NPFL123 Dialogue Systems
7. Neural Policies
& Natural Language Generation

https://ufal.cz,npfl123

Ondřej Dušek, Vojtěch Hudeček, Tomáš Nekvinda
& Jan Cuřín, Petr Fousek

28. 3. 2022
Deep Reinforcement Learning

• Exactly the same as “plain” RL (see last time)
 • agent & environment, actions & rewards
 • Markov Decision Process
• “deep” = part of the agent is handled by a NN
 • value function (typically Q)
 • policy
• NN = function approximation approach
 • such as REINFORCE / policy gradients
 • NN \rightarrow complex non-linear functions
• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states

(Sutton & Barto, 2018)
Value Function Approximation

- Searching for approximate $V(s)$ or $Q(s, a)$
 - exact values are too big to enumerate in a table
 - **parametric approximation** $V(s; \theta)$ or $Q(s, a; \theta)$

- Regression: **Mean squared value error**
 - weighted over states’ importance
 - useful for gradient descent
 - $\rightarrow \sim$ **any supervised learning approach possible**
 - not all work well though

- MC = stochastic gradient descent

- TD is not true gradient descent
 - \leftarrow using current weights in target estimate
 - faster than MC, but unstable for NNs!

\[\overline{VE}(\theta) := \sum_{s \in S} \mu(s)(V_{\pi}(s) - V(s, \theta))^2 \]
Deep Q-Networks

- Q-learning with function approximation
 - Q function represented by a neural net

- Causes of poor convergence in basic Q-learning with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown \rightarrow numeric instability

- Fixes in DQN:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

NPFL123 L7 2022
DQN tricks ~ making it more like supervised learning

• **Experience replay** – break correlated samples
 • run through some episodes (dialogues, games…)
 • store all tuples \((s, a, r', s')\) in a buffer
 • for training, don’t update based on most recent moves – use buffer
 • sample minibatches randomly from the buffer
 • overwrite buffer as you go, clear buffer once in a while
 • only possible for off-policy

\[
\text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]
\]

• **Target Q function freezing**
 • fix the version of Q function used in update targets
 • have a copy of your Q network that doesn’t get updated every time
 • once in a while, copy your current estimate over

“generate your own ‘supervised’ training data”

“have a fixed target, like in supervised learning”
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - for episode, set initial state s
 - select action a from ϵ-greedy policy based on $Q(\theta)$
 - take a, observe reward r' and new state s'
 - store (s, a, r', s') in D
 - $s \leftarrow s'$
 - storing experience
 - often \rightarrow once every k steps:
 - sample a batch B of random (s, a, r', s')'s from D
 - update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]$
 - “replay” a. k. a. training
 - rarely \rightarrow once every λ steps:
 - $\overline{\theta} \leftarrow \theta$

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
https://youtu.be/V1eYniJ0Rnk?t=18
DQN for Dialogue Systems

- A simple DQN can drive a dialogue system’s action selection
 - DQN is function approximation – works fine for POMDPs
 - No summary space tricks needed here

- Rule-based simulator with agenda running on DA level
- DQN – feed-forward, 1 hidden ReLU layer

Error Model Controller (simulating ASR/NLU noise)

Movie Ticket Booking: Better than rule-based

Replay Memory initialized using a simple handcrafted policy

References

- Li et al., 2017
 - [Link](https://arxiv.org/abs/1703.01008)
 - [Repository](https://github.com/MiuLab/TC-Bot)

Diagnostic Information

- NPFL123 L7 2022
Policy Networks

• Learning policy directly – **policy network**
 • can work better than Q-learning
 • NN: input = state, output = prob. dist. over actions
 • actor-critic: network predicts both π and V/Q

