NPFL123 Dialogue Systems
12. Chatbots
(non-task-oriented dialogue)

https://ufal.cz/npfl123

Ondřej Dušek, Patrícia Schmidlová, Vojtěch Hudeček & Jan Cuřín
22. 5. 2023
Chatbots / Chatterbots

• dialogue systems for **open-domain** dialogue / chitchat
• **non-task-oriented**
 • main goal: keep the user entertained
 • standard evaluation: conversation length, user engagement
• (more or less) different architecture
 • may have the same structure as task oriented (NLU → DM → NLG)
 • often simpler, integrated
 • it’s hard to have explicit NLU for open domain
 • no task to guide a meaning formalism
 • some of them don’t need a DB connection (but some use it)
• beware: **anything** is called chatbots nowadays
 • this lecture: only **chatterbots / non-task-oriented systems**
Chatbot tests

• **Turing test** (1950)
 - evaluator & 2 conversations, with a machine & human, text-only
 - needs to tell which is which
 - does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed

• **Loebner Prize** (1990+)
 - Turing test style, first topic-restricted, 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt – creates hype but no real progress

• **Amazon Alexa Prize** (2017+)
 - no pretending it’s human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted (“on popular topics”)
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of “would talk again”
Chatbot history

- natural communication – important part of general AI
 - concerned people even before modern computers (cf. Turing)
- 1st chatbot: \textbf{Eliza} (1966)
 - rule-based, simulates a therapist
- \textbf{Parry} (1972)
 - similar, simulates a person with paranoid schizophrenia
 - was able to fool psychotherapists in a Turing test
- Not much progress until end of 1990’s – just better rules
 - research focused on task-oriented systems
- 1990’s/2000’s – retrieval-based systems
- 2015+ – huge surge of generative models
Notable/hyped chatbots

• **Pandorabots/AIML** – framework for rule-based chatbots
 • A.L.I.C.E. bot – basic implementation, ~better Eliza
 • people can reuse & add their own personality
 • Mitsuku (2013+) – multiple times Loebner Prize winner

• **Jabberwacky/Cleverbot** (1997+)
 • attempts to learn from users
 • remembers & reuses past conversations (>100M)
 • also won Loebner Prize multiple times

• **Xiaolce** (2014+)
 • Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 • on social networks (mainly Weibo)
 • also learns from users & reuses user inputs
 • partly rule-based, focus on emotions
 • a lot of people bonding with “her”

https://home.pandorabots.com/home.html
https://www.cleverbot.com/
https://www.zo.ai/
https://www.facebook.com/zo/
https://youtu.be/z3jqIGT-kmg
Chatbot basic architectures

• **Rule-based**
 • human-scripted, react to keywords/phrases in user input
 • very time-consuming to make, but still popular
 • chitchat by conversational assistants is typically rule-based

• **Data-driven**
 • retrieval – remember a corpus & get replies from there
 • “nearest neighbour” approaches
 • corpus can contain past conversations with users (Jaberwacky/Xiaolce)
 • chatbots differ in the sophistication of reply selection
 • **generative** – (typically) seq2seq-based models
 • trained typically on static corpora
 • (theoretically) able to handle unseen inputs, produce original replies
 • basic seq2seq architecture is weak (dull responses) → many extensions
Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context
 (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. *alike → what is the connection*
- fallbacks
 - *I see. <next question>*
 - *Please go on*
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user’s phrasing
- it’s all about the framing
 - it’s easier to appear human as a therapist (or paranoid schizophrenic)

Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you?
YOU: Men are all alike.
ELIZA: What is the connection, do you suppose?
YOU: They’re always bugging us about something or other.
ELIZA: Can you think of a specific example?
YOU: Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here?
YOU: He says I’m depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It’s true. I am unhappy.
ELIZA: Can you explain what made you unhappy?
YOU: I don’t know.
AIML (Pandorabots rules)

- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions 😂
- main concepts:
 - **category** – basic unit of knowledge
 - groups patterns & templates
 - **pattern** – user input pattern (with wildcards)
 - **set** – lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - **template** – response specification
 - allows multiple options
 - **srai** – symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - **variable** – can be set/retrieved in templates
 - e.g. remember user name

```
<category><pattern>WHY DO NOT YOU ^</pattern>
<template><random>
<li>It's not something I've considered before.\li>
<li>Would you?"/li>
<li>Is it fun, or dangerous?</li>
<li>I don't have an explanation for you./li>
</random></template>
</category>
```

```
<category><pattern>HOW DO YOU LIKE # EGGS #</pattern>
<template><srai>DIE(\sraia</template>
</category>
```

```
<category><pattern>YOU EAT *</pattern>
<template><sraia>DIE</sraia></template>
</category>
```

```
<category><pattern>DIE</pattern>
<template>My diet consists mostly of <bot name="diet"/>.</template>
</category>
```
Retrieval-based chatbots

