NPFL123 Dialogue Systems
5. Neural NLU & State Tracking

https://ufal.cz/npfl123

Ondřej Dušek, Patrícia Schmidtová, Vojtěch Hudeček & Jan Cuřín
13. 3. 2023
Neural networks

- Can be used for both classification & sequence models
- **Non-linear functions**, composed of basic building blocks
 - stacked into layers
 - whole network ~ “pipeline”/“flow”
- Layers are built of **activation functions**:
 - linear functions
 - nonlinearities – sigmoid, tanh, ReLU
 - softmax – probability estimates:
 \[
 \text{softmax}(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^{\mid\mathbf{x}\mid} \exp(x_j)}
 \]
- Fully differentiable – training by gradient descent
 - gradients **backpropagated** from outputs to all parameters
 - (composite function differentiation)

https://playground.tensorflow.org/ – look at the internals (very simple network)
Neural networks – features

• You can use the same ones as for LR/SVM…
 • but it’s a lot of work to code them in

• **Word embeddings**
 • let the network learn features by itself
 • input is just words (vocabulary is numbered)
 • top ~50k words + *<unk>* or **subwords**
 • distributed word representation
 • each word = **vector of floats** (~50-2000 dims.)
 • part of network parameters – trained
 a) random initialization
 b) pretraining
 • the network learns which words
 are used similarly
 • they end up having close embedding values
 • different embeddings for different tasks

http://ruder.io/word-embeddings-2017/

Recurrent Neural Networks

- Many identical layers with shared parameters (**cells**)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = **hidden state** – fed to the next step
 - additional input – next token features

- **Cell types**
 - **basic RNN**: linear + tanh
 - problem: vanishing gradients
 - can’t hold long recurrences
 - **GRU, LSTM**: more complex, to make backpropagation work better
 - “gates” to keep old values

<https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57>
Encoder-Decoder Networks

- Default RNN paradigm for sequences/structure prediction
 - **encoder** RNN: encodes the input token-by-token into **hidden states** h_t
 - next step: last hidden state + next token as input
 - **decoder** RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
- LSTM/GRU cells over vectors of ~ embedding size
- MT, dialogue, parsing…
 - more complex structures linearized to sequences

$$h_0 = 0 \quad h_t = \text{cell}(x_t, h_{t-1})$$
$$s_0 = h_T \quad p(y_t | y_1, ..., y_{t-1}, x) = \text{softmax}(s_t)$$
$$s_t = \text{cell}(y_{t-1}, s_{t-1})$$

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
Attention Models

- Encoder-decoder too crude for complex sequences
 - the whole input crammed into a fixed-size vector (last hidden state)
- **Attention** = “memory” of **all** encoder hidden states
 - weighted combination
 - re-weighted every decoder step
 - can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer

attention value = **context vector**
\[c_t = \sum_{i=1}^{n} \alpha_{ti} h_i \]

attention weights = **alignment model**
\[\alpha_{ti} = \text{softmax}(v_\alpha \cdot \tanh(W_\alpha \cdot s_{t-1} + U_\alpha \cdot h_i)) \]

- **Self-attention** – over previous decoder steps

https://skymind.ai/wiki/attention-mechanism-memory-network
Neural NLU

- Various architectures possible
- **Classification**
 - feed-forward NN
 - RNN + attention weight → softmax
 - convolutional networks
 - Transformer (attention + feed-forward)
- **Sequence tagging**
 - RNN (LSTM/GRU) → softmax over hidden states
 - default version: label bias (like MEMM)
 - CRF over the RNN possible
 - Transformer works the same
 - Intent can be tagged at start of sentence

https://medium.com/swlh/nlu-for-everyone-with-bert-7bedaa609a61
(Chen et al., 2019) http://arxiv.org/abs/1902.10909
NN NLU – Joint Intent & Slots

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

• Same network for both tasks

• **Bidirectional encoder**
 - 2 encoders: left-to-right, right-to-left
 - concatenate hidden states
 - “see the whole sentence before you start tagging”

• **Decoder** – tag word-by-word, inputs:
 a) attention
 b) input encoder hidden states (“aligned inputs”)
 c) both

• Intent classification: softmax over last encoder state
 • + specific intent context vector (attention)
• Extended version: use slot tagging in intent classification
 • Bidi encoder
 • Slots decoder with encoder states & attention
 • Intent decoder – attention over slots decoder states
• Works slightly better

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454
Dialogue State Tracking

- Dialogue management consist of:
 - **State update** ← here we need DST
 - Action selection (later)

- **Dialogue State** needed to remember what was said in the past
 - tracking the dialogue progress
 - summary of the whole dialogue history
 - basis for action selection decisions

U: I’m looking for a restaurant in the **city centre**.

