NPFL123 Dialogue Systems

12. Chatbots
(non-task-oriented dialogue)

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček, Tomáš Nekvinda
& Jan Cuřín, Petr Fousek

9. 5. 2021
Chatbots / Chatterbots

• dialogue systems for **open-domain** dialogue / chitchat

• **non-task-oriented**
 • main goal: keep the user entertained
 • standard evaluation: conversation length, user engagement

• (more or less) different architecture
 • may have the same structure as task oriented (NLU → DM → NLG)
 • often simpler, integrated
 • it’s hard to have explicit NLU for open domain
 • no task to guide a meaning formalism
 • some of them don’t need a DB connection (but some use it)

• beware: anything is called chatbots nowadays
 • this lecture: only **chatterbots / non-task-oriented systems**
Chatbot tests

• **Turing test** (1950)
 - evaluator & 2 conversations, with a machine & human, text-only
 - needs to tell which is which
 - does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed

• **Loebner Prize** (1990+)
 - Turing test style, first topic-restricted, 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt – creates hype but no real progress

• **Amazon Alexa Prize** (2017+)
 - no pretending it’s human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted (“on popular topics”)
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of “would talk again”
Chatbot history

• natural communication – important part of general AI
 • concerned people even before modern computers (cf. Turing)
• 1st chatbot: \textbf{Eliza} (1966)
 • rule-based, simulates a therapist
• \textbf{Parry} (1972)
 • similar, simulates a person with paranoid schizophrenia
 • was able to fool psychotherapists in a Turing test
• Not much progress until end of 1990’s – just better rules
 • research focused on task-oriented systems
• 1990’s/2000’s – retrieval-based systems
• 2015+ – huge surge of generative models
Notable/hyped chatbots

- **Pandorabots/AIML** – framework for rule-based chatbots
 - A.L.I.C.E. bot – basic implementation, ~better Eliza
 - people can reuse & add their own personality
 - Mitsuku (2013+) – multiple times Loebner Prize winner

- **Jabberwacky/Cleverbot** (1997+)
 - attempts to learn from users
 - remembers & reuses past conversations (>100M)
 - also won Loebner Prize multiple times

- **Xiaolce** (2014+)
 - Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 - on social networks (mainly Weibo)
 - also learns from users & reuses user inputs
 - partly rule-based, focus on emotions
 - a lot of people bonding with “her”
Chatbot basic architectures

• **Rule-based**
 • human-scripted, react to keywords/phrases in user input
 • very time-consuming to make, but still popular
 • chitchat by conversational assistants is typically rule-based

• **Data-driven**
 • **retrieval** – remember a corpus & get replies from there
 • “nearest neighbour” approaches
 • corpus can contain past conversations with users (Jaberwacky/Xiaolce)
 • chatbots differ in the sophistication of reply selection
 • **generative** – (typically) seq2seq-based models
 • trained typically on static corpora
 • (theoretically) able to handle unseen inputs, produce original replies
 • basic seq2seq architecture is weak (dull responses) → many extensions
Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context
 (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. alike → what is the connection
- fallbacks
 - I see. <next question>
 - Please go on
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user’s phrasing
- it’s all about the framing
 - it’s easier to appear human as a therapist (or paranoid schizophrenic)
AIML (Pandorabots rules)

• XML-based markup language for chatbots
 • keyword spotting, not much smarter than Eliza
 • less powerful than regular expressions 😁

• main concepts:
 • **category** – basic unit of knowledge
 • groups patterns & templates
 • **pattern** – user input pattern (with wildcards)
 • **set** – lists of things of the same type
 • e.g. animals, musical instruments
 • can be used in patterns
 • **template** – response specification
 • allows multiple options
 • **srai** – symbolic reduction
 • used in patterns to redirect to another pattern
 • groups synonymous inputs
 • **variable** – can be set/retrieved in templates
 • e.g. remember user name

normalization is typically applied during preprocessing

```
<category>
  <pattern>WHY DO NOT YOU ^</pattern>
  <template><random><li>It's not something I've considered before.</li>
    <li>Would you?</li>
    <li>Is it fun, or dangerous?</li>
    <li>I don't have an explanation for you.</li>
  </random></template>
</category>
```

```
<category>
  <pattern>HOW DO YOU LIKE # EGGS #</pattern>
  <template><srai>DIET</srai></template>
</category>
```

```
<category>
  <pattern>YOU EAT *</pattern>
  <template><srai>DIET</srai></template>
</category>
```

```
<category>
  <pattern>DIET</pattern>
  <template>
    My diet consists mostly of <bot name="diet"/>
  </template>
</category>
```