• remember a large corpus
 1) check for similar inputs in the corpus
 2) retrieve & rerank corresponding outputs

• needs 2 steps
 1) **rough retrieval**
 • needs to be fast to search the whole corpus
 • e.g. TF-IDF
 2) more accurate **reranking** for candidates
 • most research focuses on this step

• problems:
 • can’t produce unseen sentences
 • reply consistency isn’t great

• solution (Xiaolce, Cleverbot):
 • use postprocessing, combine with rules

(Wang et al., 2013)
https://aclweb.org/anthology/D13-1096
Ranking responses

- Machine learning – learning to rank
 - pointwise: binary classifier
 - good=1, bad=0, ranking score = P(good)
 - pairwise: just learn to rank good > bad
 - incur loss for inversions
 - architecture – anything possible
 - typical neural: dual encoder
 - 2 RNNs, for context & response + fully connected

- training data problem:
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from “bad” dialogues where long = good & short = bad)

(Shalyminov et al., 2018)
https://www.aclweb.org/anthology/W18-5701
Inspiration from MT

(Ritter et al., 2011)
http://www.aclweb.org/anthology/D11-1054

- Early generative approach – convert to **phrase-based MT**
 1) **align phrases** in inputs & responses
 - build **phrase table**
 2) **build responses by covering input**
 - cover each phrase in input with likely response phrase
 - order & select phrases according to a language model (n-gram LM)

- it’s harder than MT
 - possible responses are much more variable than possible translations
 - using more sensitive phrase building (occurrence correlation)
 - discouraging input repetition (← would be vanilla MT behaviour)

- works, but…
 - fluency is not ideal
 - limited context

U: I want to go to a bonfire right about now.
S: that does sound fun bonfire i wan na go !

U: riding to the arc on my bike. Hopefully I won't melt into the pavement.
S: good luck on your bike ride arc

U: I really hate watching movies in the living room.
S: me too , what movies are you doing in room ?
Using RNN LMs (still MT-inspired)

• Non-LSTM solution:
 a) Vanilla RNN LM, force-decode input, decode response
 • problem: conditioned too loosely
 b) LM with extra conditioning
 • encode input into a fixed vector (using bag-of-words + feed-forward)
 • inject it into each LM decode step
 • more fluent than phrase-based, problems with long replies
 • long replies get less fluent & wander off-topic

• Vanilla Seq2seq model
 • encode input, decode response
 • sounds great, but… →

(Sordoni et al., 2015)
https://www.aclweb.org/anthology/N15-1020

NPFL123 L12 2023
Seq2seq Chatbot Problems

- **generic/dull responses**
 - short, low-entropy, repetitive
 - see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax – both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

- **limited context**
 - encoding long contexts is slow & ineffective
 - contexts are too sparse to learn much

- **inconsistency**
 - ask the same question twice, get two different answers
 - no notion of own personality

(U: Where do you live now?
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?)

(U: How old are you?
S: 16 and you?
U: What’s your age?
S: 18.)

(Wei et al., 2019)
https://arxiv.org/abs/1712.02250

(Jiang & De Rijke, 2018)
https://www.aclweb.org/anthology/W18-5712

(Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094
Improving upon Seq2seq

• **Reranking**
 - avoid dull replies that work anywhere
 - instead of maximizing $P(R|C)$, maximize mutual information
 - actually can be rewritten as a trade-off between $P(R|C)$ and $P(C|R)$
 - can’t train it easily, so train normally & rerank beams afterwards

• **Persona extension**
 - improve consistency
 - train speaker embeddings
 - this is a little data-picky
 - use speaker + word embeddings in the decoder
 - can also be used in the encoder

\[\text{MI} = \log \frac{P(C,R)}{P(C)P(R)} \]

\[C = \text{context} \quad R = \text{reply} \]

(\text{Li et al., 2016})
https://www.aclweb.org/anthology/N16-1014

\[\text{Source} \rightarrow \text{Target} \]

\[\text{where \ do \ you \ live} \rightarrow \text{in \ Rob \ England \ Rob} \]

\[\text{Speaker embeddings (50k)} \quad \text{Word embeddings (50k)} \]