• Training can’t use/doesn’t need the DQN tricks
 • just REINFORCE with baseline
 • reward – baseline = **advantage**
 • these are on-policy → no experience replay
 • minibatches used anyway

policy gradient theorem guarantees convergence
Natural Language Generation

- conversion of **system action semantics → text** (in our case)
- NLG output is well-defined, but input is not:
 - DAs
 - any other semantic formalism
 - database tables
 - raw data streams
 - user model
 - dialogue history
 - can be any kind of knowledge representation
 - e.g. “user wants short answers”
 - e.g. for referring expressions, avoiding repetition
- general NLG objective:
 - **given input & communication goal**
 - **create accurate + natural, well-formed, human-like text**
- additional NLG desired properties:
 - variation
 - simplicity
 - adaptability
NLG Use Cases

• **dialogue systems**
 • very different for task/non-task-oriented/QA systems

• **standalone**
 • data-to-text
 • short text generation for web & apps
 • weather, sports reports
 • personalized letters
 • creative generation (stories)

• **machine translation**
 • now mostly integrated end-to-end
 • formerly not the case

• **summarization**
Inputs
• \(\downarrow\) **Content/text/document planning**
 • content selection according to communication goal
 • basic structuring & ordering

Content plan
• \(\downarrow\) **Sentence planning/microplanning**
 • aggregation (facts → sentences)
 • lexical choice
 • referring expressions
 e.g. *restaurant* vs. *it*

Sentence plan
• \(\downarrow\) **Surface realization**
 • linearization according to grammar
 • word order, morphology

Text

- deciding what to say
- deciding how to say it
- typically handled by dialogue manager in dialogue systems
- organizing content into sentences & merging simple sentences
- this is needed for NLG in dialogue systems
NLG Implementations

• Few systems implement the whole pipeline
 • All stages: mostly domain-specific data-to-text, standalone
 • e.g. weather reports
 • Dialogue systems: just sentence planning + realization
 • Systems focused on content + sentence planning with trivial realization
 • frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
 • Surface realization only
 • requires very detailed input
 • some systems: just ordering words

• Pipeline vs. end-to-end approaches
 • planning + realization in one go – popular for neural approaches
 • pipeline: simpler components, might be reusable (especially realizers)
 • end-to-end: no error accumulation, no intermediate data structures
NLG Basic Approaches

• **canned text**
 • most trivial – completely hand-written prompts, no variation
 • doesn’t scale (good for DTMF phone systems)

• **templates**
 • “fill in blanks” approach
 • simple, but much more expressive – covers most common domains nicely
 • can scale if done right, still laborious
 • most production dialogue systems

• **grammars & rules**
 • grammars: mostly older research systems, realization
 • rules: mostly content & sentence planning

• **machine learning**
 • modern research systems
 • pre-neural attempts often combined with rules/grammar
 • neural nets made it work *much* better
Template-based NLG

• Most common in dialogue systems
 • especially commercial systems
• Simple, straightforward, reliable
 • custom-tailored for the domain
 • complete control of the generated content
• Lacks generality and variation
 • difficult to maintain, expensive to scale up
• Can be enhanced with rules
 • e.g. articles, inflection of the filled-in phrases
 • template coverage/selection rules, e.g.:
 • select most concrete template
 • cover input with as few templates as possible
 • random variation

(Facebook, 2015)

inflection rules

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex

(Facebook, 2019)
Grammar/Rules for Sentence Planning

- Handcrafted grammar/rules
 - input: base semantics (e.g. dialogue acts)
 - output: detailed sentence representation (=realizer inputs, see →)

- Statistical enhancements:
 generate more options & choose the best
 - generate multiple outputs
 - underspecified grammar
 - rules with multiple options…
 - choose the best one
 - train just the selection – learning to rank
 - any supervised approach possible e.g. “best” = 1, “not best” = 0

NB: this is slow!