0/more words

multiple options chosen at random

0/more words

(higher priority match)

1/more words

2 categories reduced via srai to the same pattern

using a variable
Retrieval-based chatbots

- remember a large corpus
 1) check for similar inputs in the corpus
 2) retrieve & rerank corresponding outputs

- needs 2 steps
 1) **rough retrieval**
 - needs to be fast to search the whole corpus
 - e.g. TF-IDF
 2) more accurate **reranking** for candidates
 - most research focuses on this step

- problems:
 - can’t produce unseen sentences
 - reply consistency isn’t great

- solution (Xiaolce, Cleverbot):
 - use postprocessing, combine with rules

(Wang et al., 2013)
https://aclweb.org/anthology/D13-1096
Ranking responses

• Machine learning – **learning to rank**
 • **pointwise**: binary classifier
 • good=1, bad=0, ranking score = P(good)
 • **pairwise**: just learn to rank good > bad
 • incur loss for inversions
 • architecture – anything possible
 • typical neural: **dual encoder**
 • 2 RNNs, for context & response + fully connected

• training data problem:
 • datasets = positive examples only
 • but other responses might be good, too
 • need negative examples
 • manual annotation (expensive!)
 • random sampling (not very efficient)
 • smarter sampling (e.g., replies from “bad” dialogues where long = good & short = bad)
• Early generative approach – convert to **phrase-based MT**

1) **align phrases** in inputs & responses
 • build **phrase table**

2) **build responses by covering input**
 • cover each phrase in input with likely response phrase
 • order & select phrases according to a language model (n-gram LM)

• it’s harder than MT
 • possible responses are much more variable than possible translations
 • using more sensitive phrase building (occurrence correlation)
 • discouraging input repetition (← would be vanilla MT behaviour)

• works, but…
 • fluency is not ideal
 • limited context

Inspiration from MT
(Ritter et al., 2011)
http://www.aclweb.org/anthology/D11-1054

U: I want to go to a bonfire right about now.
S: That does sound fun bonfire I wan na go!

U: Riding to the arc on my bike. Hopefully I won’t melt into the pavement.
S: Good luck on your bike ride arc

U: I really hate watching movies in the living room.
S: Me too, what movies are you doing in room?
Using RNN LMs (still MT-inspired)

• Non-LSTM solution:
 a) Vanilla **RNN LM**, **force-decode** input, decode response
 • problem: conditioned too loosely
 b) LM with **extra conditioning**
 • encode input into a fixed vector (using bag-of-words + feed-forward)
 • inject it into each LM decode step
 • more fluent than phrase-based, problems with long replies
 • long replies get less fluent & wander off-topic

• Vanilla **Seq2seq** model
 • encode input, decode response
 • sounds great, but… (→)

(Sordoni et al., 2015)
https://www.aclweb.org/anthology/N15-1020

NPFL123 L12 2022
Seq2seq Chatbot Problems

- **generic/dull responses**
 - short, low-entropy, repetitive
 - see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax – both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

- **limited context**
 - encoding long contexts is slow & ineffective
 - contexts are too sparse to learn much

- **inconsistency**
 - ask the same question twice, get two different answers
 - no notion of own personality

- (Wei et al., 2019)

- (Jiang & De Rijke, 2018)
 - https://www.aclweb.org/anthology/W18-5712

U: Where do you live now?
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?

