NPFL123 Dialogue Systems

6. Dialogue Policy
(non-neural)

https://ufal.cz/npfl123

Ondřej Dušek, Patrícia Schmidtová, Vojtěch Hudeček & Jan Cuřín

20. 3. 2023
Dialogue Management

- Two main components:
 - State tracking (last lecture)
 - Action selection with a policy (today)
- action selection – deciding what to do next
 - based on the current belief state – under uncertainty
 - following a policy (strategy) towards an end goal (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic
- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)
DM/Action Selection Approaches

- **Finite-state machines**
 - simplest possible
 - dialogue state is machine state

- **Frame-based** (VoiceXML)
 - slot-filling + providing information – basic agenda

- **Rule-based**
 - any kind of rules (e.g. Python code)

- **Statistical**
 - typically using reinforcement learning

- Note that state tracking differs with different action selection
FSM Dialogue Management

Dialogues = graphs going through possible conversations
- nodes = system actions
- edges = possible user response semantics

Advantages:
- easy to design
- predictable

Disadvantages:
- very rigid – not real conversations (ignores anything that’s not a reply to last question)
- doesn’t scale to complex domains

Good for basic DTMF (tone-selection) phone systems

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…
Frame-based Approach

• Making the interaction more flexible
• State = frame with slots
 • required slots need to be filled
 • this can be done in any order
 • more information in one utterance possible
• If all slots are filled, query the database
• Multiple frames (e.g. flights, hotels…)
 • needs frame tracking
• Standard implementation: VoiceXML
• Still not completely natural, won’t scale to more complex problems

Slot	Question
ORIGIN | What city are you leaving from?
DEST | Where are you going?
DEPT DATE | What day would you like to leave?
DEPT TIME | What time would you like to leave?
AIRLINE | What is your preferred airline?

(from Hao Fang’s slides)

```
<form>
  <field name="transporttype">
    <prompt>Please choose airline, hotel, or rental car. </prompt>
    <grammar type="application/x=nuance-gsl">
      [airline hotel "rental car"]
    </grammar>
  </field>
  <prompt>You have chosen <value expr="transporttype">. </prompt>
</form>
```

(from Pierre Lison’s slides)
We can use a probabilistic belief state
 - DA types, slots, values
 - With **if-then-else** rules in programming code
 - using thresholds over belief state for reasoning
 - Output: system DA
 - Very flexible, easy to code
 - allows relatively natural dialogues
 - Gets messy
 - Dialogue policy is still pre-set
 - which might not be the best thing to do

(Jurčiček et al., 2014)
https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
DM with supervised learning

- **Action selection ~ classification** → use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features
- Yes, but…
 - You **need** sufficiently large **human-human data** – hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there’s **no single correct next action** – multiple options may be equally good
 - but datasets will only have one next action
 - **some paths will be unexplored** in data, but you may encounter them
 - DSs won’t behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - DSs **should** behave differently – make the best of what they have
DM as a Markov Decision Process

• MDP = probabilistic control process
 • modelling situations that are partly random, partly controlled
 • **agent** in an **environment**:
 • has internal **state** $s_t \in S$
 • takes **actions** $a_t \in A$
 • actions chosen according to **policy** $\pi: S \rightarrow A$
 • gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
 • Markov property – state defines everything
 • no other temporal dependency

• let’s assume we know the state for now
 • let’s go with MDPs, see how they map to POMDPs later

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)
Deterministic vs. stochastic policy

• **Deterministic** = simple mapping $\pi: S \rightarrow A$
 - always takes the same action $\pi(s)$ in state s
 - enumerable in a table
 - equivalent to a rule-based system
 - but can be learned instead of hand-coded!