Human
RankBoost

SpoT trainable planner (RankBoost ranking)

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003
Grammar-based realizers

- Various grammar formalisms
 - production / unification rules in the grammar
 - lexicons to go with it
 - expect very detailed input (sentence plans)
- Typically general-domain, reusable
 - **KPML** – multilingual
 - systemic functional grammar
 - **FUF/SURGE** – English
 - functional unification grammar
 - **OpenCCG** – English
 - combinatory categorial grammar

KPML input for *A dog is in the park.*

(10 / spatial-locating
 :speechact (a0 / assertion :polarity positive
 :speaking-time t0)
 :reference-time-id t0
 :event-time (t0 / time)
 :theme d0
 :domain (d0 / object :lex dog
 :identifiability-q notidentifiable)
 :range (p0 / three-d-location :lex park
 :identifiability-q identifiable))

FUF/SURGE input for *She hands the draft to the editor*

OpenCCG input for *The cheapest flight is on Ryanair*

(Bateman, 1997)
Elhadad & Robin, 1996)
(White & Baldridge, 2003)
(Moore et al., 2004)
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download
https://www.aclweb.org/anthology/W03-2316
Procedural realizer: SimpleNLG

- A simple Java API
 - “do-it-yourself” style – only cares about the grammar
 - input needs to be specified precisely
 - building up ~syntactic structure
 - final linearization
- built for English
 - large coverage lexicon included
 - ports to multiple languages available

```java
Lexicon lexicon = new XMLLexicon("my-lexicon.xml");
NLGFFactory nlgFactory = new NLGFFactory(lexicon);
Realiser realiser = new Realiser(lexicon);

SPhraseSpec p = nlgFactory.createClause();
p.setSubject("Mary");
p.setVerb("chase");
p.setObject("the monkey");
p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.
```

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613
Grammar/Procedural Realizers

- procedural, but based on grammar formalisms
- **RealPro** (Meaning-Text-Theory)
 - deep syntax/semantics → surface syntax → morphology
- **Treex** (Functional Generative Description)
 - deep syntax → surface syntax → morphology and linearization
 - simple Perl program
 - copy deep syntax
 - fix morphology agreement
 - add prepositions, conjunctions & articles
 - add auxiliary verbs
 - inflect words
 - add punctuation & capitalization

(Popel & Žabokrtský 2010; Dušek et al., 2015)
https://www.aclweb.org/anthology/W15-3009

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596
Trainable Realizers

• **Overgenerate & Rerank**
 - same approach as for sentence planning
 - assuming a flexible handcrafted realizer (e.g., OpenCCG)
 - underspecified input → more outputs possible
 - generate more & use statistical reranker, based on:
 - n-gram language models
 - Tree language models
 - expected text-to-speech output quality
 - personality traits & alignment/entrainment
 - more variance, but at computational cost

• **Grammar/Procedural-based**
 - same as RealPro or TectoMT, but predict each step using a classifier

NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405

this means the grammar may be smaller

StuMaBa (Bohnet et al., 2010)
https://www.aclweb.org/anthology/C10-1012
Non-Neural End-to-End NLG

• NLG as language models
 • hierarchy of language models
 (HMM/MEMM/CRF style)
 • DA → slot → word level

• NLG using context-free grammars
 a) “language models” by probabilistic CFGs
 • approximate search for best CFG derivation
 b) synchronous PCFGs – MRs & text
 • “translation” with hierarchical phrase-based system
 • parsing MR & generating text

<table>
<thead>
<tr>
<th>rule</th>
<th>prob./parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $S \rightarrow R(start)$</td>
<td>$Pr = 1$</td>
</tr>
<tr>
<td>2. $R(r,r) \rightarrow FS(r,r,stan) \rightarrow R(r,r)$</td>
<td>$Pr(r,r) / Pr(r,r,stan)$</td>
</tr>
<tr>
<td>3. $R(r,r) \rightarrow FS(r,r,stan)$</td>
<td>$Pr(r,r,stan)$</td>
</tr>
<tr>
<td>4. $FS(r,r,f) \rightarrow F(r,r,f)$</td>
<td>$Pr(f)$</td>
</tr>
<tr>
<td>5. $FS(r,r,f) \rightarrow F(r,r,f)$</td>
<td>$Pr(f)$</td>
</tr>
<tr>
<td>6. $F(r,r,f) \rightarrow W(w,f) F(r,r,f)$</td>
<td>$Pr(w,w,f)$</td>
</tr>
<tr>
<td>7. $F(r,r,f) \rightarrow W(w,f)$</td>
<td>$Pr(w,w,f)$</td>
</tr>
<tr>
<td>8. $W(r,r,f) \rightarrow \alpha$</td>
<td>$Pr(\alpha)$</td>
</tr>
<tr>
<td>9. $W(r,r,f) \rightarrow g(f)$</td>
<td>$Pr(g(f) \mid \text{mode}, r, r, f, f_2 \in \text{int})$</td>
</tr>
</tbody>
</table>

