• getting rid of (encoder) recurrences
• making it faster to train, allowing bigger nets

• replace everything with blocks of
attention & feed-forward

• ⇒ needs more layers

• ⇒ needs to encode positions

• positional encoding
• adding position-dependent

patterns to the input

• attention: more heads
• ~more attentions in parallel

• focus on multiple inputs

7NPFL123 L5 2024

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

embeddings positional
encoding

typically
6+

layers

all attention
no recurrences

(depends on lower layer only)

we can put classification on top (see →→)

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Neural NLU

• Various architectures possible

• Classification
• feed-forward NN

• RNN + attention weight → softmax

• convolutional networks

• Transformer

• Sequence tagging
• RNN (LSTM/GRU) → softmax over hidden states

• default version: label bias (like MEMM)

• CRF over the RNN possible

• Transformer works the same

• Intent can be tagged at start of sentence

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
https://medium.com/swlh/nlu-for-everyone-with-bert-7bedaa609a61
(Chen et al., 2019) http://arxiv.org/abs/1902.10909

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

encoder hidden states

attention
model

(Raffel & Ellis, 2016)
https://colinraffel.com/publications/iclr2016feed.pdf

softmax

inform O O B-dept I-dept O B-arr

<CLS> flying from Tokyo Narita to London

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
https://medium.com/swlh/nlu-for-everyone-with-bert-7bedaa609a61
http://arxiv.org/abs/1902.10909
https://colinraffel.com/publications/iclr2016feed.pdf

RNN-based NLU

• Same RNN-based network for both tasks

• Bidirectional encoder
• 2 encoders: LTR, RTL & concatenate hidden states

• “see the whole sentence before you start tagging”

• Decoder – tags word-by-word, inputs:
a) attention

b) input encoder hidden states (“aligned inputs”)

c) both

• Intent classification
• softmax over last encoder state

• + specific intent context vector (attention)

• use attention over slot hidden states

9NPFL123 L5 2024

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

http://arxiv.org/abs/1609.01454

Transformer-based NLU

• slot tagging on top of pretrained BERT Transformer model
• BERT = Transformer trained to guess masked words (on very large data)

• further trained for NLU

• standard IOB approach

• just feed final hidden layers to softmax over tags
• classify only at 1st subword in case of split words

(don’t want tag changes mid-word)

• special start token tagged with intent

• optional CRF on top of the tagger
• for global sequence optimization

10NPFL123 L5 2024

subwords

slot tagsintent tag

start token

only 1 tag for
whole word

(Chen et al., 2019)
http://arxiv.org/abs/1902.10909

http://arxiv.org/abs/1902.10909

Handling ASR noise

• ASR produces multiple hypotheses

• Combine & get resulting
NLU hypotheses
• NLU: 𝑝(DA|text)

• ASR: 𝑝 text audio

• we want 𝑝(DA|audio)

• Easiest: sum it up

11NPFL123 L4 2024

𝑝 DA audio = ෍

texts

𝑃 DA text 𝑃(text|audio)

(from Filip Jurčíček’s slides)

• Alternative: use confusion networks
• per-word ASR confidence

• Word features weighed by word confidence

Handling ASR noise

12NPFL123 L4 2024

~equivalent confusion network

features:
I 0.9
hi 0.02
am 0.9
looking 1
for 1
…
I am 0.81
my am 0.063
am looking 0.9
a bar 0.3
a car 0.24
…

should be normalized
by n-gram length

(from Filip Jurčíček’s slides)

n-best list

Context

• user response can depend on last system action
• fragments/short replies

are ambiguous without context

• → add last system DA/text into input features
• helps disambiguate

• careful – user may not play nice!
• system needs to be trained with both

alternatives in mind

13NPFL123 L4 2024

U: I’m looking for flights from JFK.
S: Where would you like to go?
U: Atlanta.