S: OK, what kind of food do you like?

U: Chinese.

❌ **S:** What part of town do you have in mind?

❌ **S:** Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.

✔ **S:** Sure, the Golden Dragon is a good Chinese restaurant. It is located in the **city centre**.
Dialogue State Contents

• “All that is used when the system decides what to say next”

• **User goal/preferences ~** NLU output
 • slots & values provided (search constraints)
 • information requested

• Past **system actions**
 • information provided
 • slots and values
 • list of venues offered
 • slots confirmed
 • slots requested

• **Other** semantic context
 • user/system utterance: bye, thank you, repeat, restart etc.

(Henderson, 2015)
https://ai.google/research/pubs/pub44018
Ontology

• To describe possible states
• Defines all concepts in the system
 • List of slots
 • Possible range of values per slot
 • Possible actions per slot
 • requestable, informable etc.
• Dependencies
 • some concepts only applicable for some values of parent concepts

food_type – only for type=restaurant
has_parking – only for type=hotel

“if entity=venue, then…”

entity = {venue, landmark}
venue.type = {restaurant, bar,…}

some slot names may need disambiguation
(venue type vs. landmark type)

(Young, 2009)
Problems with Dialogue State

• NLU is unreliable
 • takes unreliable ASR output
 • makes mistakes by itself – some utterances are ambiguous
 • output might conflict with ontology

• Possible solutions:
 • detect contradictions, ask for confirmation
 • ignore low-confidence NLU input
 • what’s “low”?
 • what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state
Belief State

• Assume we don’t know the true dialogue state
 • but we can estimate a **probability distribution over all possible states**
 • In practice: per-slot distributions

• More robust
 • **accumulates probability** mass over **multiple turns**
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over **NLU n-best lists**

• Plays well with probabilistic dialogue policies
 • but not only them – rule-based, too
Belief State

Turn 1:

Observations:
- I want a Danish place in the center
- inform(area=center) 0.6
- inform(food=Danish) 0.4

State:
- area=center

Response:
- What food would you like?

Turn 2:

Observations:
- Danish
- inform(food=Spanish) 0.5
- inform(food=Danish) 0.4

State:
- food=Spanish

Response:
- Which area do you prefer?

(Probability Distributions):
- area: center 0.6
- food: Danish 0.4

Response:
- Did you say Spanish or Danish?

This is what we want (based on Milica Gašić’s slides)
Dialogue as a Markov Decision Process

- MDP = probabilistic control process
 - model – Dynamic Bayesian Network
 - random variables & dependencies in a graph/network
 - “dynamic” = structure repeats over each time step t
 - s_t – dialogue states = what the user wants
 - a_t – actions = what the system says
 - r_t – rewards = measure of quality
 - typically slightly negative for each turn, high positive for successful finish
 - $p(s_{t+1}|s_t, a_t)$ – transition probabilities
- Markov property – state defines everything
- Problem: we’re not sure about the dialogue state

(from Milica Gašić’s slides)
- Dialogue states are **not observable**
 - modelled probabilistically – belief state $b(s)$ is a prob. distribution over states
 - states *(what the user wants)* influence **observations** o_t *(what the system hears)*

- Still Markovian
 - $b'(s') = \frac{1}{Z} p(o|s') \sum_{s \in S} p(s'|s, a) b(s)$
 - $b(s)$ can be modelled by an HMM

Partially Observable (PO)MDP

![Diagram](from Filip Jurčiček’s slides)

![Diagram](from Milica Gašić’s slides)
Digression: Generative vs. Discriminative Models

What they learn:

