NPFL123 Dialogue Systems 4. Language Understanding vol. 1 (non-neural)

https://ufal.cz/npfl123

Ondřej Dušek, Simone Balloccu, Mateusz Lango, Kristýna Klesnilová & Jan Cuřín 13. 3. 2024

Natural Language Understanding

- words → meaning
 - whatever "meaning" is can be different tasks
 - typically structured, explicit representation
- alternative names/close tasks:
 - spoken language understanding
 - semantic decoding/parsing
- integral part of dialogue systems, also explored elsewhere
 - stand-alone semantic parsers
 - other applications:
 - human-robot interaction
 - question answering
 - machine translation (not so much nowadays)

NLU Challenges

non-grammaticality

find something cheap for kids should be allowed

- disfluencies
 - hesitations pauses, fillers, repetitions
 - fragments
 - self-repairs (~6%!)
- ASR errors

I'm looking for a for a chip Chinese rest or rant

- synonymy
- out-of-domain utterances

oh yeah I've heard about that place my son was there last month

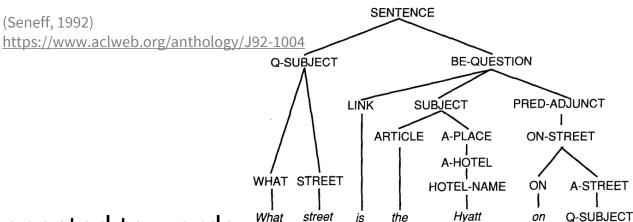
uhm I want something in the west the west part of town uhm find something uhm something cheap no I mean moderate uhm I'm looking for a cheap

Chinese city centre
uhm I've been wondering if you could find me
a restaurant that has Chinese food close to
the city centre please

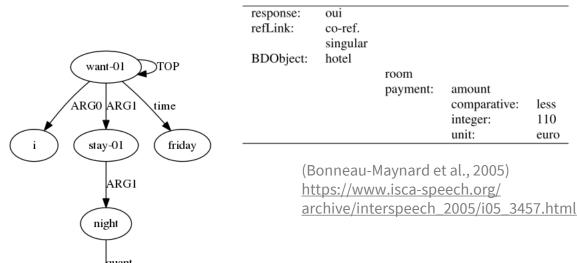
Semantic representations

- syntax/semantic trees
 - typical for standalone semantic parsing
 - different variations
- frames
 - technically also trees, but not directly connected to words
 - (mostly older) DSs, some standalone parsers
- graphs (AMR)
 - more of a toy task, but popular
- dialogue acts = intent + slots & values
 - flat no hierarchy
 - most DSs nowadays

inform(date=Friday, stay="2 nights")



oui l'hôtel don't le prix ne dépasse pas cent dix euros



(Damonte et al., 2017)

I want to stay 2 nights from Friday

NLU basic approaches

For trees/frames/graphs:

- grammar-based parsing
 - handwritten/probabilistic grammars & chart parsing algorithms
- statistical
 - inducing structure using machine learning
 - grammar is implicit (training treebanks)

For DAs (shallow parsing):

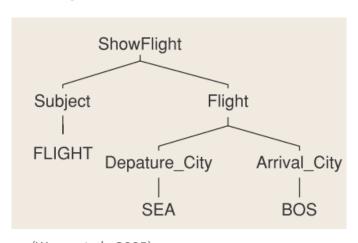
- classification
- sequence labelling
- both options can be rule-based or statistical

Grammars vs. shallow parsing

Grammars are:

- more expressive
 - hierarchical structure better captures relations
- harder to maintain
 - sparser
 - harder to build rules by hand
 - statistical parsers need more data
 - training data is harder to get
- more hardware-hungry
 - chart parsing: $O(n^3)$, shallow: O(n) for simplest approaches
- more brittle
 - shallow parsing is typically less sensitive to ASR errors, variation, etc.