• **Stochastic** = specifies a probability distribution $\pi(s, a)$
 - $\pi(s, a) \sim$ probability of choosing action a in state s – $p(a|s)$
 - decision = sampling from $\pi(s, a)$
Reinforcement learning

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don’t know if an action is good
 - immediate reward might be low while long-term reward high

\[R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1} \]

- **return**: accumulated long-term reward (from timestep \(t \) onwards)
- \(\gamma \in [0,1] = \text{discount factor} \)
 - immediate vs. future reward trade-off
 - \(\gamma < 1 \): \(R_t \) is finite (if \(r_t \) is finite)
 - \(\gamma = 0 \): greedy approach (ignore future rewards)

- state transition is stochastic \(\rightarrow \) **maximize expected return**

\[\mathbb{E}[R_t | \pi, s_0] \]

- expected \(R_t \) if we start from state \(s_0 \) and follow policy \(\pi \)
State-value Function

- Using return, we define the **value of a state** s under policy π: $V^\pi(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (**Bellman Equation**):

 $$V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s'))$$

- $V^\pi(s)$ defines a **greedy policy**:

 $$\pi(s, a) := \begin{cases}
 \frac{1}{\# \text{ of } a's} & \text{for } a = \arg \max_a \sum_{s' \in \mathcal{S}} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s')) \\
 0 & \text{otherwise}
 \end{cases}$$

 actions that look best for the next step
Action-value (Q-)Function

- \(Q^\pi(s, a) \) – exp. return of taking action \(a \) in state \(s \), under policy \(\pi \)
 - Same principle as value \(V^\pi(s) \), just **considers the current action, too**
 - Has its own version of the Bellman equation

\[
Q^\pi(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s'|s, a) \left(r(s, a, s') + \gamma \sum_{a' \in \mathcal{A}} Q^\pi(s', a') \pi(s', a') \right)
\]

- \(Q^\pi(s, a) \) also defines a greedy policy:
 - \(\pi(s, a) := \begin{cases} \frac{1}{\# \text{ of } a' \text{'s}} & \text{for } a = \arg \max_a Q^\pi(s, a) \\ 0 & \text{otherwise} \end{cases} \)

 again, “actions that look best for the next step”

 simpler: no need to enumerate \(s' \), no need to know \(p(s'|s, a) \) and \(r(s, a, s') \)

 but \(Q \) tables are bigger than \(V \) tables
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*

- π^* is a policy such that $V^{\pi^*}(s) \geq V^{\pi'}(s)$ $\forall \pi'$, $\forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_{\pi} V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_{\pi} Q^\pi(s, a)$

- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^*, $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
• Quantity to optimize:
 • value function – **critic**
 • policy – **actor**
 • (both – actor-critic – omitted)

• Environment model:
 • **model-based** (assume known \(p(s'\mid s, a), r(s, a, s') \))
 • makes for mathematically nice solutions
 • but you can only know the full model in limited settings
 • **model-free** (don’t assume anything, sample)
 • this is the one for “real-world” use
 • using \(Q \) instead of \(V \) comes handy here (“hiding” \(p(s'\mid s, a) \))
RL Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment (=must be model-based)
 • **Monte Carlo** learning – learn from experience
 • sample, then update based on experience
 • **Temporal difference** learning – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • **off-policy** – decide according to a different policy
1) Choose a threshold τ, Initialize $V_0(s)$ arbitrarily

2) While $V_i(s) - V_{i-1}(s) \geq \tau$ for any s:

 for all s: $V_{i+1}(s) \leftarrow \max_a \sum_{s' \in S} p(s'|s,a) (r(s,a,s') + \gamma V_i(s'))$

 $i \leftarrow i + 1$

• At convergence, we’re less than τ away from optimal state values

 • resulting greedy policy is typically already optimal in practice

• Can be done with $Q_i(s,a)$ instead of $V_i(s)$

• Assumes known $p(s'|s,a)$ and $r(s,a,s')$

 • can be estimated from data if not known – but it’s expensive
Value iteration example (Gridworld)

- Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
 - reward +1 for staying at “G”
 - reward -1 for hitting a wall
 - discount factor $\gamma = 0.9$

(Heidrich-Meisner et al., 2007)
https://christian-igel.github.io/paper/RLiaN.pdf
https://youtu.be/9YN1R6Lh9Jo
(note that rewards here come from states, not movements)
Monte Carlo Methods