• **Generative** – whole distribution $p(x, y)$

• **Discriminative** – just decision boundaries between classes $\sim p(y|x)$

To predict $p(y|x)$…

• **Generative models**
 • Assume some functional form for $p(y), p(x|y)$
 • Estimate parameters of $p(y), p(x|y)$ directly from training data
 • Use Bayes rule to calculate $p(y|x)$

• **Discriminative models**
 • Assume some functional form for $p(y|x)$
 • Estimate parameters of $p(y|x)$ directly from training data

they get the same thing, but in different ways

https://medium.com/@mlengineer/generative-and-discriminative-models-af5637a66a3
Generative vs. Discriminative Models

Example: elephants vs. dogs

- **Discriminative:**
 - establish decision boundary (~find distinctive features)
 - classification: just check on which side we are

- **Generative**
 - ~2 models – what elephants & dogs look like
 - classification: match against the two models

- Discriminative – typically better results
- Generative – might be more robust, more versatile
 - e.g. predicting the other way, actually generating likely \((x, y)\)’s
Naïve Generative Belief Tracking

- Using the HMM model
 - estimate the transition & observation probabilities from data
 \[
 b(s) = \frac{1}{Z} \prod_{i=1}^{N} p(o_t | s_t) \sum_{s_{t-1} \in S} p(s_t | a_{t-1}, s_{t-1}) b(s_{t-1})
 \]
 - Problem: too many states
 - e.g. 10 slots, 10 values each → 10^{10} distinct states – intractable
 - Solutions:
 - only track stuff that appeared in NLU
 - only track n most probable (beam)
 - merge similar states
 - **partition the state** – assume slots are independent, use per-slot beliefs
 - state $s = [s^1, ..., s^N]$, belief $b(s_t) = \prod_{i} b(s^i_t)$
Generative BT: Parameter Tying

• Per-slot: \(b(s^i_t) = \sum_{s^i_{t-1}, o^i_t} p(o^i_t | s^i_t) p(s^i_t | a^i_{t-1}, s^i_{t-1}) b(s^i_{t-1}) \)

observation probability \hspace{1cm} transition probability \hspace{1cm} previous belief

• Further simplification: **tie most parameters**
 • estimates from data are unreliable anyway → basically uses 2 parameters only 😊

transition probabilities:

\[
p(s^i_t | a^i_{t-1}, s^i_{t-1}) = \begin{cases}
\theta_T & \text{if } s^i_t = s^i_{t-1} \\
\frac{1-\theta_T}{\text{#values}^{i-1}} & \text{otherwise}
\end{cases}
\]

\(\theta_T = \) “rigidity” (bias for keeping previous values), otherwise all value changes have the same probability

observation probabilities:

\[
p(o^i_t | s^i_t) = \begin{cases}
\theta_O p(o^i_t) & \text{if } o^i_t = s^i_t \\
\frac{1-\theta_O}{\text{#values}^{i-1}} p(o^i_t) & \text{otherwise}
\end{cases}
\]

\(\theta_O \sim \) confidence in NLU
\(p(o^i_t) = \) NLU output
i.e. believe in value given by NLU with \(\theta_O \), distribute rest of probability equally

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/
Basic Discriminative Belief Tracker

- Based on the previous model
 - same slot independence assumption
- Even simpler – “always trust the NLU”
 - this makes it parameter-free
 - …and kinda rule-based
 - but very fast, with reasonable performance

\[
 b(s^i_t) = \sum_{s^i_{t-1}, o^i_{t}} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_{t}) b(s^i_{t-1})
\]

update rule:

- **discriminative model**

NLU output

- “user mentioned this value”
- “not mentioned earlier”
- “not mentioned now”
- “null value”
- “non-null”
- “mentioned now”
- “carry-over”

\[
p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_{t}) = \begin{cases}
 p(o^i_{t}) & \text{if } s^i_{t} = o^i_{t} \land o^i_{t} \neq ⬤ \\
 p(o^i_{t}) & \text{if } s^i_{t} = s^i_{t-1} \land o^i_{t} = ⬤ \\
 0 & \text{otherwise}
\end{cases}
\]

- “no change”

user silent about slot \(i \)

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/
Tracker types

• **Generative** trackers – need many assumptions to be tractable
 • cannot exploit arbitrary features
 • … or they can, but not if we want to keep them tractable
 • often use handcrafted parameters
 • … may produce unreliable estimates (Williams, 2012) https://ieeexplore.ieee.org/document/6424197