Show me flights from Seattle to Boston

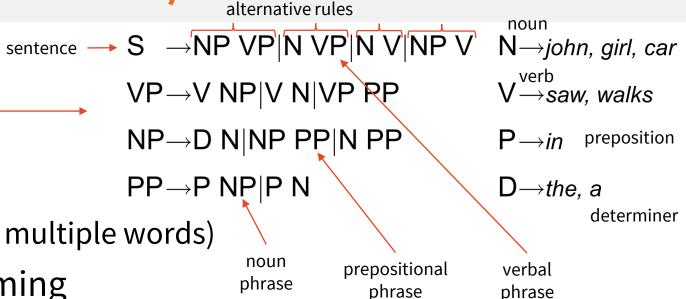


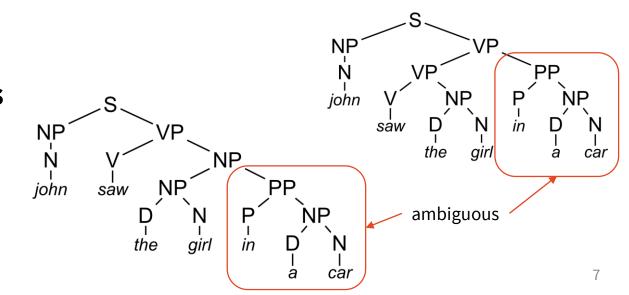
(Wang et al., 2005) http://ieeexplore.ieee.org/document/1511821/

inform(from=SEA, to=BOS)

Grammars: CFG (Context-free Grammar)

- Simple recursive grammar
 - rules: $X \rightarrow ABC$
 - splitting a phrase into adjacent parts
 - **terminals** = words
 - non-terminals = phrases (spanning multiple words)
- parsable using dynamic programming
 - (chart parsing)
- too simple for full natural language
 - but may be OK for a limited domain
 - especially with probabilistic extensions





CFG: Phoenix Parser (ATIS, 90's)

- CFG hierarchy based on semantic frames
 - Frames → slots / other frames
 - multiple CFGs, one per slot
- Robustness attempts
 - ignore stuff not belonging to any frame
- Chart parsing
 - left to right
 - maximize coverage
 - minimize # of different slots

```
Case Frame

Frame: FlightInfo
Slots:
   [List]
   [Arrive Location]
   [Depart Date Range]
   [Depart Location]
```

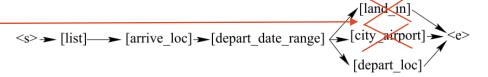
```
[Depart Location] \rightarrow LEAVE from ENT

LEAVE \rightarrow leaving | departing | \emptyset

ENT \rightarrow <city> | <airport>
```

I would like to go to Boston tomorrow from San Francisco

all networks matching ____ a span are added to parse chart, they're pruned afterwards



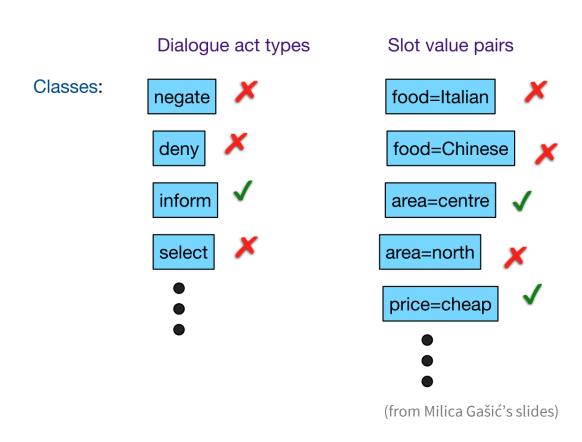
NLU as classification

- using DAs treating them as a set of semantic concepts
 - concepts:
 - intent
 - slot-value pair
 - binary classification: is concept Y contained in utterance X?
 - independent for each concept
- consistency problems
 - conflicting intents (e.g. *affirm* + *negate*)
 - conflicting values (e.g. kids-allowed=yes + kids-allowed=no)
 - need to be solved externally, e.g. based on classifier confidence

NLU as classification

- classification: features → labels (classes)
 - here: classes are binary (-1/1 or 0/1)
 - one classifier per concept
- features
 - binary is X present?
 or count how many X's are present?
 - words
 - n-grams
 - word pairs/triples (position-independent)
 - regex
 - presence of named entities

I'm looking for something cheap in the city centre.