U: Actually I’d rather fly from Newark.x

inform(??=Atlanta)
inform(to_city=Atlanta)

• Dialogue management consist of:
• State update ← here we need DST

• Action selection (later)

• Dialogue State needed to remember what was said in the past
• tracking the dialogue progress

• summary of the whole dialogue history

• basis for action selection decisions

Dialogue State Tracking

14NPFL123 L5 2024

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.

Dialogue State Contents

• “All that is used when the system decides what to say next”

• User goal/preferences ~ NLU output
• slots & values provided (search constraints)

• information requested

• Past system actions
• information provided

• slots and values

• list of venues offered

• slots confirmed

• slots requested

• Other semantic context
• user/system utterance: bye, thank you, repeat, restart etc.

15NPFL123 L5 2024

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]

S: What time would you like to leave?

(Henderson, 2015)
https://ai.google/research/pubs/pub44018

https://ai.google/research/pubs/pub44018

• To describe possible states

• Defines all concepts in the system
• List of slots

• Possible range of values per slot

• Possible actions per slot
• requestable, informable etc.

• Dependencies
• some concepts only applicable

for some values of parent concepts

Ontology

16NPFL123 L5 2024

food_type – only for type=restaurant
has_parking – only for type=hotel

entity = {venue, landmark}
venue.type = {restaurant, bar,…}

(Young, 2009)
http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf

“if entity=venue, then…”

some slot names may need disambiguation
(venue type vs. landmark type)

http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf

Problems with Dialogue State

• NLU is unreliable
• takes unreliable ASR output

• makes mistakes by itself – some utterances are ambiguous

• output might conflict with ontology

• Possible solutions:
• detect contradictions, ask for confirmation

• ignore low-confidence NLU input
• what’s “low”?

• what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state

17NPFL123 L5 2024

NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels

Belief State

• Assume we don’t know the true dialogue state
• but we can estimate a probability distribution over all possible states

• In practice: per-slot distributions

• More robust
• accumulates probability mass over multiple turns

• low confidence – if the user repeats it, we get it the 2nd time

• accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies
• but not only them – rule-based, too

18NPFL123 L5 2024

Belief State

19NPFL123 L5 2024

NLU
(no state over turns)

dialogue state
(1-best)

belief state
(probability distributions)

this is what we want
(based on Milica Gašić’s slides)

inform(area=center) 0.6
inform(food=Danish) 0.4

turn

1.

2.

observations state response state response state response

I want a Danish
place in the

center

Danish
inform(food=Spanish) 0.5
inform(food=Danish) 0.4

area=center
What food
would you

like?

food=Spanish
Which area do

you prefer?

What food
would you

like?

What food
would you

like?

area=center

area=center
food=Spanish

Found 3
Spanish places
in the center…

Did you say
Spanish or

Danish?

area:
center 0.6

food:
Danish 0.4

area:
center 0.6

food:
Spanish 0.5
Danish 0.44

• MDP = probabilistic control process
• model – Dynamic Bayesian Network

• random variables & dependencies in a graph/network

• “dynamic” = structure repeats over each time step 𝑡

• 𝑠𝑡 – dialogue states = what the user wants

• 𝑎𝑡 – actions = what the system says

• 𝑟𝑡 – rewards = measure of quality
• typically slightly negative for each turn, high positive for successful finish

• 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 – transition probabilities

• Markov property – state defines everything

• Problem: we’re not sure about the dialogue state

Dialogue as a Markov Decision Process

20NPFL123 L5 2024

(from Milica Gašić’s slides)

action

state

reward

• Dialogue states are not observable
• modelled probabilistically – belief state 𝑏 𝑠 is a prob. distribution over states

• states (what the user wants) influence observations 𝑜𝑡 (what the system hears)

• Still Markovian

• 𝑏′ 𝑠′ =
1

𝑍
𝑝 𝑜 𝑠′ σ𝑠∈S𝑝 𝑠′ 𝑠, 𝑎 𝑏(𝑠)

• 𝑏(𝑠) can be modelled by an HMM

Partially Observable (PO)MDP

NPFL123 L5 2024

(from Milica Gašić’s slides)
grey = observed
white = unobserved

(from Filip Jurčíček’s slides)

state

action

observation

reward

21

Naïve Generative Belief Tracking

• Using the HMM model
• estimate the transition & observation probabilities from data