(\text{Li et al., 2016})
https://www.aclweb.org/anthology/P16-1094
Improving upon Seq2seq

- **Hierarchical seq2seq** for longer context
 - HRED (Hierarchical Recurrent Encoder-Decoder)
 - use a 2nd, turn-level LSTM encoder, word-level LSTM hidden state as input

(Lowe et al., 2017)
http://dad.uni-bielefeld.de/index.php/dad/article/view/3698
Transformer Chatbots

- **DialoGPT** – GPT-2 finetuned on Reddit (147M dialogues)
 - no hierarchy, just decoder, whole chat as a long text – next-word prediction
 - works better than seq2seq-based ones

- **Meena**
 - Slightly modified Transformer
 - encoder-decoder, huge, trained on 867M dialogues (next-word prediction)
 - rule-based postprocessing

- **BlenderBot** (chitchat SotA now)
 - huge encoder-decoder Transformer (has smaller versions)
 - pretrained on Reddit, finetuned on a combination of specific dialogue datasets
 - combination with retrieval possible
 - constrained beam search (avoid too short replies), better than sampling

(Adiwardana et al., 2020)

(Adiwardana et al., 2020)
https://www.aclweb.org/anthology/2020.acl-demos.30

(Zhang et al., 2020)
https://aclanthology.org/2021.eacl-main.24/
Instruction finetuning

• Pretrained LMs finetuned on instruction & solution pairs
 • typically starting from non-dialogue-specific model
 (GPT3 → InstructGPT, GPT3.5/4 → ChatGPT, LLaMA → Alpaca, OpenAssistant…)
 • Kinda task-oriented, but open-domain & unstructured

• Training from human feedback (aka RLHF):
 1) General fine-tuning,
 next-word prediction on instruction data
 2) Get lots of outputs evaluated by humans
 & train a reward model based on that
 3) Apply RL with reward model as finetuning
 • Makes models more efficient
 • The main point is global loss, not RL
 • Answers still often hallucinated (no external DB)

(Ouyang et al., 2022) http://arxiv.org/abs/2203.02155
(Köpf et al., 2023) http://arxiv.org/abs/2304.07327
(Zhao et al., 2023) http://arxiv.org/abs/2305.10425
Hybrid / Ensemble Chatbots (most Alexa Prize Entries)

- “Production” SotA (~safer than ChatGPT et al.): **combining all methods**
 - rule-based for sensitive/frequent/important questions
 - retrieval for jokes, trivia etc.
 - task-oriented-like systems for specific topics (handcrafted/specially trained)
 - news, weather etc.
 - seq2seq only as a backoff or not at all
- NLU is typically shared, with advanced NLP pipelines
 - NER is very important – can get relevant news & trivia
- Decision among bots
 a) based on NLU topic detection
 b) ranking multiple answers
 - profanity detection – censoring outputs
• Bots:
 • Rule-based chit-chat
 • Ontologies – knowledge graph walk
 • movies, music, sports, books
 • Retrieval
 • Reddit trivia
 • news
 • Wikipedia
 • fun facts
 • Specific services
• Bots compete for reply
 • priority list
 • bots can “lock”
Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?
User: Vanilla Sky – I'm looking forward to watching Vanilla Sky [Ellipsis resolution]
User: Interesting
Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]
User: I want to talk about music
Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]
User: Kendrick Lamar
Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [...] Music trivia] What’s a band that you would like to see? [...]
User: any news about him –> any news about Kendrick Lamar [Coreference resolution]
Alana: Hmm... about Kendrick Lamar, so John, I read a story with this headline [...] News headline] Shall I say some more about this?
User: could we talk about something else
Alana: So John, since I know you like books, what have you read recently? I am reading […]
User: Let's talk about Tom Hardy
Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?
User: I mean the novelist
Alana: Yes. Some friends told me something interesting about Thomas Hardy. [...] Trivia]
User: What do you know about pizza?
Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.
• full NLU pipeline (similar to Alana)
• 2017: handcrafted state machines
 • sub-dialogue graphs (easier maintenance)
 • well scripted
 • easy to break, but users play along
 • hand-added variation
• 2018+: machine learning
 • RNN-based dialogue management
 • RNN topic switch detector
 • Knowledge graphs (user/bot model)
 • BERT NLU for multiple intents
 • DialoGPT pretrained model fallback
Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
- tracking user sentiment
 - change topic if user doesn’t like the current one
- attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself – conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