NER + delexicalization

Approach:

- 1) identify slot values/named entities
- 2) delexicalize = replace them with placeholders (indicating entity type)
 - or add the NE tags as more features for classification
- generally needed for NLU as classification
 - otherwise in-domain data is too sparse
 - this can vastly reduce the number of concepts to classify & classifiers
- NER is a problem on its own
 - but general-domain NER tools may need to be adapted
 - added gazetteers with in-domain names
 - in-domain gazetteers alone may be enough
 - NE supplemented by NE linking/disambiguation (usually not needed in DS)

What is the phone number for Golden Dragon? What is the phone number for <restaurant-name>?

I'm looking for a Japanese restaurant in Notting Hill. I'm looking for a **<food>** restaurant in **<area>**.

NLU Classifiers

- note that data is usually scarce!
- handcrafted / rules
 - simple mapping: word/n-gram/regex match → concept
 - can work really well for a limited domain
 - no training data, no retraining needed (tweaking on the go)
- logistic regression
- **SVM** (support vector machine)
- neural nets
 - different, "automatic" features (embeddings, see later)
 - only applicable if a lot of data is available

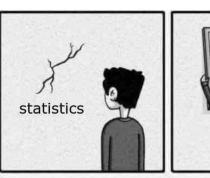
Slot filling as sequence tagging

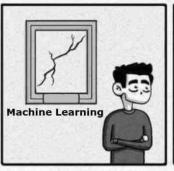
- get slot values directly "automatic" delexicalization
 - each word classified
 - classes = slots & IOB format (inside-outside-beginning)
 - slot values taken from the text (where a slot is tagged)
 - NER-like approach
- rules + classifiers kinda still work
 - a) keywords/regexes found at specific position
 - b) apply classifier to each word in the sentence left-to-right
 - problem: overall consistency
 - slots found elsewhere in the sentence might influence what's classified now
- solution: structured/sequence prediction
 - HMM, MEMM, CRF...

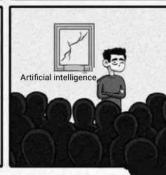
Machine Learning (Grossly Oversimplified)

ML is basically function approximation

- function: data (features) → labels
 - discrete labels = classification
 - continuous labels = regression
- function shape
 - this is where different algorithms differ
 - neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh...)
- training/learning = adjusting function parameters to minimize error
- no-machine-learning-is-not-just-glorifiedstatistics-26d3952234e3
- **supervised** learning = based on data + labels given in advance
- reinforcement learning = based on exploration & rewards given online



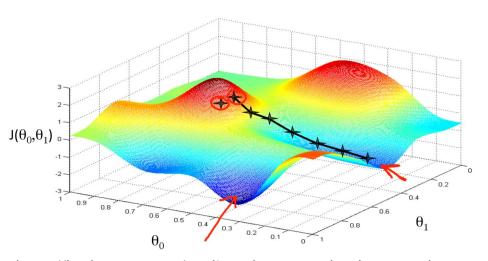




https://towardsdatascience.com/

Machine Learning (Grossly Oversimplified)

- training- gradient descent methods
 - minimizing a cost function
 (notion of error given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum derivative gives the direction
 - learning rate = how fast do we go (needs to be tuned)
- gradient typically computed over mini-batches
 - random bunches of a few training instances
 - not as erratic as using just 1 instance, not so slow as computing over whole data
 - stochastic gradient descent
 - improvements: AdaGrad, Adam [...]
 - cleverly adjusting the learning rate



Digression: Generative vs. Discriminative Models

What they learn:

- Generative whole distribution p(x, y)
- **Discriminative** just decision boundaries between classes ~ p(y|x)

To predict p(y|x)...

