NPFL123 Dialogue Systems
7. Neural Policies & Natural Language Generation

https://ufal.cz/npfl123

Ondřej Dušek, Patrizia Schmidtova, Vojtech Hudecek & Jan Cuřín
27.3.2023
Deep Reinforcement Learning

- Exactly the same as “plain” RL (see last time)
 - agent & environment, actions & rewards
 - Markov Decision Process
- “deep” = part of the agent is handled by a NN
 - value function (typically Q)
 - policy
- NN = function approximation approach
 - such as REINFORCE / policy gradients
 - NN → complex non-linear functions
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states

(Sutton & Barto, 2018)
Value Function Approximation

• Searching for approximate $V(s)$ or $Q(s, a)$
 • exact values are too big to enumerate in a table
 • **parametric approximation** $V(s; \theta)$ or $Q(s, a; \theta)$

• Regression: **Mean squared value error**
 • weighted over states’ importance
 • useful for gradient descent
 • $\rightarrow \sim$ any supervised learning approach possible
 • not all work well though

• MC = stochastic gradient descent

• TD is not true gradient descent
 • \leftarrow using current weights in target estimate
 • faster than MC, but unstable for NNs!

\[
\overline{VE}(\theta) := \sum_{s \in S} \mu(s) \left(V_\pi(s) - V(s, \theta) \right)^2
\]

states’ importance weight (probability distribution) \sim how likely each state is

target value (which we don’t have!)

\rightarrow using R_t in MC

\rightarrow using $r_{t+1} + \gamma V(s', \theta)$ in TD
Deep Q-Networks

- Q-learning with function approximation
 - Q function represented by a neural net

- Causes of poor convergence in basic Q-learning with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown \rightarrow numeric instability

- Fixes in DQN:
 a) minibatches (updates by averaged n samples, not just one)
 b) **experience replay**
 c) **freezing target Q function**
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

common NN tricks
DQN tricks ~ making it more like supervised learning

- **Experience replay** – break correlated samples
 - run through some episodes (dialogues, games…)
 - store all tuples \((s, a, r', s')\) in a buffer
 - for training, don’t update based on most recent moves – use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

\[
\text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_{a'} Q(s', a'; \theta) - Q(s, a; \theta))^2 \right]
\]

- **Target Q function freezing**
 - fix the version of Q function used in update targets
 - have a copy of your Q network that doesn’t get updated every time
 - once in a while, copy your current estimate over

“generate your own ‘supervised’ training data”

“have a fixed target, like in supervised learning”
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - for episode, set initial state s
 - select action a from ϵ-greedy policy based on $Q(\theta)$
 - take a, observe reward r' and new state s'
 - store (s, a, r', s') in D
 - $s \leftarrow s'$
- often → once every k steps:
 - sample a batch B of random (s, a, r', s')’s from D
 - update θ using loss $\mathbb{E}_{(s, a, r', s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \bar{\theta}) - Q(s, a; \theta))^2 \right]$ |
- rarely → once every λ steps:
 - $\bar{\theta} \leftarrow \theta$

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
https://youtu.be/V1eYniJ0Rnk?t=18
• a simple DQN can drive a dialogue system’s action selection
 • DQN is function approximation – works fine for POMDPs
 • no summary space tricks needed here

rule-based simulator with agenda running on DA level

DQN – feed-forward, 1 hidden ReLU layer

error model controller (simulating ASR/NLU noise)

movie ticket booking: better than rule-based

replay memory initialized using a simple handcrafted policy

NPFL123 L7 2022

Policy Networks

- Learning policy directly – **policy network**
 - can work better than Q-learning
 - NN: input = state, output = prob. dist. over actions
 - extension – actor-critic: network predicts both π and V/Q

- Training can’t use/doesn’t need the DQN tricks
 - just **REINFORCE** with baseline
 - reward – baseline = **advantage**
 - baseline \sim e.g. 0 (if reward symmetric) or better use V
 - these are on-policy \rightarrow no experience replay
 - minibatches used anyway

policy gradient theorem guarantees convergence
Natural Language Generation

• conversion of **system action semantics → text** (in our case)

• NLG output is well-defined, but input is not:
 • DAs
 • any other semantic formalism
 • database tables
 • raw data streams
 • user model
 • dialogue history

 can be any kind of knowledge representation

 e.g. “user wants short answers”
 e.g. for referring expressions, avoiding repetition

• general NLG objective:
 • **given input & communication goal**
 • **create accurate + natural, well-formed, human-like text**

• additional NLG desired properties:
 • variation
 • simplicity
 • adaptability
NLG Use Cases

• dialogue systems
 • very different for task/non-task-oriented/QA systems

• standalone
 • data-to-text
 • short text generation for web & apps
 • weather, sports reports
 • personalized letters
 • creative generation (stories)

• machine translation
 • now mostly integrated end-to-end
 • formerly not the case

• summarization
Inputs
- **Content/text/document planning**
 - content selection according to communication goal
 - basic structuring & ordering