<table>
<thead>
<tr>
<th>Turn</th>
<th>User</th>
<th>Sounding Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Let’s chat.</td>
<td>Hi! This is an Alexa Prize socialbot. How’s your day?</td>
</tr>
<tr>
<td>2</td>
<td>I’m fine.</td>
<td>Glad to hear it! We could talk about robots, Batman, or Superman. Say “next”, to chat about other things.</td>
</tr>
<tr>
<td>3</td>
<td>Superman.</td>
<td>It looks like you wanna chat about Superman. I was high up in the cloud when I realized: If people don’t recognize Clark Kent as Superman because of his glasses, does his eye doctor know his true identity?</td>
</tr>
<tr>
<td>4</td>
<td>I guess so.</td>
<td>Did you know that Henry Cavill almost missed the call for the role of Superman because he was playing "World of Warcraft"</td>
</tr>
<tr>
<td>5</td>
<td>Really, I didn’t know that.</td>
<td>Weird, right? Speaking of Superman, Did you see Superman? It was released in 1997. It’s a comedy.</td>
</tr>
<tr>
<td>6</td>
<td>Yes, it was hilarious.</td>
<td>I’m glad you feel this is hilarious. Which part do you like best about this movie?</td>
</tr>
<tr>
<td>7</td>
<td>The part when he met Lewis Utah.</td>
<td>Interesting! Meccarnin and Reiff co-directed this film. The movie has a 6.3 out of 10 on IMDb, which seems pretty good! Do you like the movie’s director?</td>
</tr>
</tbody>
</table>

http://arxiv.org/abs/1804.10202
https://sounding-board.github.io/
Alexa Prize bottom line

• understanding is the bottleneck
 • ASR problems – chat-specific ASR improved things, but it’s by far not perfect
 • vague concept of dialogue state, despite full NLP pipelines
 • result: typically very crude intents + list of named entities
 • recognizing multiple/fine-grained intents is a problem
• it’s still more about social engineering than “AI”
 • a lot of strategies for not-understanding (switching topics, questions…)
• machine learning helps, but pure ML is not enough
 • lack of annotated data → often relatively simple methods
 • ML helps mainly in NLU, end-to-end seq2seq doesn’t work
• interesting content is crucial
 • the more handcrafted topics, the better
 • fluent NLG not so much (but prosody helps!)
• brutal variance in the evaluation – very subjective
Chatbot Ethics (Cercas Curry & Rieser, 2018) http://aclweb.org/anthology/W18-0802

• Ca. 4% of our 2017 data is sexually explicit

• Different harassment types:
 • comments on gender/sexuality
 • sexualized comments
 • sexualized insults
 • sexual requests & demands

• Chatbots/voice assistants’ responses
 • various systems:
 • commercial (Alexa, Google…)
 • rule-based (Pandorabots, adult chatbots)
 • data-driven (seq2seq)
 • systems often present as women, have a woman’s voice
 • responses often nonsense / play-along
 • conflict of interest for bot builders: be ethical vs. cater to abusive users
Summary

• chatbots – **non-task oriented** systems
 • purely for user enjoyment
 • targets: **conversation length** & **user engagement**
 • impersonating a human – Turing test

• approaches
 • **rule-based** – keyword spotting, scripting
 • **retrieval** – copy & paste from large databases
 • **generative** – seq2seq etc. trained on corpora of dialogues
 • too many possible responses don’t go well with MLE → safe, short, dull
 • **hybrid** – combining all of the above
 • typically mainly rule-based + retrieval, machine learning in NLU only

• open-domain NLU is still an unsolved problem
 • despite that, many people enjoy conversations with chatbots
 • interesting content is crucial
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
• Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner_Prize Mitsuku PARRY Turing_test Xiaoice Zo_(bot)
Exam

• Written test, 10 questions, 10 points each
 • 50%+ lab exercise points not required to take the test (but needed to get the grade)
 • expected 1 hr, but you’ll be given at least 2hrs (no pressure on time)

• Questions covering the 12 lectures
 • question pool on the website
 • you’ll need to write stuff on your own (not a-b-c-d, more like 2-3 sentences)
 • explanation of terms/concepts
 • no exact formulas needed (if needed, they might be provided)
 • but you should know the principles of how stuff works
 • relationships between concepts (“what’s the difference between X & Y”)
 • designing a dialogue system for a domain
 • focus on important stuff (mostly what’s mentioned in the summaries)

• Mark: 3:1 weighted exam-lab exercises
 • 60 % = pass (C), 73+% = B, 88+% = A