• Problem: too many states
• e.g. 10 slots, 10 values each → 1010 distinct states – intractable

• Solutions:
• only track stuff that appeared in NLU

• only track 𝑛 most probable (beam)

• merge similar states

• partition the state – assume slots are independent, use per-slot beliefs
• state 𝐬 = [𝑠1, … 𝑠𝑁], belief 𝑏 𝐬𝑡 = ς𝑖 𝑏(𝑠𝑡

𝑖)

22

𝑏 𝑠 =
1

𝑍
𝑝 𝑜𝑡 𝑠𝑡 ෍

𝑠𝑡−1∈S

𝑝 𝑠𝑡 𝑎𝑡−1, 𝑠𝑡−1 𝑏(𝑠𝑡−1)

transition probabilityobservation probability previous belief

Generative BT: Parameter Tying

• Per-slot: 𝑏 𝑠𝑡
𝑖 = σ

𝑠𝑡−1,𝑜𝑡
𝑖 𝑝(𝑜𝑡

𝑖|𝑠𝑡
𝑖)𝑝 𝑠𝑡

𝑖 𝑎𝑡−1
𝑖 , 𝑠𝑡−1

𝑖 𝑏 𝑠𝑡−1
𝑖

• Further simplification: tie most parameters
• estimates from data are unreliable anyway → basically uses 2 parameters only ☺

23NPFL123 L5 2024

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 =

𝜃𝑇 if 𝑠𝑡
𝑖 = 𝑠𝑡−1

𝑖

1−𝜃𝑇

#values𝑖−1
otherwise

𝑝 𝑜𝑡
𝑖 𝑠𝑡

𝑖 =

𝜃𝑂𝑝(𝑜𝑡
𝑖) if 𝑜𝑡

𝑖 = 𝑠𝑡
𝑖

1−𝜃𝑂

#values𝑖−1
𝑝 𝑜𝑡

𝑖 otherwise

𝜃𝑇 = “rigidity” (bias for keeping previous values),
otherwise all value changes have the same probability

𝜃𝑂 ~ confidence in NLU

𝑝 𝑜𝑡
𝑖 = NLU output

i.e. believe in value given by NLU with 𝜃𝑂,
distribute rest of probability equally(Žilka et al., 2013)

https://www.aclweb.org/anthology/W13-4070/

transition probabilities: observation probabilities:

transition probabilityobservation probability previous belief

𝑖-th slot

https://www.aclweb.org/anthology/W13-4070/

Basic Discriminative Belief Tracker

• Based on the previous model
• same slot independence assumption

• Even simpler – “always trust the NLU”
• this makes it parameter-free

• …and kinda rule-based

• but very fast, with reasonable performance

24NPFL123 L5 2024

𝑏 𝑠𝑡
𝑖 = ෍

𝑠𝑡−1
𝑖 ,𝑜𝑡

𝑖

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏(𝑠𝑡−1
𝑖)

update
rule:

discriminative
model

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 =

𝑝(𝑜𝑡
𝑖) if 𝑠𝑡

𝑖 = 𝑜𝑡
𝑖 ∧ 𝑜𝑡

𝑖 ≠🤫

𝑝 𝑜𝑡
𝑖 if 𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ∧ 𝑜𝑡

𝑖 =🤫

0 otherwise

𝑏 𝑠𝑡
𝑖 =

𝑠𝑡
𝑖 =🤫: 𝑝 𝑠𝑡−1

𝑖 =🤫 𝑝(𝑜𝑡
𝑖 =🤫)

else: 𝑝 𝑜𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑝 𝑜𝑡
𝑖 =🤫 𝑝(𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖)

user silent about slot 𝑖

substitution

the rule is now deterministic

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/

“no change”

“user mentioned this value”

NLU output

“not mentioned earlier” “not mentioned now”“null value”