Generative models

- Assume some functional form for p(y), p(x|y)
- Estimate parameters of p(y), p(x|y) directly from training data
- Use Bayes rule to calculate p(y|x)

Discriminative models

- Assume some functional form for p(y|x)
- Estimate parameters of p(y|x) directly from training data

they get the same thing, but in different ways

Generative vs. Discriminative Models

Example: elephants vs. dogs http://cs229.stanford.edu/notes/cs229-notes2.pdf

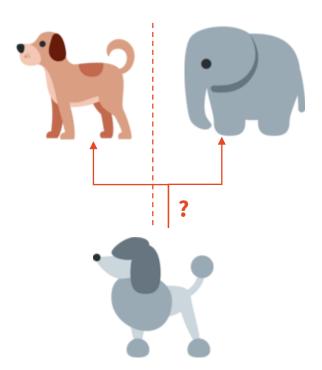
• Discriminative:

- establish decision boundary (~find distinctive features)
- classification: just check on which side we are

Generative

- ~ 2 models what elephants & dogs look like
- classification: match against the two models

- Discriminative typically better results
- Generative might be more robust, more versatile
 - e.g. predicting the other way, actually generating likely (x, y)'s



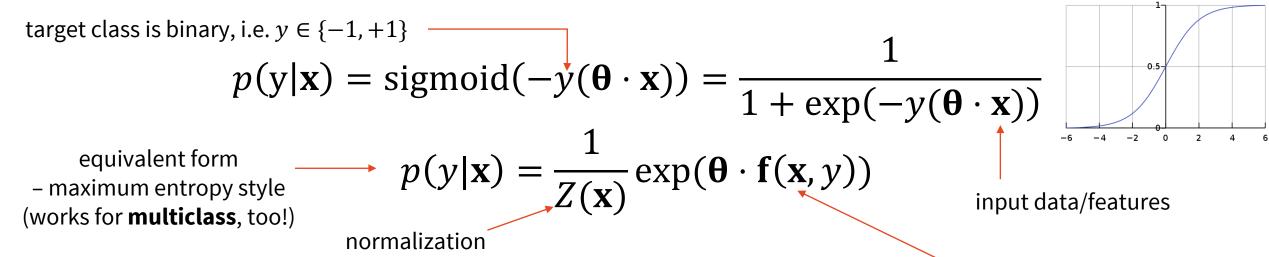
NPFL123 L5 2024

Logistic Regression (LR, also called Maximum Entropy Classifier)

• modeling using the sigmoid (logistic) function with parameters $oldsymbol{ heta}$

sigmoid

18

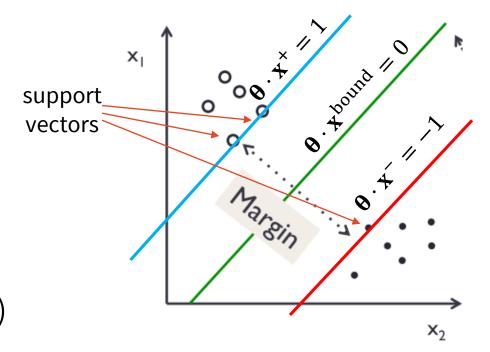


• despite the name, it's a classifier

- generalization: **feature functions** vector (some fire for each value of y)
- very basic, but powerful with the right features
- trained by gradient descent (logistic/cross entropy loss)
- maximum entropy estimate ("most uniform model given data")

Support-Vector Machines (SVMs)

- geometric intuition: features ~ coordinates in multidimensional space
- trying to separate classes with a hyperplane (decision boundary)
- idea: let's find a boundary with maximum margin
 - i.e. maximize distance between classes → best generalization
 - most likely to classify new example correctly
 - this boundary is given by support vectors (instances that are closest to it)
- margin width is $\frac{2}{||\boldsymbol{\theta}||}$ \rightarrow we minimize $||\boldsymbol{\theta}||^2$
- SVM score: $g(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x}$
 - 0 at the boundary, +1/-1 for support vectors
 - sign of the score gives the class (positive/negative)



 x_1, x_2 = features

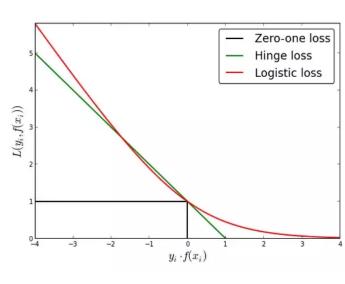
o = positive class

(from Aikaterini Tzompanaki's slides)