Content plan
- **Sentence planning/microplanning**
 - aggregation (facts \(\rightarrow\) sentences)
 - lexical choice
 - referring expressions (e.g., restaurant vs. it)

Sentence plan
- **Surface realization**
 - linearization according to grammar
 - word order, morphology

Text

Deciding what to say
Deciding how to say it

Typically handled by dialogue manager in dialogue systems
Organizing content into sentences & merging simple sentences
This is needed for NLG in dialogue systems
• Few systems implement the whole pipeline
 • All stages: mostly domain-specific data-to-text, standalone
 • e.g. weather reports
 • Dialogue systems: just sentence planning + realization
 • Systems focused on content + sentence planning with trivial realization
 • frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
 • Surface realization only
 • requires very detailed input
 • some systems: just ordering words

• Pipeline vs. end-to-end approaches
 • planning + realization in one go – popular for neural approaches
 • pipeline: simpler components, might be reusable (especially realizers)
 • end-to-end: no error accumulation, no intermediate data structures
NLG Basic Approaches

• **canned text**
 • most trivial – completely hand-written prompts, no variation
 • doesn’t scale (good for DTMF phone systems)

• **templates**
 • “fill in blanks” approach
 • simple, but much more expressive – covers most common domains nicely
 • can scale if done right, still laborious
 • most production dialogue systems

• **grammars & rules**
 • grammars: mostly older research systems, realization
 • rules: mostly content & sentence planning

• **machine learning**
 • modern research systems
 • pre-neural attempts often combined with rules/grammar
 • neural nets made it work *much* better
Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation

(Facebook, 2015)

Template coverage/selection rules, e.g.:

- select most concrete template
- cover input with as few templates as possible
- random variation

(Facebook, 2019)

- inflection rules

(Alex public transport information rules)

https://github.com/UFAL-DSG/alex
Grammar/Rules for Sentence Planning

- Handcrafted grammar/rules
 - input: base semantics (e.g. dialogue acts)
 - output: detailed sentence representation (=realizer inputs, see \(\rightarrow\))

- Statistical enhancements:
 generate more options & choose the best
 - generate multiple outputs
 - underspecified grammar
 - rules with multiple options...
 - choose the best one
 - train just the selection – learning to rank
 - any supervised approach possible e.g. “best” = 1, “not best” = 0

NB: this is slow!

SpoT trainable planner (RankBoost ranking)

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003
Grammar-based realizers

- Various grammar formalisms
 - production / unification rules in the grammar
 - lexicons to go with it
 - expect very detailed input (sentence plans)
- typically general-domain, reusable
 - **KPML** – multilingual
 - systemic functional grammar
 - **FUF/SURGE** – English
 - functional unification grammar
 - **OpenCCG** – English
 - combinatory categorial grammar

KPML input for *A dog is in the park.*

FUF/SURGE input for *She hands the draft to the editor*

OpenCCG input for *The cheapest flight is on Ryanair*

Procedural realizers

- **SimpleNLG** – no grammar, code to build sentence
 - “do-it-yourself” style – only cares about the grammar
 - system then linearizes
 - built for English, ports to other languages available

- **RealPro** (Meaning-Text-Theory)
 - deep syntax/semantics → surface syntax → morphology

- **Treex** (Functional Generative Description)
 - deep syntax → surface syntax → morphology, linearization
 - Perl code operating over syntax trees

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613
(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596
(Popel & Žabokrtský 2010; Dušek et al., 2015)
https://www.aclweb.org/anthology/W15-3009
Trainable Realizers

• **Overgenerate & Rerank**
 • same approach as for sentence planning
 • assuming a flexible handcrafted realizer (e.g., OpenCCG)
 • underspecified input → more outputs possible
 • generate more & use statistical reranker, based on:
 • n-gram language models
 • Tree language models
 • expected text-to-speech output quality
 • personality traits & alignment/entrainment
 • more variance, but at computational cost

• **Grammar/Procedural-based**
 • same as RealPro or TectoMT, but predict each step using a classifier

References
- NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
- HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
- FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
- CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405
- StuMaBa (Bohnet et al., 2010) https://www.aclweb.org/anthology/C10-1012
- HALOGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
- NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
- HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
- FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
- CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405
- StuMaBa (Bohnet et al., 2010) https://www.aclweb.org/anthology/C10-1012
Non-Neural End-to-End NLG

• NLG as language models
 • hierarchy of language models (HMM/MEMM/CRF style)
 • DA → slot → word level

• NLG using context-free grammars
 a) “language models” by probabilistic CFGs
 • approximate search for best CFG derivation
 b) synchronous PCFGs – MRs & text
 • “translation” with hierarchical phrase-based system
 • parsing MR & generating text