“mentioned now” “carry-over”“non-null”

https://www.aclweb.org/anthology/W13-4070/

Tracker types

• Generative trackers – need many assumptions to be tractable
• cannot exploit arbitrary features

• … or they can, but not if we want to keep them tractable

• often use handcrafted parameters

• … may produce unreliable estimates

• Discriminative trackers – can use any features from dialogue history
• parameters estimated from data more easily

• generally used nowadays

• Another general distinction
• static models – encode whole history into features

• dynamic/sequence models – explicitly model dialogue as sequential

25NPFL123 L5 2024

(Williams, 2012) https://ieeexplore.ieee.org/document/6424197

x

https://ieeexplore.ieee.org/document/6424197

Static Discriminative Trackers

• Generally predict 𝑝 𝑠𝑡 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡
• any kind of classifier (SVM, LR, NN, …)

• need fixed feature vector from 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡 (where 𝑡 is arbitrary)
• current turn, cumulative (sum), sliding window (𝑘 previous turns)

• Global feature examples:
• NLU n-best size, entropy, lengths (current turn, cumulative)

• ASR scores

• Per-value 𝑣 examples:
• rank & score of hypo with 𝑣 on current NLU n-best + diff vs. top-scoring hypo

• # times 𝑣 appeared so far, sum/average confidence of that

• # negations/confirmations of 𝑣 so far

• reliability of NLU predicting 𝑣 on held-out data

26NPFL123 L5 2024

(Metallinou et al., 2013) https://www.aclweb.org/anthology/P13-1046

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073

https://www.aclweb.org/anthology/P13-1046
https://aclweb.org/anthology/W13-4073

Dynamic Discriminative Trackers

• Dialogue as a sequence 𝑝(𝑠1, … 𝑠𝑡|𝑜1, … 𝑜𝑡)

• CRF models
• similar features as static

• feature value: NLU score for the given thing (e.g. DA type + slot + value)

• target: per-slot BIO coding

27NPFL123 L5 2024 (Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345

food

phone

method
constraints,
alternatives,
finished

Persian, Portuguese

https://www.aclweb.org/anthology/W14-4345

Dynamic Neural State Trackers

• Based on RNNs (turn-level or word-level)

• Typically not using a NLU – directly ASR/words → belief

• Simple example: RNN over words + classification on hidden states
• runs over the whole dialogue history (user utterances + system actions)

28NPFL123 L5 2024

LSTM

ReLU → softmax
(per slot)

(Žilka & Jurčíček, 2015)
http://arxiv.org/abs/1507.03471

http://arxiv.org/abs/1507.03471

Summary

• Neural networks primer
• embeddings

• layers (sigmoid, tanh, ReLU)

• recurrent networks (LSTM, GRU), attention

• NN NLU examples: classifier/sequence

• Dialogue state vs. belief state

• Dialogue as (Partially observable) Markov Decision Process

• Tracker examples:
• Generative (partitioning, parameter tying)

• Discriminative (basic “rule-based”, classifier, neural)

• static vs. dynamic

• Next time (in 2 weeks!): dialogue policies

29

Thanks

Contact us:
https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Henderson (2015): Machine Learning for Dialog State Tracking: A Review https://ai.google/research/pubs/pub44018
• Žilka et al. (2013): Comparison of Bayesian Discriminative and Generative Models for Dialogue State Tracking

https://aclweb.org/anthology/W13-4070 (+David Marek’s MSc. thesis https://is.cuni.cz/webapps/zzp/detail/122733/)
• Liu & Lane (2016): Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling

http://arxiv.org/abs/1609.01454
• Kim & Banchs (2014): Sequential Labeling for Tracking Dynamic Dialog States

https://www.aclweb.org/anthology/W14-4345

30NPFL123 L5 2024

No lecture next week!

https://ufaldsg.slack.com/
http://ufal.cz/npfl123
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://ai.google/research/pubs/pub44018
https://aclweb.org/anthology/W13-4070
https://is.cuni.cz/webapps/zzp/detail/122733/
http://arxiv.org/abs/1609.01454
https://www.aclweb.org/anthology/W14-4345