• = negative class

SVM vs. Logistic Regression

- soft-margin SVM for non-separable cases
 - non-separable = messy data, can't separate with a hyperplane
 - "soft" = weighing correct classification (hinge loss) & margin size
- model: $\min_{\boldsymbol{\theta}} \lambda ||\boldsymbol{\theta}||^2 + \sum_i \max\{0, 1 y_i \boldsymbol{\theta} \cdot \mathbf{x}_i\}$ regularization weight



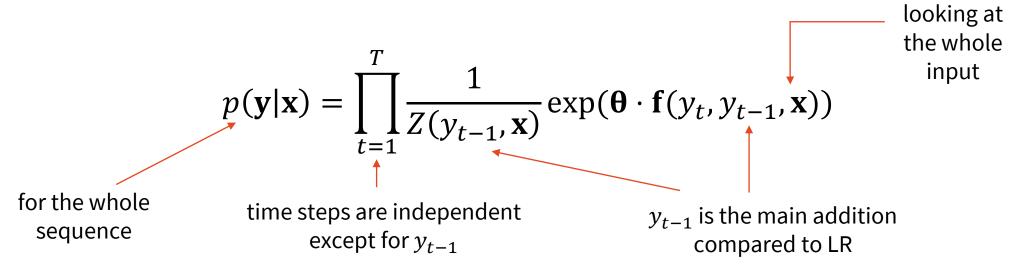
- regularized logistic regression for better generalization
 - preventing overfitting to training data trying to keep parameter values low
 - logistic loss
 - model: $\min_{\boldsymbol{\theta}} \lambda ||\boldsymbol{\theta}||^2 + \sum_i \log(1 + \exp(1 y_i \boldsymbol{\theta} \cdot \mathbf{x}_i))$
- the main difference is the loss
 - hinge loss should be marginally better for classification, but it depends

Classification example

features (x) I want	1 1	I want to go from from Newark to London City next Friday I want to go from from <airport-1> to <airport-2> next <day-1></day-1></airport-2></airport-1>			
to	3				
go	1				
from	2	weights: weights define			
<airport-1></airport-1>	1	intent=search_flights $oldsymbol{ heta}_{ ext{SF}}$ different classifiers			
•••		intent=request_price $oldsymbol{ heta}_{ ext{RP}}$			
him	0	•••			
price	0	from_airport= <airport-1> θ_{FA1}</airport-1>			
tell	0	\			
•••					
l want	1				
want to	1	SVM: $\theta_{\text{FA1}} \cdot \mathbf{x} = +3.4347$ \rightarrow found from_airport=Newark			
to go	1	LR: sigmoid($\theta_{\text{FA1}} \cdot \mathbf{x}$) = 0.883 \rightarrow found from_airport=Newark (conf. = 0.883)			
••••					
from <airport-1></airport-1>	1				

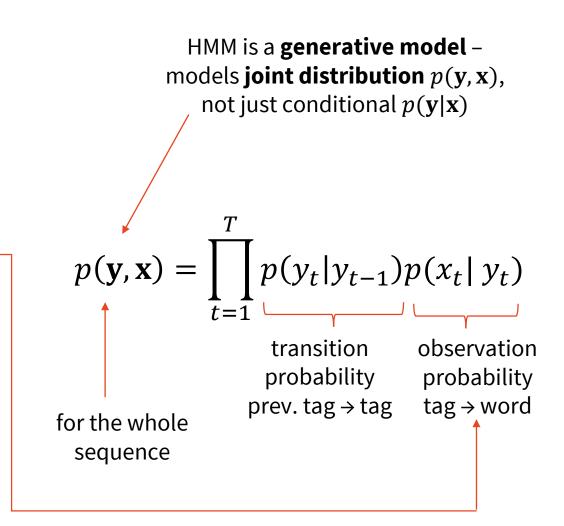
Maximum Entropy Markov Model (MEMM)

- Looking at past classifications when making next ones
 - LR + a simple addition to the feature set
- Whole history would be too sparse/complex
 - → Markov assumption: only the most recent matters
 - 1st order MM: just the last one (←this is what we show here)
 - nth order MM: n most recent ones
- still not modelling the sequence globally