(Li et al., 2016)
- https://www.aclweb.org/anthology/P16-1094
Improving upon Seq2seq

• **Reranking**
 - avoid dull replies that work anywhere
 - instead of maximizing $P(R|C)$, maximize mutual information
 - actually can be rewritten as a trade-off between $P(R|C)$ and $P(C|R)$
 - can’t train it easily, so train normally & rerank beams afterwards

• **Persona extension**
 - improve consistency
 - train speaker embeddings
 - this is a little data-picky
 - use speaker + word embeddings
 - in the decoder
 - can also be used in the encoder

\[\text{MI} = \log \frac{P(C, R)}{P(C)P(R)} \]

\[C = \text{context} \]
\[R = \text{reply} \]
Improving upon Seq2seq

- **Hierarchical seq2seq** for longer context
 - HRED (Hierarchical Recurrent Encoder-Decoder)
 - use a 2nd, turn-level LSTM encoder, word-level LSTM hidden state as input

(Lowe et al., 2017)
http://dad.uni-bielefeld.de/index.php/dad/article/view/3698
Transformer Chatbots

- **DialoGPT** – GPT-2 finetuned on Reddit (147M dialogues) (Zhang et al., 2020)
 - no hierarchy, just decoder, whole chat as a long text – next-word prediction
 - works better than seq2seq-based ones

- **Meena** (Adiwardana et al., 2020)
 - Slightly modified Transformer
 - encoder-decoder, huge, trained on 867M dialogues (next-word prediction)
 - rule-based postprocessing

- **BlenderBot** (sorta SotA now) (Roller et al., 2021)
 - huge encoder-decoder Transformer (has smaller versions)
 - pretrained on Reddit, finetuned on a combination of specific dialogue datasets
 - combination with retrieval possible
 - constrained beam search (avoid too short replies), better than sampling
Hybrid / Ensemble Chatbots (most Alexa Prize Entries)

• State-of-the-art today: **combining all methods**
 • rule-based for sensitive/frequent/important questions
 • retrieval for jokes, trivia etc.
 • task-oriented-like systems for specific topics (handcrafted/specially trained)
 • news, weather etc.
 • seq2seq only as a backoff or not at all

• NLU is typically shared, with advanced NLP pipelines
 • NER is very important – can get relevant news & trivia

• Decision among bots
 a) based on NLU topic detection
 b) ranking multiple answers
 • profanity detection – censoring outputs
Alana (Heriot-Watt University, 2017 & 2018 3rd)

- Bots:
 - Rule-based chit-chat
 - Ontologies – knowledge graph walk
 - movies, music, sports, books
 - Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
 - Specific services
 - Bots compete for reply
 - priority list
 - bots can “lock”

NLU pipeline
- NP extraction
- NER/entity linking
- intents
- sentiment
- topic detection
- ellipsis
- coreference

Bots ensemble
- Coherence bot
- Eliza bot
- Persona bot
- Ontologies bot
- News bot
- Wiki bot
- Reddit bot
- Fun facts bot
- Weather
- Abuse mitigation
- Clarification
- Evi QA bot

http://arxiv.org/abs/1712.07558
Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?
User: Vanilla Sky – I'm looking forward to watching Vanilla Sky [Ellipsis resolution]

User: Interesting

Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]
User: I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]
User: Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [… Music trivia] What's a band that you would like to see? [...]
User: any news about him –> any news about Kendrick Lamar [Coreference resolution]
Alana: Hmm... about Kendrick Lamar, so John, I read a story with this headline [... News headline] Shall I say some more about this?

User: could we talk about something else

Alana: So John, since I know you like books, what have you read recently? I am reading […]

User: Let's talk about Tom Hardy

Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?

User: I mean the novelist

Alana: Yes. Some friends told me something interesting about Thomas Hardy. [… Trivia]

User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.
Alquist (Czech Technical University, ‘17+‘18 2nd, ‘19/20 3rd, ‘20/21 1st)

- full NLU pipeline (similar to Alana)
- 2017: handcrafted state machines
 - sub-dialogue graphs (easier maintenance)
 - well scripted
 - easy to break, but users play along
 - hand-added variation
- 2018+: machine learning
 - RNN-based dialogue management
 - RNN topic switch detector
 - Knowledge graphs (user/bot model)
 - BERT NLU for multiple intents
 - DialoGPT pretrained model fallback

http://alquistai.com/
https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb
https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexaprize-94fe14b8986f
Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
 - tracking user sentiment
 - change topic if user doesn’t like the current one
 - attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself – conversation grounding
 - tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