• **Discriminative** trackers – can use any features from dialogue history
 • parameters estimated from data more easily
 • generally used nowadays

• Another general distinction
 • **static models** – encode whole history into features
 • **dynamic/sequence models** – explicitly model dialogue as sequential
Static Discriminative Trackers

- Generally predict $p(s_t | o_1, a_1, ..., a_{t-1}, o_t)$
 - any kind of classifier (SVM, LR, ...)
 - need fixed feature vector from $o_1, a_1, ..., a_{t-1}, o_t$ (where t is arbitrary)
 - current turn, cumulative, sliding window
 - per-value features & tying weights– some values are too rare

- Global feature examples: (Metallinou et al., 2013) https://www.aclweb.org/anthology/P13-1046
 - NLU n-best size, entropy, lengths (current turn, cumulative)
 - ASR scores

- Per-value v examples:
 - rank & score of hypo with v on current NLU n-best + diff vs. top-scoring hypo
 - # times v appeared so far, sum/average confidence of that
 - # negations/confirmations of v so far
 - reliability of NLU predicting v on held-out data
Dynamic Discriminative Trackers

- **Dialogue as a sequence** $p(s_1, ... s_t | o_1, ... o_t)$
- **CRF models**
 - similar features as static
 - feature value: NLU score for the given thing (e.g. DA type + slot + value)
 - target: per-slot BIO coding

<table>
<thead>
<tr>
<th>Utterance</th>
<th>Goals</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1 Hello, How may I help you?</td>
<td>Persian</td>
<td>South</td>
</tr>
<tr>
<td>U_1 I need a Persian restaurant in the south part of town.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2 What kind of food would you like?</td>
<td>Persian</td>
<td>South</td>
</tr>
<tr>
<td>U_2 Persian...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3 I'm sorry but there is no restaurant serving persian food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_3 How about Portuguese food?</td>
<td>Portuguese</td>
<td>South</td>
</tr>
<tr>
<td>S_4 Peking restaurant is a nice place in the south of town.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_4 Is that Portuguese?</td>
<td>Portuguese</td>
<td>South</td>
</tr>
<tr>
<td>S_5 Nandos is a nice place in the south of town serving tasty Portuguese food.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_5 Alright. What's the phone number?</td>
<td>Portuguese</td>
<td>South</td>
</tr>
<tr>
<td>S_6 The phone number of nandos is 01223 327908.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_6 And the address?</td>
<td>Portuguese</td>
<td>South</td>
</tr>
<tr>
<td>S_7 Starts, nandos is on Cambridge Leisure Park Clifton Way.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_7 Thank you good bye.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345
Static Neural State Trackers

- discriminative, many architectures
- basic **static** example:
 - use a **feed-forward** as your classifier
 - input – features (w.r.t. slot-value \(v \) & time \(t \))
 - NLU score of \(v \)
 - n-best rank of \(v \)
 - user & system intent (*inform/request*)
 - … – other domain-independent, low-level NLU features
- 3 tanh layers
- output – softmax
 (= probability distribution over values)
- static – uses a **sliding window**:
 current time \(t \) + few steps back + \(\sum \) previous

(Imagine this part for all \(v \)'s)

softmax over all possible \(v \)'s + "other"

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073
Dynamic Neural State Trackers

• Based on RNNs (turn-level or word-level)
• Typically not using NLU – directly ASR/words → belief
• Simple example: RNN over words + classification on hidden states
 • runs over the whole dialogue history (user utterances + system actions)

(Žilka & Jurčiček, 2015)
http://arxiv.org/abs/1507.03471
Summary

• Neural networks primer
 • embeddings
 • layers (sigmoid, tanh, ReLU)
 • recurrent networks (LSTM, GRU), attention

• NN SLU examples: classifier/sequence

• Dialogue state vs. belief state

• Dialogue as *(Partially observable) Markov Decision Process*

• Tracker examples:
 • **Generative** (partitioning, parameter tying)
 • **Discriminative** (basic “rule-based”, classifier, neural)
 • static vs. **dynamic**

• Next time: dialogue policies
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html