Hidden Markov Model (HMM)

- Modelling the sequence as a whole
- Very basic model:
 - "tag depends on word + previous tag"
- Markov assumption, again
- "Hidden" reverse viewpoint:
 - "tags are hidden, but they influence the words on the surface"
- Inference Viterbi algorithm
 - we can get the globally best tagging



HMM vs. MEMM

- MEMM:
 - any feature functions, as in LR
 - local normalization does not model whole sequences, just locally
 - label bias problem
 - training: you know the correct labels
 - inference: one error can lead to a series of errors
- HMM:
 - global normalization for p(y|x) over all y's
 - modelling sequences as a whole
 - very boring & limited feature functions
- how about best of both?

Linear-Chain Conditional Random Field (CRF)

- HMM + more complex feature functions
- MEMM + global sequence modelling

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \exp(\mathbf{\theta} \cdot \mathbf{f}(y_t, y_{t-1}, \mathbf{x}))$$
feature functions looking at whole input (otherwise like MEMM)

- state-of-the art for many sequence tagging tasks (incl. NLU)
 - until NNs took over
 - used also in conjunction with NNs
- global normalization makes it slow to train

Sequence tagging example

ASR: I want to go from from Newark to London City next Friday

Previous tags: OO OOO B-from_airport O

current position:

what's the class for *London*?

features (x):

in_sent=l	1	<i>cur</i> =London	1	prev_tag=0 1
<i>in_sent</i> =want	1	<i>cur</i> =him	0	<i>prev_tag</i> =B-price 0
<i>in_sent</i> =to	3	•••		†
in_sent=go	1	<i>prev</i> =to	1	
•••		<i>prev</i> =want	0	
<i>in_sent</i> =him	0	<i>prev</i> =price	0	
<i>in_sent</i> =price	0	•••		
•••		<i>cur</i> =to London	1	using y_{t-1}
<i>in_sent</i> =I want	1	<i>prev</i> =Newark to	1	
<i>in_sent</i> =want to	1	•••		
<i>in_sent</i> =to go	1			

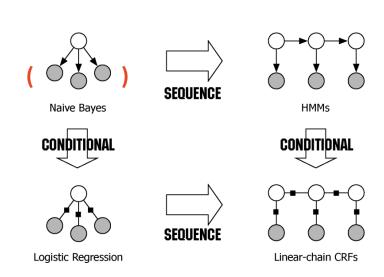
HMM considers only these

MEMM: looks at *London*, ignores that it also needs to tag *City* later → likely to tag as B-to_city

CRF: also considers future tags, more likely to tag *London City* as B-to_airport l-to_airport

Summary

- NLU can be tricky
 - bad grammar, fragments, synonymy, ASR errors ...
- Grammars, frames, graph representation
 - rule-based or statistical structure induction
 - more expressive, but harder not so much in limited-domain systems
- Shallow parsing
 - dialogue acts: intent + slots & labels
 - rules keyword spotting, regex
 - classification (LR, SVM)
 - sequence tagging (MEMM, HMM, CRF)
- Coming up: neural NLU & dialogue state tracking



Thanks

Contact us:

https://ufaldsg.slack.com/ odusek@ufal.mff.cuni.cz

Skype/Meet/Zoom (by agreement)

Next lecture in 10 mins

Get the slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Raymond Mooney's slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Hao Fang's slides (University of Washington): https://hao-fang.github.io/ee596 spr2018/syllabus.html
- Aikaterini Tzompanaki's slides (University of Cergy-Pontoise): https://perso-etis.ensea.fr/tzompanaki/teaching.html
- Pierre Lison's slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/
- Sutton & McCallum Introduction to Conditional Random Fields: https://arxiv.org/abs/1011.4088
- Andrew McCallum's slides (U. of Massatchusets Amherst): https://people.cs.umass.edu/~mccallum/courses/inlp2007/

Hidden Markov Model vs. MEMM (additional explanation, just FYI, not required)

Rewrite HMM so it looks more like MEMM + get conditional probability