sub-bot:
- greeting
 - Hi! This is an Alexa Prize socialbot. How’s your day?
- negotiation
 - I’m fine. Glad to hear it! We could talk about robots, Batman, or Superman. Say “next” to chat about other things.
- thoughts
 - Superman. It looks like you wanna chat about Superman. I was high up in the cloud when I realized: If people don’t recognize Clark Kent as Superman because of his glasses, does his eye doctor know his true identity?
- facts
 - I guess so. Did you know that Henry Cavill almost missed the call for the role of Superman because he was playing "World of Warcraft"
- movies
 - Really, I didn’t know that. Weird, right? Speaking of Superman, did you see Superman? It was released in 1978. It’s a comedy.
 - Yes, it was hilarious. I’m glad you feel this is hilarious. Which part do you like best about this movie?
- movies
 - I think the part when he met Lewis in Utah.
 - The part when he met Lewis Utah. Interesting. McQuilin and Raffi co-directed this film. The movie has a 6.3 out of 10 on IMDb, which seems pretty good. Do you like the movie’s director?

http://arxiv.org/abs/1804.10202
https://sounding-board.github.io/
Gunrock (UC Davis, 2018 winner)

- Improving ASR
 - error correction – KB fuzzy matching (allow for “typos”)
 - sentence segmentation (RNN-based)

- NLU – keyphrase extraction
 - focus on noun phrases

- Dialog manager – stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel…

Chatbot Ethics (Cercas Curry & Rieser, 2018)
http://aclweb.org/anthology/W18-0802

- Ca. 4% of our 2017 data is sexually explicit
- Different harassment types:
 - comments on gender/sexuality
 - sexualized comments
 - sexualized insults
 - sexual requests & demands
- Chatbots/voice assistants’ responses
 - various systems:
 - commercial (Alexa, Google…)
 - rule-based (Pandorabots, adult chatbots)
 - data-driven (seq2seq)
 - systems often present as women, have a woman’s voice
 - responses often nonsense / play-along
 - conflict of interest for bot builders: be ethical vs. cater to abusive users
Alexa Prize bottom line

- understanding is the bottleneck
 - ASR problems – chat-specific ASR improved things, but it’s by far not perfect
 - vague concept of dialogue state, despite full NLP pipelines
 - result: typically very crude intents + list of named entities
 - recognizing multiple/fine-grained intents is a problem
- it’s still more about social engineering than “AI”
 - a lot of strategies for not-understanding (switching topics, questions…)
- machine learning helps, but pure ML is not enough
 - lack of annotated data → often relatively simple methods
 - ML helps mainly in NLU, end-to-end seq2seq doesn’t work
- interesting content is crucial
 - the more handcrafted topics, the better
 - fluent NLG not so much (but prosody helps!)
- brutal variance in the evaluation – very subjective
Summary

• chatbots – **non-task oriented** systems
 • purely for user enjoyment
 • targets: **conversation length** & **user engagement**
 • impersonating a human – Turing test

• approaches
 • **rule-based** – keyword spotting, scripting
 • **retrieval** – copy & paste from large databases
 • **generative** – seq2seq etc. trained on corpora of dialogues
 • too many possible responses don’t go well with MLE → safe, short, dull
 • **hybrid** – combining all of the above
 • typically mainly rule-based + retrieval, machine learning in NLU only

• open-domain NLU is still an unsolved problem
 • despite that, many people enjoy conversations with chatbots
 • interesting content is crucial
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
• Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner_Prize Mitsuki PARRY Turing_test Xiaoice Zo_(bot)

This is the Last Lecture
Lab in S4 in 10 mins
Next week: exam date
Exam

• Written test, 10 questions, 10 points each
 • 50%+ lab exercise points not required to take the test (but needed to get the grade)
 • expected 1 hr, but you’ll be given at least 2hrs (no pressure on time)

• Questions covering the 12 lectures
 • question pool on the website
 • you’ll need to write stuff on your own (not a-b-c-d, more like 2-3 sentences)
 • explanation of terms/concepts
 • no exact formulas needed (if needed, they might be provided)
 • but you should know the principles of how stuff works
 • relationships between concepts (“what’s the difference between X & Y”)
 • designing a dialogue system for a domain
 • focus on important stuff (mostly what’s mentioned in the summaries)

• Mark: 3:1 weighted exam-lab exercises
 • 60 % = pass (C), 73+% = B, 88+% = A