<table>
<thead>
<tr>
<th>Rule</th>
<th>prob./parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. S → R(start)</td>
<td></td>
</tr>
<tr>
<td>2. R(r,t) → FS(r,t,start) R(r,t)</td>
<td>[Pr = 1]</td>
</tr>
<tr>
<td>3. R(r,t) → FS(r,t,start)</td>
<td>[Pr(r,t) \cdot \lambda]</td>
</tr>
<tr>
<td>4. FS(r,t,f) → F(r,t,f) FS(r,t,f)</td>
<td>[Pr(f</td>
</tr>
<tr>
<td>5. FS(r,t,f) → F(r,t,f)</td>
<td>[Pr(f</td>
</tr>
<tr>
<td>6. F(r,t,f) → W(r,t,f) F(r,t,f)</td>
<td>[Pr(w</td>
</tr>
<tr>
<td>7. F(r,t,f) → W(r,t,f)</td>
<td>[Pr(w</td>
</tr>
<tr>
<td>8. W(r,t,f) → (\alpha)</td>
<td>[Pr[\alpha</td>
</tr>
<tr>
<td>9. W(r,t,f) → (g(f,v))</td>
<td>[Pr[g(f,v)</td>
</tr>
</tbody>
</table>

(a) English
(b) CLANG

(Oh & Rudnicky, 2002) https://doi.org/10.1016/S0885-2308(02)00012-8
(Angei et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
(Mairesse et al., 2010) https://www.aclweb.org/anthology/P10-1157
(Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003
(Konstas & Lapata, 2012) https://www.aclweb.org/anthology/P12-1039
Neural Generation: Seq2seq RNNs (see NLU for RNN intro)

- **token representation**: *embeddings* = vectors of ~100-1000 numbers
- **source “word” embeddings**: “hidden states” (=again, vectors of numbers)
- **encoder outputs**: 0, 1, 2, 3, 4, 5, 6, etc.
- **attention**: weighted combination (weights different for each step)
- **encoder**: cell = identical (compound) neural layers
 - input: prev. output + token embedding
- **decoder**: cell
- **target word embeddings**: 0, 1, 2, 3, 4, 5, 6, etc.
- **probability distribution over the whole vocabulary**
- **vocabulary is numbered**
Neural End-to-End NLG: RNNs

• Unlike previous, doesn’t need alignments
 • no need to know which word/phrase corresponds to which slot

 name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

 Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

• 1st system: RNN language model conditioned on DA (~decoder only)
 • input: binary-encoded DA
 • 1 if intent/slot-value present, 0 if not
 • delexicalized: much fewer values, shorter vector
 • modified LSTM cells
 • input DA passed in every time step
 • generating delexicalized texts word-by-word
 • i.e. decoder only

Seq2seq NLG with reranking (TGen)

- Encode DAs as sequences, apply standard RNN seq2seq
 - encoder: triples <DA type, slot, value>
 - decoder: words (possibly delexicalized)
- Beam search & reranking
 - DA classification of outputs
 - checking against input DA

(Dušek & Jurčiček, 2016)
https://aclweb.org/anthology/P16-2008
Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

feed-forward (fully connected) network
- ReLU activations
- tricks for better training

attention over all of input

encoder

decoder

no recurrent connections

attention over all of input & output generated so far (self-attention)

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
Transformers & Pretrained Language Models

 - encoder-decoder, but using feed-forward & attention instead of RNNs
 - positional encoding used to indicate sentence position
 - predefined “pattern” functions (based on sin & cos)
 - simply added to word embeddings
 - no RNN → parallel training → faster, allows larger models (more layers)

- **Pretrained language models** – on large data w/o annotation (self-supervised)
 - guess masked word (encoder only: BERT) (Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423
 - generate next word (decoder only: GPTx) (Radford et al., 2019) https://openai.com/blog/better-language-models/

- Can be **finetuned** for your domain & task
 - less data than w/o pretraining, extremely fluent (Chen et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.18/
Problems with neural NLG

• Checking the **semantics**
 • neural models tend to forget input / make up irrelevant stuff
 • reranking / decoding changes work, but not perfectly
 • generally **hard to control** (especially LLMs)

• Needs quite a lot of data (except LLMs, with prompting)

• Delexicalization needed (at least some slots)
 • typically OK for pretrained LMs

• Diversity & complexity of outputs
 • still can’t match humans
 • needs specific tricks to improve this

• Still more hassle than writing up templates 😊

(Dušek et al., 2020)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output
(e.g., restaurant/area names)
Summary

Deep Reinforcement Learning

• same as plain RL – agent + states, actions, rewards – just Q or π is a NN
 • function approximation for Q – mean squared value error

 • **Deep Q Networks** – Q learning where Q is a NN + tricks
 • experience replay, target function freezing

 • **Policy networks** – policy gradients where π is a NN

Natural Language Generation

• steps: content planning, **sentence planning**, **surface realization**
 • not all systems implement everything (content planning is DM’s job in DS)
 • pipeline vs. end-to-end

• approaches: templates, grammars, statistical

• **templates** work great

• neural: **RNN** / **Transformer**, pretrained models
Contact us:

https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/