- $V(s)$ or $Q(s, a)$ estimated iteratively, on-policy
 - explores states with more value more often
- Loop over episodes (dialogues)
 - record (s_t, a_t, r_t) for $t = 0, ..., T$ in the episode
 - for all s, a in the episode:
 - $R(s, a) \leftarrow$ list of all returns for taking action a in state s (sum of rewards till end of episode)
 - $Q(s, a) \leftarrow$ mean($R(s, a)$)
- To converge, we need to explore – using ϵ-greedy policy:
 \[
 a = \begin{cases}
 \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
 \text{random action} & \text{with probability } \epsilon
 \end{cases}
 \]
 - ϵ can be large initially, then gradually lowered
- $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$
- Off-policy extensions exist (omitted)

NPFL123 L6 2023
• estimate $Q(s, a)$ iteratively, on-policy, with immediate updates
 • **TD**: don’t wait till the end of episode
• choose learning rate α, initialize Q arbitrarily
• for each episode:
 • choose initial s, initial a according to ϵ-greedy policy based on Q
 • for each step:
 • take action a, observe reward r and state s'
 • choose action a' from s' acc. to ϵ-greedy policy based on Q
 • $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
 • $s \leftarrow s'$, $a \leftarrow a'$
• typically converges faster than MC (but not always)
Q-Learning (off-policy TD)

- off-policy – directly estimate $Q^*(s, a)$
 - regardless of policy used for sampling
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ϵ-greedy policy based on Q
 - take action a, observe reward r and state s'
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right)$
 - $s \leftarrow s'$

update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
REINFORCE: Policy gradients

- we assume a differentiable parametric policy $\pi(a|s, \theta)$
- MC search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\theta) = V^{\pi\theta}(s_0)$
- choose learning rate α, initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 - for each $t = 0, 1, ..., T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t|s_t, \theta)$

variant: discounting a baseline $b(s)$ (predicted by any model)
- $R_t - b(s_t)$ instead of R_t gives better performance
- a good $b(s)$ is actually $V(s)$

Returns
- $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$
- this is stochastic $\nabla J(\theta)$
 - from policy gradient theorem
POMDP Case

• POMDPs – belief states instead of dialogue states
 • probability distribution over states
 • can be viewed as **MDPs with continuous-space states**
• All MDP algorithms work…
 • if we **quantize/discretize** the states
 • use grid points & nearest neighbour approaches
 • this might introduce errors / make computation complex
• REINFORCE/policy gradients work out of the box
 • function approximation approach, allows continuous states

(from Milica Gašić's slides)

[Image of Voronoi diagram]
• for a typical DS, the belief state is too large to make RL tractable
• solution: map state into a reduced space, optimize there, map back
• reduced space = summary space
 • handcrafted state features
 • e.g. top slots, # found, slots confirmed…
• reduced action set = summary actions
 • e.g. just DA types (inform, confirm, reject)
 • remove actions that are not applicable
 • with handcrafted mapping to real actions
• state is still tracked in original space
 • we still need the complete information for accurate updates
Simulated Users

• We can’t really learn just from static datasets
 • on-policy algorithms don’t work
 • data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
 • 1k-100k’s dialogues used for training, depending on method

• solution: **user simulation**
 • basically another DS/DM
 • (typically) working on DA level
 • errors injected to simulate ASR/NLU

• approaches:
 • rule-based (frames/agenda)
 • n-grams
 • MLE policy from data
Summary

• Action selection – deciding what to do next

• Approaches
 • Finite-state machines (system-initiative)
 • Frames (VoiceXML)
 • Rule-based
 • Machine learning (RL better than supervised)

• RL – in a POMDP scenario (can be approximated by MDP)
 • optimizing value function or policy
 • learning on-policy or off-policy
 • learning with or without a model
 • using summary space
 • training with a user simulator
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
- Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
- David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Labs in 10 mins