(Oh & Rudnicky, 2002) https://doi.org/10.1016/S0885-2308(02)00012-8
(Angele et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
(Mairesse et al., 2010) https://www.aclweb.org/anthology/P10-1157
(Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003
(Konstas & Lapata, 2012) https://www.aclweb.org/anthology/P12-1039
Neural Generation: Seq2seq RNNs (see NLU for RNN intro)

Token representation: embeddings = vectors of ~100-1000 numbers

- **Source “word” embeddings**
 - “hidden states” (=again, vectors of numbers)

- **Encoder outputs**
 - “hidden states” (=again, vectors of numbers)

Attention = weighted combination (weights different for each step)

- **Probability distribution** over the whole vocabulary

Vocabulary is numbered

- **Input:** prev. output + token embedding

Cells: identical (compound) neural layers

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473
Neural End-to-End NLG: RNNs

• Unlike previous, doesn’t need alignments
 • no need to know which word/phrase corresponds to which slot
 name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

 Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

• 1st system: RNN language model conditioned on DA (~decoder only)
 • input: binary-encoded DA
 • 1 if intent-slot-value present, 0 if not
 • delexicalized: much fewer values, shorter vector
 • modified LSTM cells
 • input DA passed in every time step
 • generating delexicalized texts word-by-word
 • i.e. decoder only

Seq2seq NLG with reranking (TGen)

- Encode DAs as sequences, apply standard RNN seq2seq
 - encoder: triples <DA type, slot, value>
 - decoder: words (possibly delexicalized)
- Beam search & reranking
 - DA classification of outputs
 - checking against input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008
Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

feed-forward (fully connected) network
- ReLU activations
- tricks for better training

attention over all of input

positional encoding (indicate position in sentence)

encoder

decoder

no recurrent connections

attention over all of input & output generated so far (self-attention)

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
Transformers & Pretrained Language Models

- Transformer architecture
 - encoder-decoder, but using feed-forward & attention instead of RNNs
 - positional encoding used to indicate sentence position
 - predefined “pattern” functions (based on sin & cos)
 - simply added to word embeddings
 - no RNN → parallel training → faster, allows larger models (more layers)

- Large models pretrained on open-domain texts
 - guess masked word (encoder only: BERT)
 - generate next word (decoder only: GPT)
 - fixed distorted sentences (both: BART, T5)

- Can be finetuned for your domain & task
 - relatively little data is enough
 - extremely fluent

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
(Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423
(Radford et al., 2019) https://openai.com/blog/better-language-models/
(Lewis et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.703
(Raffel et al., 2020) http://jmlr.org/papers/v21/20-074.html
(Chen et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.18/
Problems with neural NLG

- Checking the **semantics**
 - neural models tend to forget input / make up irrelevant stuff
 - reranking works, but isn’t perfect
- Needs quite a lot of data
- Delexicalization needed (at least some slots)
 - otherwise the data would be too sparse
 - alternative: copy mechanisms
- Diversity & complexity of outputs
 - still can’t match humans
 - needs specific tricks to improve this
- Still more hassle than writing up templates 🥺

(Dušek et al., 2020)
http://arxiv.org/abs/1901.07931
Summary

Deep Reinforcement Learning
- same as plain RL – agent + states, actions, rewards – just Q or π is a NN
- function approximation for Q – mean squared value error
- **Deep Q Networks** – Q learning where Q is a NN + tricks
 - experience replay, target function freezing
- **Policy networks** – policy gradients where π is a NN

Natural Language Generation
- steps: content planning, **sentence planning**, **surface realization**
 - not all systems implement everything (content planning is DM’s job in DS)
 - pipeline vs. end-to-end
- approaches: templates, grammars, statistical
- **templates** work great
- neural: **RNN / Transformer**, reranking
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
- David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/